Gut-Derived Metabolomic Biomarkers as Mediators of the Inflammatory Pathway in Early Diabetic Kidney Disease
Abstract
1. Introduction
2. Results
2.1. Clinical and Demographic Parameters
2.2. Association Between Circulating Metabolites and Systemic Inflammatory Biomarkers
2.2.1. Univariable Linear Regression Analysis
2.2.2. Multivariable Linear Regression Analysis
2.3. Metabolite Origin
3. Discussion
3.1. Serum Arginine Is a Biomarker of Early Renal Fibrosis in DKD via TGF- β Production Whereas Urine Arginine Associates with Early Inflammation in the Tubulo-Interstitial Compartment
3.2. Uremic Toxins’ Involvement in the Inflammatory Pathway in DKD
3.2.1. Hippuric Acid in Serum and Urine Reflects a Predominant Inflammatory State in Early DKD, Rather than Serving as a Marker of Renal Fibrosis
3.2.2. Indoxyl Sulfate
3.2.3. P-Cresyl Sulfate
3.3. Serum Sorbitol Exerts Nephrotoxicity and Contributes to DKD Development
3.4. Serum and Urine Butenoylcarnitine May Be a Biomarker of Early Renal Inflammation in DKD
3.5. The Limitations and Strengths of This Study
4. Materials and Methods
4.1. Ethical Standards and the Selection of Study Participants
4.2. The Preparation of Samples
4.3. Evaluation Techniques and Further Analysis of the Samples
4.3.1. Metabolomic Assessment
4.3.2. ELISA Assessments
4.3.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DKD | Diabetic kidney disease |
| T2DM | Type 2 diabetes mellitus |
| ACs | Acylcarnitines |
| UTs | Uremic toxins |
| PIs | Polyol pathway intermediates |
| AAs | Amino acids |
| TNF-α | Tumor necrosis factor α |
| eGFR | Estimated glomerular filtration rate |
| TGF-β | Transforming growth factor β |
| ILs | Interleukins |
| UHPLC-QTOF-ESI+-MS | Ultra-high-performance liquid chromatography coupled with electrospray ionization–quadrupole–time-of-flight mass spectrometry |
| ELISA | Enzyme-linked immunosorbent |
| SD | Standard deviation |
| ANOVA | Analysis of variance |
| DM | Diabetes mellitus |
| uACR | Urinary albumin to creatinine ratio |
| DR | Diabetic retinopathy |
| DN | Diabetic neuropathy |
| HbA1c | Glycated hemoglobin |
| Arg | Arginine |
| HA | Hippuric acid |
| IS | Indoxyl sulfate |
| PCS | P-cresyl sulfate |
| LAC | L-acetylcarnitine |
| BCA | Butenoyl carnitine |
| Sorb | Sorbitol |
| Cr | Creatinine |
| ADMA | Asymmetric dimethylarginine |
References
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.M.; Zoungas, S.; Rossing, P.; Groop, P.H.; Cooper, M.E. Diabetic Kidney Disease. Nat. Rev. Dis. Primers 2015, 1, 15018. [Google Scholar] [CrossRef]
- Hoogeveen, E.K. The Epidemiology of Diabetic Kidney Disease. Kidney Dial. 2022, 2, 433–442. [Google Scholar] [CrossRef]
- Dai, Q.; Chen, N.; Zeng, L.; Lin, X.J.; Jiang, F.X.; Zhuang, X.J.; Lu, Z.Y. Clinical Features of and Risk Factors for Normoalbuminuric Diabetic Kidney Disease in Hospitalized Patients with Type 2 Diabetes Mellitus: A Retrospective Cross-Sectional Study. BMC Endocr. Disord. 2021, 21, 104. [Google Scholar] [CrossRef]
- Nichols, G.A.; Déruaz-Luyet, A.; Hauske, S.J.; Brodovicz, K.G. The Association between Estimated Glomerular Filtration Rate, Albuminuria, and Risk of Cardiovascular Hospitalizations and All-Cause Mortality among Patients with Type 2 Diabetes. J. Diabetes Complicat. 2018, 32, 291–297. [Google Scholar] [CrossRef] [PubMed]
- KDIGO. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, 3, 1–150. [Google Scholar]
- Akhtar, M.; Taha, N.M.; Nauman, A.; Mujeeb, I.B.; Al-Nabet, A.D.M.H. Diabetic Kidney Disease: Past and Present. Adv. Anat. Pathol. 2020, 27, 87–97. [Google Scholar] [CrossRef]
- An, N.; Wu, B.T.; Yang, Y.W.; Huang, Z.H.; Feng, J.F. Re-Understanding and Focusing on Normoalbuminuric Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 1077929. [Google Scholar] [CrossRef]
- Sugahara, M.; Pak, W.L.W.; Tanaka, T.; Tang, S.C.W.; Nangaku, M. Update on Diagnosis, Pathophysiology, and Management of Diabetic Kidney Disease. Nephrology 2021, 26, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, J.F.; Mora-Fernández, C.; De Fuentes, M.M.; García-Pérez, J. Inflammatory Molecules and Pathways in the Pathogenesis of Diabetic Nephropathy. Nat. Rev. Nephrol. 2011, 7, 327–340. [Google Scholar] [CrossRef]
- Chen, Y.L.; Qiao, Y.C.; Xu, Y.; Ling, W.; Pan, Y.H.; Huang, Y.C.; Geng, L.J.; Zhao, H.L.; Zhang, X.X. Serum TNF-α Concentrations in Type 2 Diabetes Mellitus Patients and Diabetic Nephropathy Patients: A Systematic Review and Meta-Analysis. Immunol. Lett. 2017, 186, 52–58. [Google Scholar] [CrossRef]
- Vasanthakumar, R.; Mohan, V.; Anand, G.; Deepa, M.; Babu, S.; Aravindhan, V. Serum IL-9, IL-17, and TGF-β Levels in Subjects with Diabetic Kidney Disease (CURES-134). Cytokine 2015, 72, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, F.; Hou, L. IL-6 and Diabetic Kidney Disease. Front. Immunol. 2024, 15, 1465625. [Google Scholar] [CrossRef]
- Milas, O.; Gadalean, F.; Vlad, A.; Dumitrascu, V.; Velciov, S.; Gluhovschi, C.; Bob, F.; Popescu, R.; Ursoniu, S.; Jianu, D.C.; et al. Pro-Inflammatory Cytokines Are Associated with Podocyte Damage and Proximal Tubular Dysfunction in the Early Stage of Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. J. Diabetes Complicat. 2020, 34, 107479. [Google Scholar] [CrossRef] [PubMed]
- Donate-Correa, J.; Ferri, C.M.; Sánchez-Quintana, F.; Pérez-Castro, A.; González-Luis, A.; Martín-Núñez, E.; Mora-Fernández, C.; Navarro-González, J.F. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front. Med. 2021, 7, 628289. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, Y.; Zhang, Y.; Jin, H.; Shou, S. The Role of IL-10 in Kidney Disease. Int. Immunopharmacol. 2022, 108, 108917. [Google Scholar] [CrossRef]
- Wishart, D.S. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol. Rev. 2019, 99, 1819–1875. [Google Scholar] [CrossRef]
- Wu, T.; Qiao, S.; Shi, C.; Wang, S.; Ji, G. Metabolomics Window into Diabetic Complications. J. Diabetes Investig. 2018, 9, 244–255. [Google Scholar] [CrossRef]
- Vancamelbeke, M.; Vermeire, S. The Intestinal Barrier: A Fundamental Role in Health and Disease. Expert. Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, Z.; Lu, Y.; Feng, W.; Wu, H.; Fan, L.; Guan, B.; Dai, Y.; Tang, D.; Dong, X.; et al. Urine Metabolomics Reveals Biomarkers and the Underlying Pathogenesis of Diabetic Kidney Disease. Int. Urol. Nephrol. 2022, 55, 1001–1013. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Tang, P.; Zhang, J.; Zhong, R.; Luo, J.; Lin, J.; Zhang, L. Identifying Key Genes for Diabetic Kidney Disease by Bioinformatics Analysis. BMC Nephrol. 2023, 24, 305. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Devi Rajeswari, V.; Venkatraman, G.; Elumalai, R.; Dhanasekaran, S.; Ramanathan, G. Current Updates on Metabolites and Its Interlinked Pathways as Biomarkers for Diabetic Kidney Disease: A Systematic Review. Transl. Res. 2024, 265, 71–87. [Google Scholar] [CrossRef]
- Balint, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Metabolite Profiling of the Gut–Renal–Cerebral Axis Reveals a Particular Pattern in Early Diabetic Kidney Disease in T2DM Patients. Int. J. Mol. Sci. 2023, 24, 6212. [Google Scholar] [CrossRef]
- Balint, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Quantitative, Targeted Analysis of Gut Microbiota Derived Metabolites Provides Novel Biomarkers of Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomolecules 2023, 13, 1086. [Google Scholar] [CrossRef]
- Balint, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients. Metabolites 2023, 13, 893. [Google Scholar] [CrossRef]
- Morris, S.M. Arginine Metabolism Revisited. J. Nutr. 2016, 146, 2579S–2586S. [Google Scholar] [CrossRef]
- Ticinesi, A.; Guerra, A.; Nouvenne, A.; Meschi, T.; Maggi, S. Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023, 15, 1138. [Google Scholar] [CrossRef] [PubMed]
- Lowenstein, J.; Nigam, S.K. Uremic Toxins in Organ Crosstalk. Front. Med. 2021, 8, 592602. [Google Scholar] [CrossRef] [PubMed]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. P-Cresyl Sulfate. Toxins 2017, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Dou, L.; Jourde-Chiche, N. Endothelial Toxicity of High Glucose and Its By-Products in Diabetic Kidney Disease. Toxins 2019, 11, 578. [Google Scholar] [CrossRef]
- Sato, K.; Tomioka, M.; Akiyama, M.; Matsuda, Y.; Hara, H.; Sasa, H.; Kurashima, Y.; Inoue, J.; Fukuda, S.; Kim, Y.G. Dietary Fermentable Polyols Fuel Gut Inflammation through M1 Macrophage Polarization and Gut Microbiota. iScience 2025, 28, 112934. [Google Scholar] [CrossRef] [PubMed]
- Nüse, B.; Holland, T.; Rauh, M.; Gerlach, R.G.; Mattner, J. L-Arginine Metabolism as Pivotal Interface of Mutual Host-Microbe Interactions in the Gut. Gut Microbes 2023, 15, 2222961. [Google Scholar] [CrossRef]
- Li, C.; Gao, L.; Lv, C.; Li, Z.; Fan, S.; Liu, X.; Rong, X.; Huang, Y.; Liu, J. Active Role of Amino Acid Metabolism in Early Diagnosis and Treatment of Diabetic Kidney Disease. Front. Nutr. 2023, 10, 1239838. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, I.; Sundararajan, S.; Venkatesan, S.; Paadukaana, S.; Balasubramanyam, M.; Mohan, V.; Manickam, N. Asymmetric Dimethylarginine (ADMA) Accelerates Renal Cell Fibrosis under High Glucose Condition through NOX4/ROS/ERK Signaling Pathway. Sci. Rep. 2020, 10, 16005. [Google Scholar] [CrossRef]
- Metabolism, R.A.; Brosnan, M.E.; Brosnan, J.T. Arginine Metabolism: Enzymology, Nutrition, and Clinical Significance. J. Nutr. 2004, 134, 2748S–2751S. [Google Scholar] [CrossRef]
- Aghadavod, E.; Khodadadi, S.; Baradaran, A.; Nasri, P.; Bahmani, M.; Rafieian-Kopaei, M. Kidney Diseases Role of Oxidative Stress and Inflammatory Factors in Diabetic Kidney Disease. Iran. J. Kidney Dis. 2016, 10, 337. [Google Scholar]
- Sun, L.; Kanwar, Y.S. Relevance of TNF-α in the Context of Other Inflammatory Cytokines in the Progression of Diabetic Nephropathy. Kidney Int. 2015, 88, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Chen, J.; Li, Y.F. Clinical Significance of Serum Interleukin-8 and Soluble Tumor Necrosis Factor-like Weak Inducer of Apoptosis Levels in Patients with Diabetic Nephropathy. J. Diabetes Investig. 2018, 9, 1182–1188. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Zeng, L.; Chen, G.; Zhang, L.; Liu, M.; Sheng, H.; Hu, X.; Su, J.; Zhang, D.; et al. The Role of Gut Microbiota and Microbiota-Related Serum Metabolites in the Progression of Diabetic Kidney Disease. Front. Pharmacol. 2021, 12, 757508. [Google Scholar] [CrossRef]
- Fang, Q.; Liu, N.; Zheng, B.; Guo, F.; Zeng, X.; Huang, X.; Ouyang, D. Roles of Gut Microbial Metabolites in Diabetic Kidney Disease. Front. Endocrinol. 2021, 12, 636175. [Google Scholar] [CrossRef]
- Ma, L.; Liu, D.; Yu, Y.; Li, Z.; Wang, Q. Immune-Mediated Renal Injury in Diabetic Kidney Disease: From Mechanisms to Therapy. Front. Immunol. 2025, 16, 1587806. [Google Scholar] [CrossRef]
- Cheng, T.-H.; Ma, M.-C.; Liao, M.-T.; Zheng, C.-M.; Lu, K.-C.; Liao, C.-H.; Hou, Y.-C.; Liu, W.-C.; Lu, C.-L. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins 2020, 12, 684. [Google Scholar] [CrossRef]
- Caggiano, G.; Amodio, L.; Stasi, A.; Colabufo, N.A.; Colangiulo, S.; Pesce, F.; Gesualdo, L. Gut-Derived Uremic Toxins in CKD: An Improved Approach for the Evaluation of Serum Indoxyl Sulfate in Clinical Practice. Int. J. Mol. Sci. 2023, 24, 5142. [Google Scholar] [CrossRef]
- Tian, E.; Wang, F.; Zhao, L.; Sun, Y.; Yang, J. The Pathogenic Role of Intestinal Flora Metabolites in Diabetic Nephropathy. Front. Physiol. 2023, 14, 1231621. [Google Scholar] [CrossRef]
- Jia, M.; Lin, L.; Xun, K.; Li, D.; Wu, W.; Sun, S.; Qiu, H.; Jin, D. Indoxyl Sulfate Aggravates Podocyte Damage through the TGF-Β1/Smad/ROS Signaling Pathway. Kidney Blood Press. Res. 2024, 49, 385–396. [Google Scholar] [CrossRef]
- Watanabe, H.; Miyamoto, Y.; Enoki, Y.; Ishima, Y.; Kadowaki, D.; Kotani, S.; Nakajima, M.; Tanaka, M.; Matsushita, K.; Mori, Y.; et al. P-Cresyl Sulfate, a Uremic Toxin, Causes Vascular Endothelial and Smooth Muscle Cell Damages by Inducing Oxidative Stress. Pharmacol. Res. Perspect. 2015, 3, e00092. [Google Scholar] [CrossRef]
- Hasegawa, S.; Inagi, R. Harnessing Metabolomics to Describe the Pathophysiology Underlying Progression in Diabetic Kidney Disease. Curr. Diab Rep. 2021, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Sanchez-Niño, M.D.; Glorieux, G.; Sanz, A.B.; Egido, J.; Vanholder, R.; Ortiz, A. P-Cresyl Sulphate Has pro-Inflammatory and Cytotoxic Actions on Human Proximal Tubular Epithelial Cells. Nephrol. Dial. Transplant. 2014, 29, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Lagies, S.; Pichler, R.; Bork, T.; Kaminski, M.M.; Troendle, K.; Zimmermann, S.; Huber, T.B.; Walz, G.; Lienkamp, S.S.; Kammerer, B. Impact of Diabetic Stress Conditions on Renal Cell Metabolome. Cells 2019, 8, 1141. [Google Scholar] [CrossRef] [PubMed]
- van der Kloet, F.M.; Tempels, F.W.A.; Ismail, N.; van der Heijden, R.; Kasper, P.T.; Rojas-Cherto, M.; van Doorn, R.; Spijksma, G.; Koek, M.; van der Greef, J.; et al. Discovery of Early-Stage Biomarkers for Diabetic Kidney Disease Using Ms-Based Metabolomics (FinnDiane Study). Metabolomics 2012, 8, 109–119. [Google Scholar] [CrossRef]
- Mu, X.; Yang, M.; Ling, P.; Wu, A.; Zhou, H.; Jiang, J. Acylcarnitines: Can They Be Biomarkers of Diabetic Nephropathy? Diabetes Metab. Syndr. Obes. 2022, 15, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-González, I.; Cruz-Bautista, I.; Bello-Chavolla, O.Y.; Vela-Amieva, M.; Pallares-Méndez, R.; Ruiz de Santiago Y Nevarez, D.; Salas-Tapia, M.F.; Rosas-Flota, X.; González-Acevedo, M.; Palacios-Peñaloza, A.; et al. Optimization of Kidney Dysfunction Prediction in Diabetic Kidney Disease Using Targeted Metabolomics. Acta Diabetol. 2018, 55, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Loretelli, C.; Rocchio, F.; D’Addio, F.; Ben Nasr, M.; Castillo-Leon, E.; Dellepiane, S.; Vergani, A.; Abdelsalam, A.; Assi, E.; Maestroni, A.; et al. The IL-8-CXCR1/2 Axis Contributes to Diabetic Kidney Disease. Metabolism 2021, 121, 154804. [Google Scholar] [CrossRef] [PubMed]
| Parameter | 20 Healthy Controls | 30 Patients With Normal to Mildly Increased Albuminuria | 30 Patients with Moderately Increased Albuminuria | 30 Patients with Severely Increased Albuminuria |
|---|---|---|---|---|
| Clinical features | ||||
| Male (number, %) | 12 (60%) | 14 (46.66%) | 13 (43.33%) | 15 (50%) |
| Age (years) | 58.85 (7.25) | 68.41 (4.98) | 68.65 (4.91) | 68.84 (4.98) |
| Body mass index | 24.75 (4.39) ●ↂ | 30.07 (4.54) | 31.51 (4.01) | 30.98 (5.28) |
| Duration of DM (years) | 0 ●ↂ | 9.6 (3.99) | 9.7 (3.99) | 12.78 (3.35) |
| DR (number, %) | 0 † | 5 (16.66%) | 10 (33%) ♣ | 20 (66.66) |
| DN (number, %) | 0 ● | 3 (10%) | 9 (30%) | 16 (53.33) |
| Common blood and urine parameters | ||||
| eGFR (mL/min/1.73 m2) | 97.93 (11.71) ●ↂ | 90.42 (18.10) ▲ | 67.80 (5.44) ♣ | 49.53 (9.4) |
| uACR (mg/g) | 5 (0.23) ●ↂ | 7.38 (3.22) ▲ | 45.52 (47.08) ♣ | 319.86 (585.8) |
| Triglycerides (mg/dL) | 111.05 (20.73) †ↂ | 139.65 (51.1) | 172.63 (93.63) ■ | 227.17 (107.55) |
| Cholesterol (mg/dL) | 132.5 (24.62) †ↂ | 163.62 (54.39) | 166.8 (57.7) ■ | 199.5 (48.1) |
| HbA1c (%) | 4.98 (0.23) ●ↂ | 5 (0.23) ♦ | 6.42 (1.29) ♣ | 7.15 (1.60) |
| Serum and urine metabolites | ||||
| sArg (μM) | 50.03 (10.02) †ↂ | 44 (10.18) ♦ | 38.4 (6.5) | 38.91 (7.67) |
| sHA (μM) | 24.33 (2.35) †⁑ | 22.71 (1.24) | 22.39 (1.72) | 20.79 (5.1) |
| sIS (μM) | 5.06 (0.45) ●ↂ | 5.14 (0.47) ♦ | 6.51 (5.07) ♣ | 6.63 (0.6) |
| sLAC (μM) | 5.52 (2.13) | 5.72 (2.07) | 5.47 (1.74) | 5.73 (1.6) |
| sBCA (μM) | 2.3 (0.1) ↂ | 2.25 (0.13) ▲ | 2.61 (0.37) | 2.51 (0.55) |
| sSorb (μM) | 2.54 (0.46) †ↂ | 2.25 (0.14) ▲ | 2.67 (0.3) | 2.59 (0.33) |
| uArg/uCr (μM/μM) | 5.26 (1.72) | 6.08 (2.86) ♦ | 4.84 (3.22) | 5.63 (2.51) |
| uLAC/uCr (μM/μM) | 0.31 (0.13) | 0.40 (0.26) | 0.42 (0.31) | 0.54 (0.54) |
| uBCA/uCr (μM/μM) | 0.24 (0.11) ●ↂ | 0.45 (0.23) | 0.45 (0.32) | 0.53 (0.26) |
| uHA/uCr (μM/μM) | 52.55 (29.36) | 54.66 (2.85) | 57.75 (72.7) | 55.62 (29.86) |
| uIS/uCr (μM/μM) | 0.82 (0.37) ↂ | 2.07 (1.09) | 1.99 (1.5) ■ | 2.44 (1.21) |
| uPCS/uCr (μM/μM) | 3.39 (1.62) †⁑ | 5.69 (5.14) | 5.65 (3.54) | 7.64 (4.5) |
| Parameters of inflammation from serum | ||||
| sTNF-α (pg/mL) | 15.82 (4.91) ●ↂ | 27.46 (9.83) ▲ | 54.23 (14.51) ♣ | 113.37 (37.03) |
| sTGF-β (pg/mL) | 0.22 (0.05) ●ↂ | 0.45 (0.21) ▲ | 3.25 (1.11) ♣ | 8.96 (0.70) |
| sIL-6 (pg/mL) | 3.80 (0.88) ●ↂ | 6.54 (1.77) ▲ | 15.03 (5.33) ♣ | 40.19 (19.20) |
| sIL-8 (pg/mL) | 38.93 (23.41) ●ↂ | 108.09 (30.03) ▲ | 184.55 (19.97) ♣ | 257.64 (39.28) |
| sIL-10 (pg/mL) | 20.81 (4.06) ●ↂ | 13.97 (2.15) ▲ | 11.22 (1.08) ■ | 9.44 (2.03) |
| sIL-12 (pg/mL) | 25.21 (3.70) ●ↂ | 126.17 (47.97) ▲ | 178.21 (50.35) ♣ | 308.88 (94.82) |
| sIL-17 (pg/mL) | 81.38 (16.97) ●ↂ | 152.54 (26.19) ▲ | 274.15 (33.85) ♣ | 460.31 (75.53) |
| sIL-18 (pg/mL) | 84.25 (21.86) ●ↂ | 118.64 (39.41) ▲ | 154.09 (42.17) ♣ | 218.66 (78.52) |
| Parameters of inflammation from urine | ||||
| uTNF-α (pg/g) | 13.31 (3.68) ●ↂ | 21.46 (7.84) ▲ | 40.97 (15.18) ♣ | 64.41 (21.73) |
| uTGF-β (pg/g) | 0.19 (0.01) ●ↂ | 0.29 (0.07) ▲ | 0.79 (0.30) ♣ | 4.97 (1.32) |
| uIL-6 (pg/g) | 2.33 (0.68) ●ↂ | 5.06 (1.59) ▲ | 8.04 (2.05) ♣ | 15.83 (3.77) |
| uIL-8 (pg/g) | 8.72 (0.61) ●ↂ | 30.10 (9.55) ▲ | 102.36 (27.17) ♣ | 159.64 (36.49) |
| uIL-10 (pg/g) | 15.32 (2.10) ●ↂ | 8.89 (2.48) ▲ | 5.73 (1.28) ■ | 4.79 (1.41) |
| uIL-12 (pg/g) | 25.21 (2.14) ●ↂ | 126.17 (19.58) ▲ | 178.21 (26.37) ♣ | 308.88 (44.57) |
| uIL-17 (pg/g) | 53.07 (11.55) ●ↂ | 120.70 (30.45) ▲ | 241.07 (57.02) ♣ | 408.45 (67.86) |
| uIL-18 (pg/g) | 29.45 (13.18) †ↂ | 46.43 (22.13) ♦ | 95.02 (31.97) ♣ | 142.85 (50.90) |
| Dependent Variable | Independent Variables | Coef β | p | 95% CI | Prob > F | R2 |
|---|---|---|---|---|---|---|
| sArg | sTNF-α | −0.1967 | <0.0001 | −0.27 to −0.11 | <0.0001 | 0.4321 |
| sTGF-β | 2.7911 | <0.0001 | 1.08 to 3.77 | |||
| sIL-8 | −0.0789 | <0.0001 | −0.11 to −0.04 | |||
| sHA | sTNF-α | 0.1428 | <0.0001 | 0.11 to 0.16 | <0.0001 | 0.629 |
| sTGF-β | −0.6029 | 0.001 | −0.94 to −0.26 | |||
| sIL-17 | −0.0218 | <0.0001 | −0.02 to −0.01 | |||
| eGFR | 0.0696 | 0.009 | 0.01 to 0.12 | |||
| sSorb | sTNF-α | 0.0096 | <0.0001 | 0.006 to 0.01 | <0.0001 | 0.336 |
| sIL-17 | −0.0009 | 0.035 | −0.001 to −0.00006 | |||
| eGFR | 0.0089 | 0.014 | 0.001 to 0.01 | |||
| sLAC | sTNF-α | 0.0594 | <0.0001 | 0.04 to 0.07 | <0.0001 | 0.325 |
| sTGF-β | −0.4683 | <0.0001 | −0.65 to −0.27 | |||
| sIL-18 | −0.0067 | 0.022 | −0.012 to −0.001 | |||
| sBCA | sTNF-α | 0.0128 | <0.0001 | 0.009 to 0.01 | <0.0001 | 0.4704 |
| sTGF-β | −0.0976 | <0.0001 | −0.13 to −0.06 |
| Dependent Variable | Independent Variables | Coef β | p | 95% CI | Prob > F | R2 |
|---|---|---|---|---|---|---|
| uArg | uTNF-α | 0.0782 | <0.0001 | 0.04 to 0.104 | <0.0001 | 0.3676 |
| uTGF-β | −0.6002 | 0.002 | −0.97 to −0.22 | |||
| uIL-8 | −0.0241 | <0.0001 | −0.03 to −0.01 | |||
| uACR | 0.0032 | <0.0001 | 0.001 to 0.004 | |||
| uHA | uTNF-α | 1.112 | <0.0001 | 0.61 to 1.61 | <0.0001 | 0.2616 |
| uTGF-β | −10.8716 | 0.001 | −17.13 to −4.605 | |||
| uIL-10 | 2.4008 | 0.04 | 0.107 to 4.69 | |||
| uACR | 0.0286 | 0.01 | 0.005 to 0.051 | |||
| uIS | uTNF-α | 0.0229 | 0.001 | 0.01 to 0.03 | <0.0001 | 0.533 |
| uTGF-β | −0.454 | <0.0001 | −0.62 to −0.28 | |||
| uIL-6 | 0.1508 | 0.002 | 0.05 to 0.24 | |||
| uIL-18 | −0.0055 | 0.043 | −0.01 to −0.0001 | |||
| uACR | 0.001 | <0.0001 | 0.0004 to 0.001 | |||
| uPCS | uTNF-α | 0.0706 | 0.001 | 0.03 to 0.11 | <0.0001 | 0.5416 |
| uTGF-β | −1.541 | <0.0001 | −2.07 to −1.006 | |||
| uACR | 0.007 | <0.0001 | 0.005 to 0.009 | |||
| uLAC | uTNF-α | 0.0044 | 0.001 | 0.001 to 0.007 | <0.0001 | 0.6258 |
| uTGF-β | −0.1377 | <0.0001 | −0.17 to −0.102 | |||
| uACR | 0.0006 | <0.0001 | 0.0005 to 0.0008 | |||
| uBCA | uTNF-α | 0.006 | <0.0001 | 0.003 to 0.008 | <0.0001 | 0.5283 |
| uTGF-β | −0.0686 | <0.0001 | −0.12 to −0.05 | |||
| uIL-6 | 0.0242 | 0.0065 | 0.006 to 0.04 | |||
| uIL-8 | −0.0013 | 0.024 | −0.002 to −0.0001 | |||
| uACR | 0.0002 | <0.0001 | 0.0001 to 0.0003 |
| Metabolite | Origin | Excretion Route | Reference |
|---|---|---|---|
| Arginine | Proteolysis of dietary proteins De novo synthesis in the renal–intestinal axis | Renal | [25] |
| Hippuric acid | Glycine conjugation of benzoic acid in the liver Gut microbial metabolism of phenylalanine | Renal | [26] |
| Indoxyl sulfate | Metabolism of dietary tryptophan by gut microbiota Hepatic sulfation of indole | Renal | [27] |
| P-cresyl sulfate | Metabolism of dietary tyrosine and phenylalanine by gut microbiota Hepatic sulfation of p-cresol | Renal | [28] |
| L-acetylcarnitine | Hepatic and renal metabolism of dietary L-carnitine Gut microbiota metabolism of L-carnitine and conversion to trimethylamine-N-oxide | Renal | [29] |
| Butenoyl-carnitine | Poorly studied, mainly from exogenous sources Other data not available | Data not available | https://hmdb.ca/metabolites/HMDB0249460 (accessed on 23 November 2025) |
| Sorbitol | Endogenous source from polyol pathway Dietary sources under gut microbiota’s action | Renal Intracellular accumulation | [30,31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcu, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu, A.; Glavan, M.; et al. Gut-Derived Metabolomic Biomarkers as Mediators of the Inflammatory Pathway in Early Diabetic Kidney Disease. Int. J. Mol. Sci. 2025, 26, 11776. https://doi.org/10.3390/ijms262411776
Marcu L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu A, Glavan M, et al. Gut-Derived Metabolomic Biomarkers as Mediators of the Inflammatory Pathway in Early Diabetic Kidney Disease. International Journal of Molecular Sciences. 2025; 26(24):11776. https://doi.org/10.3390/ijms262411776
Chicago/Turabian StyleMarcu, Lavinia, Carmen Socaciu, Andreea Iulia Socaciu, Adrian Vlad, Florica Gadalean, Flaviu Bob, Oana Milas, Octavian Marius Cretu, Anca Suteanu, Mihaela Glavan, and et al. 2025. "Gut-Derived Metabolomic Biomarkers as Mediators of the Inflammatory Pathway in Early Diabetic Kidney Disease" International Journal of Molecular Sciences 26, no. 24: 11776. https://doi.org/10.3390/ijms262411776
APA StyleMarcu, L., Socaciu, C., Socaciu, A. I., Vlad, A., Gadalean, F., Bob, F., Milas, O., Cretu, O. M., Suteanu, A., Glavan, M., Ienciu, S., Mogos, M., Jianu, D. C., Ursoniu, S., Dumitrascu, V., Vlad, D., Popescu, R., & Petrica, L. (2025). Gut-Derived Metabolomic Biomarkers as Mediators of the Inflammatory Pathway in Early Diabetic Kidney Disease. International Journal of Molecular Sciences, 26(24), 11776. https://doi.org/10.3390/ijms262411776

