Association of DPP4 Gene Variants with Classic and DPP4 Inhibitor-Associated Bullous Pemphigoid
Abstract
1. Introduction
2. Results
2.1. rs3788979 Variant
2.2. rs12617656 Variant
2.3. Linkage Disequilibrium (LD) Analysis
2.4. Haplotype Analysis
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BP | Bullous Pemphigoid |
| cBP | Classic Bullous Pemphigoid |
| CI | Confidence Interval |
| DIF | Direct Immunofluorescence |
| DPG | Diabetic Patients on Gliptins |
| DPP4 | Dipeptidyl-Peptidase 4 |
| ELISA | Enzyme-Linked Immunosorbent Assays |
| HWE | Hardy–Weinberg Equilibrium` |
| LD | Linkage Disequilibrium |
| OR | Odds Ratio |
| PCR-RFLP | Polymerase Chain Reaction–Restriction Fragment Length Polymorphism |
| TPMT | Thiopurine Methyltransferase |
References
- Kasperkiewicz, M.; Zillikens, D. The Pathophysiology of Bullous Pemphigoid. Clin. Rev. Allergy Immunol. 2007, 33, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Moro, F.; Fania, L.; Sinagra, J.L.M.; Salemme, A.; Di Zenzo, G. Bullous Pemphigoid: Trigger and Predisposing Factors. Biomolecules 2020, 10, 1432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, G. Genetic Predisposition to Bullous Pemphigoid. J. Dermatol. Sci. 2020, 100, 86–91. [Google Scholar] [CrossRef]
- Tuusa, J.; Kokkonen, N.; Mattila, A.; Huilaja, L.; Varpuluoma, O.; Rannikko, S.; Glumoff, V.; Miettunen, J.; Tasanen, K. Dipeptidyl Peptidase 4 Inhibitor—Associated Bullous Pemphigoid Is Characterized by an Altered Expression of Cytokines in the Skin. J. Investig. Dermatol. 2023, 143, 78–86.e12. [Google Scholar] [CrossRef]
- Wagner, L.; Klemann, C.; Stephan, M.; von Hörsten, S. Unravelling the Immunological Roles of Dipeptidyl Peptidase 4 (DPP4) Activity and/or Structure Homologue (DASH) Proteins. Clin. Exp. Immunol. 2016, 184, 265–283. [Google Scholar] [CrossRef]
- Tasanen, K.; Varpuluoma, O.; Nishie, W. Dipeptidyl Peptidase-4 Inhibitor-Associated Bullous Pemphigoid. Front. Immunol. 2019, 10, 1238. [Google Scholar] [CrossRef]
- Lambeir, A.-M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 2003, 40, 209–294. [Google Scholar] [CrossRef]
- Leng, R.-X.; Liu, J.; Yang, X.-K.; Wang, B.; Zhang, C.; Tao, S.-S.; Wang, D.-G.; Li, X.-M.; Li, X.-P.; Pan, H.-F.; et al. Evidence of Epistatic Interaction between DPP4 and CCR6 in Patients with Rheumatoid Arthritis. Rheumatology 2016, 55, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Bhargave, A.; Devi, K.; Ahmad, I.; Yadav, A.; Gupta, R. Genetic Variation in DPP-IV Gene Linked to Predisposition of T2DM: A Case Control Study. J. Diabetes Metab. Disord. 2022, 21, 1709–1716. [Google Scholar] [CrossRef]
- Ahmed, R.H.; Huri, H.Z.; Al-Hamodi, Z.; Salem, S.D.; Al-Absi, B.; Muniandy, S. Association of DPP4 Gene Polymorphisms with Type 2 Diabetes Mellitus in Malaysian Subjects. PLoS ONE 2016, 11, e0154369. [Google Scholar] [CrossRef]
- Bouchard, L.; Faucher, G.; Tchernof, A.; Deshaies, Y.; Lebel, S.; Hould, F.-S.; Marceau, P.; Vohl, M.-C. Comprehensive Genetic Analysis of the Dipeptidyl Peptidase-4 Gene and Cardiovascular Disease Risk Factors in Obese Individuals. Acta Diabetol. 2009, 46, 13–21. [Google Scholar] [CrossRef]
- Snarska, J.; Cieślińska, A.; Fiedorowicz, E.; Jarmołowska, B.; Sienkiewicz-Szłapka, E.; Matysiewicz, M.; Kiper, K.; Kostyra, E. Polymorphism in DPPIV Gene in Acute Pancreatitis. Pancreas 2017, 46, e71–e72. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Sánchez-Muñoz, F.; Guzmán-Martín, C.A.; Hernández-Díaz Couder, A.; Rojas-Velasco, G.; Fragoso, J.M.; Vargas-Alarcón, G. Dipeptidylpeptidase-4 Levels and DPP4 Gene Polymorphisms in Patients with COVID-19. Association with Disease and with Severity. Life Sci. 2021, 276, 119410. [Google Scholar] [CrossRef]
- Aghili, N.; Devaney, J.M.; Alderman, L.O.; Zukowska, Z.; Epstein, S.E.; Burnett, M.S. Polymorphisms in Dipeptidyl Peptidase IV Gene Are Associated with the Risk of Myocardial Infarction in Patients with Atherosclerosis. Neuropeptides 2012, 46, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.D. The Nonlinear Structure of Linkage Disequilibrium. Theor. Popul. Biol. 2020, 134, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Ganeva, M.; Gancheva, T.; Manuelyan, K.; Hristakieva, E. Gliptin-Induced Bullous Pemphigoid. Int. J. Clin. Pharmacol. Ther. 2024, 62, 89–95. [Google Scholar] [CrossRef]
- Vargas-Alarcón, G.; Reyes-Barrera, J.; Cardoso-Saldaña, G.; Antonio-Villa, N.; Fuentevilla-Álvarez, G.; Fragoso, J.M.; Posadas-Sánchez, R. DPP4 Rs17574 Polymorphism and Elevated DPP4 Levels Linked to Fatty Liver in Subclinical Atherosclerosis: GEA Study Findings. Biomol. Biomed. 2025, 25, 2139–2147. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Wang, W.; Qu, H.; Han, Y.; Hou, Y. Association of Dipeptidyl Peptidase IV Polymorphism, Serum Lipid Profile, and Coronary Artery Stenosis in Patients with Coronary Artery Disease and Type 2 Diabetes. Medicine 2021, 100, e25209. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.-M.; Ueng, K.-C.; Yang, Y.-S. Gender Differences in Variables Associated with Dipeptidyl Peptidase 4 Genetic Polymorphisms in Coronary Artery Disease. Adv. Clin. Exp. Med. 2020, 29, 1181–1186. [Google Scholar] [CrossRef]
- Sinnathurai, P.; Lau, W.; Vieira de Ribeiro, A.J.; Bachovchin, W.W.; Englert, H.; Howe, G.; Spencer, D.; Manolios, N.; Gorrell, M.D. Circulating Fibroblast Activation Protein and Dipeptidyl Peptidase 4 in Rheumatoid Arthritis and Systemic Sclerosis. Int. J. Rheum. Dis. 2018, 21, 1915–1923. [Google Scholar] [CrossRef]
- Xu, W.; Liu, Y.; Cheng, X.; Huang, N.; Hou, N.; Wang, H.; Han, F.; Han, X.; Sun, X. Decreased Shedding Dipeptidyl Peptidase 4 from Membrane in Hashimoto’s Thyroiditis. Int. Immunopharmacol. 2020, 81, 106315. [Google Scholar] [CrossRef]
- Tejera-Alhambra, M.; Casrouge, A.; de Andrés, C.; Ramos-Medina, R.; Alonso, B.; Vega, J.; Albert, M.L.; Sánchez-Ramón, S. Low DPP4 Expression and Activity in Multiple Sclerosis. Clin. Immunol. 2014, 150, 170–183. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Wei, Y.; Li, X.; Gao, S.; Dong, L.; Rao, X.; Zhong, J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front. Immunol. 2022, 13, 830863. [Google Scholar] [CrossRef]
- Mulvihill, E.E.; Drucker, D.J. Pharmacology, Physiology, and Mechanisms of Action of Dipeptidyl Peptidase-4 Inhibitors. Endocr. Rev. 2014, 35, 992–1019. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, O.; Varpuluoma, O.; Tuusa, J.; Ilonen, J.; Huilaja, L.; Kokkonen, N.; Tasanen, K. Gliptin-Associated Bullous Pemphigoid and the Expression of Dipeptidyl Peptidase-4/CD26 in Bullous Pemphigoid. Acta Derm. Venereol. 2019, 99, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Bock, O.; Kreiselmeyer, I.; Mrowietz, U. Expression of Dipeptidyl-peptidase IV (CD26) on CD8 + T Cells Is Significantly Decreased in Patients with Psoriasis Vulgaris and Atopic Dermatitis. Exp. Dermatol. 2001, 10, 414–419. [Google Scholar] [CrossRef]
- Van Lingen, R.G.; Van De Kerkhof, P.C.M.; De Jong, E.M.G.J.; Seyger, M.M.B.; Boezeman, J.B.M.; Van Erp, P.E.J. Reduced CD26bright Expression of Peripheral Blood CD8+ T-cell Subsets in Psoriatic Patients. Exp. Dermatol. 2008, 17, 343–348. [Google Scholar] [CrossRef]
- Van Lingen, R.G.; Van de Kerkhof, P.C.M.; Seyger, M.M.B.; de Jong, E.M.G.J.; Van Rens, D.W.A.; Poll, M.K.P.; Zeeuwen, P.L.J.M.; Van Erp, P.E.J. CD26/Dipeptidyl-Peptidase IV in Psoriatic Skin: Upregulation and Topographical Changes. Br. J. Dermatol. 2008, 158, 1264–1272. [Google Scholar] [CrossRef]
- Lee, S.G.; Lee, H.J.; Yoon, M.S.; Kim, D.H. Association of Dipeptidyl Peptidase 4 Inhibitor Use With Risk of Bullous Pemphigoid in Patients With Diabetes. JAMA Dermatol. 2019, 155, 172. [Google Scholar] [CrossRef] [PubMed]
- Zaresharifi, S.; Niroomand, M.; Borran, S.; Dadkhahfar, S. Dermatological Side Effects of Dipeptidyl Peptidase-4 Inhibitors in Diabetes Management: A Comprehensive Review. Clin. Diabetes Endocrinol. 2024, 10, 6. [Google Scholar] [CrossRef]
- Liu, C.; Yang, W.; Pei, D.; Cheng, C.; Smith, C.; Landier, W.; Hageman, L.; Chen, Y.; Yang, J.; Crews, K.; et al. Genomewide Approach Validates Thiopurine Methyltransferase Activity Is a Monogenic Pharmacogenomic Trait. Clin. Pharmacol. Ther. 2017, 101, 373–381. [Google Scholar] [CrossRef]
- Cardoso de Carvalho, D.; Pereira Colares Leitão, L.; Mello Junior, F.A.R.; Vieira Wanderley, A.; Souza, T.P.D.; Borges Andrade de Sá, R.; Cohen-Paes, A.; Rodrigues Fernandes, M.; Santos, S.; Salim Khayat, A.; et al. Association between the TPMT*3C (Rs1142345) Polymorphism and the Risk of Death in the Treatment of Acute Lymphoblastic Leukemia in Children from the Brazilian Amazon Region. Genes 2020, 11, 1132. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Hancock, M.L.; Rivera, G.K.; Sandlund, J.T.; Ribeiro, R.C.; Krynetski, E.Y.; Pui, C.-H.; Evans, W.E. Mercaptopurine Therapy Intolerance and Heterozygosity at the Thiopurine S-Methyltransferase Gene Locus. JNCI J. Natl. Cancer Inst. 1999, 91, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, T.; Relling, M.V.; Yang, J.J. Inherited Genetic Variation in Childhood Acute Lymphoblastic Leukemia. Blood 2015, 125, 3988–3995. [Google Scholar] [CrossRef]
- Hedayati, M.; Vaziri, H.; Darbandi, B.; Baghersalimi, A.; Jafarzadeh, M.M.; Salehzadeh, A. Association of TPMT (Rs1800460) Gene Polymorphism with Childhood Acute Lymphoblastic Leukemia in a Population from Guilan, Iran. J. Genet. 2020, 6, 142–147. [Google Scholar] [CrossRef]
- Ujiie, H.; Muramatsu, K.; Mushiroda, T.; Ozeki, T.; Miyoshi, H.; Iwata, H.; Nakamura, A.; Nomoto, H.; Cho, K.Y.; Sato, N.; et al. HLA-DQB1*03:01 as a Biomarker for Genetic Susceptibility to Bullous Pemphigoid Induced by DPP-4 Inhibitors. J. Investig. Dermatol. 2018, 138, 1201–1204. [Google Scholar] [CrossRef]
- Chanprapaph, K.; Pratumchart, N.; Limtong, P.; Rutnin, S.; Sukasem, C.; Kungvalpivat, P.; Triamchaisri, S.; Suchonwanit, P. Dipeptidyl Peptidase-4 Inhibitor-related Bullous Pemphigoid: A Comparative Study of 100 Patients with Bullous Pemphigoid and Diabetes Mellitus. J. Dermatol. 2021, 48, 486–496. [Google Scholar] [CrossRef]
- Ozeki, T.; Muramatsu, K.; Yoshimoto, N.; Ujiie, I.; Izumi, K.; Iwata, H.; Mushiroda, T.; Ujiie, H. Association of Genetic Variants of HLA-DQA1 with Bullous Pemphigoid Induced by Dipeptidyl Peptidase-4 Inhibitors. J. Investig. Dermatol. 2023, 143, 2219–2225.e5. [Google Scholar] [CrossRef]
- Shan, Y.-S.; Chen, L.-T.; Wu, J.-S.; Chang, Y.-F.; Lee, C.-T.; Wu, C.-H.; Chiang, N.-J.; Huang, H.-E.; Yen, C.-J.; Chao, Y.-J.; et al. Validation of Genome-Wide Association Study-Identified Single Nucleotide Polymorphisms in a Case-Control Study of Pancreatic Cancer from Taiwan. J. Biomed Sci. 2020, 27, 69. [Google Scholar] [CrossRef]
- Asif, H.; Alliey-Rodriguez, N.; Keedy, S.; Tamminga, C.A.; Sweeney, J.A.; Pearlson, G.; Clementz, B.A.; Keshavan, M.S.; Buckley, P.; Liu, C.; et al. GWAS Significance Thresholds for Deep Phenotyping Studies Can Depend upon Minor Allele Frequencies and Sample Size. Mol. Psychiatry 2021, 26, 2048–2055. [Google Scholar] [CrossRef]
- Di Lernia, V.; Casanova, D.M.; Goldust, M.; Ricci, C. Pemphigus Vulgaris and Bullous Pemphigoid: Update on Diagnosis and Treatment. Dermatol. Pract. Concept. 2020, 10, e2020050. [Google Scholar] [CrossRef] [PubMed]
- Daponte, A.-I.; Kalloniati, E.; Meltzanidou, P.; Giannouli, M.; Tsitlakidou, A.; Oflidou, V.; Boziou, M.; Kyriakou, A.; Charalampidis, S.; Fotiadou, C.; et al. Bullous Pemphigoid and Epidemiological Patterns in Northern Greece: Insights from an 8-Year Observational Study. Dermatol. Pract. Concept. 2025, 15, 4852. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of Medical Care in Diabetes—2014. Diabetes Care 2014, 37, S14–S80. [Google Scholar] [CrossRef]
- Viechtbauer, W.; Smits, L.; Kotz, D.; Budé, L.; Spigt, M.; Serroyen, J.; Crutzen, R. A Simple Formula for the Calculation of Sample Size in Pilot Studies. J. Clin. Epidemiol. 2015, 68, 1375–1379. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and Modifications of Primer Design Program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Anscombe, F.J. On Estimating Binomial Response Relations. Biometrika 1956, 43, 461. [Google Scholar] [CrossRef]
- Haldane, J.B.S. The Estimation and Significance of the Logarithmof a Ratio of Frequencies. Ann. Hum. Genet. 1956, 20, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, Z.; Chen, J.; Song, Z.; Zhou, Z.; Shi, Y. SHEsisPlus, a Toolset for Genetic Studies on Polyploid Species. Sci. Rep. 2016, 6, 24095. [Google Scholar] [CrossRef] [PubMed]
| Genotypes | Genotype Frequencies, n (%) | |||
|---|---|---|---|---|
| cBP Patients (n = 56) | DPP4i-Associated BP Patients (n = 32) | Healthy Controls (n = 60) | DPG (n = 49) | |
| rs3788979 | ||||
| CC | 45 (80.357) | 19 (59.375) | 49 (81.667) | 41 (83.673) |
| CT | 11 (19.643) | 12 (37.5) | 10 (16.667) | 8 (16.327) |
| TT | 0 | 1 (3.125) | 1 (1.667) | 0 |
| HWE 1 (p-Value) | 0.415 | 0.583 | 0.566 | 0.534 |
| rs12617656 | ||||
| TT | 20 (35.714) | 13 (40.625) | 32 (53.333) | 20 (40.816) |
| TC | 30 (53.571) | 15 (46.875) | 21 (35) | 21 (42.857) |
| CC | 6 (10.714) | 4 (12.5) | 7 (11.667) | 8 (16.327) |
| HWE 1 (p-Value) | 0.234 | 0.919 | 0.182 | 0.537 |
| Compared Groups | Statistical Model | OR (95%CI) 1 | p-Value |
|---|---|---|---|
| rs3788979 | |||
| cBP vs. DPP4i-associated BP | Additive (CC vs. CT vs. TT) | 0.04 | |
| Heterozygous (CC vs. CT) | 2.584 (0.971–6.872) | 0.053 | |
| Dominant (CC vs. CT) | 2.799 (1.066–7.351) | 0.034 | |
| Allelic (C vs. T) | 2.571 (1.089–6.072) | 0.027 | |
| DPP4i-associated BP vs. Healthy Controls | Additive (CC vs. CT vs. TT) | 0.04 | |
| Heterozygous (CC vs. CT) | 0.323 (0.12–0.872) | 0.022 | |
| Dominant (CC vs. CT) | 0.298 (0.125–0.859) | 0.02 | |
| Overdominant (CT vs. CC+TT) | 3 (1.119–8.046) | 0.026 | |
| Allelic (C vs. T) | 0.397 (0.171–0.92) | 0.028 | |
| DPP4i-associated BP vs. Diabetic patients on gliptins (DPG) | Additive (CC vs. CT vs. TT) | 0.013 | |
| Heterozygous (CC vs. CT) | 0.31 (0.108–0.88) | 0.024 | |
| Dominant (CC vs. CT) | 0.285 (0.101–0.803) | 0.015 | |
| Overdominant (CT vs. CC+TT) | 3.075 (1.085–8.718) | 0.031 | |
| Allelic (C vs. T) | 0.318 (0.125–0.809) | 0.013 | |
| rs12617656 | |||
| cBP vs. Healthy Controls | Heterozygous (TC vs. TT) | 2.286 (1.038–5.033) | 0.039 |
| Dominant (TC+CC vs. TT) | 2.057 (0.976–4.336) | 0.056 |
| rs3788979/rs12617656 Haplotypes | Haplotype Frequencies, n (%) | |||
|---|---|---|---|---|
| Classic Bullous Pemphigoid Patients (cBP) | Dipeptidyl Peptidase-4 (DPP4i)-Associated BP Patients | Healthy Controls | Diabetic Patients on Gliptins (DPG) | |
| TC | 70 (62.5) | 36 (56.25) | 84 (70) | 60 (61.225) |
| CC | 31 (27.679) | 14 (21.875) | 24 (20) | 30 (30.612) |
| CT | 11 (9.821) | 9 (14.063) | 11 (9.167) | 7 (7.143) |
| TT | 0 | 5 (7.813) | 1 (0.833) | 1 (1.02) |
| Linkage disequilibrium | ||||
| D′ | 1 | 0.44 | 0.88 | 0.79 |
| r2 | 0.18 | 0.09 | 0.21 | 0.09 |
| DPP4 Gene Variant | Primer Sequences | Amplicon Length (bp: Base Pairs) | Restriction Enzyme | Restriction Digestion Pattern |
|---|---|---|---|---|
| rs3788979 | Forward: 5′ GCCCAGCAAATCCAGGGTAA 3′ Reverse: 5′ GGGATTCCCACCCCTGATCT 3′ | 266 bp | HaeIII | Τ allele: 266 bp C allele: 81 bp, 185 bp |
| rs12617656 | Forward: 5′ ACAACAGCTCTAGCCATTCCT 3′ Reverse: 5′ AGACACTGCTCTCCTGTTCA 3′ | 303 bp | MluCI | C allele: 40 bp, 43 bp, 220 bp Τ allele: 40 bp, 43 bp, 93 bp, 127 bp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achilla, C.; Foutsitzidou, C.; Meltzanidou, P.; Patsatsi, A.; Lazaridou, E.; Tzatzagou, G.; Lambropoulos, A.; Chatzikyriakidou, A. Association of DPP4 Gene Variants with Classic and DPP4 Inhibitor-Associated Bullous Pemphigoid. Int. J. Mol. Sci. 2025, 26, 11698. https://doi.org/10.3390/ijms262311698
Achilla C, Foutsitzidou C, Meltzanidou P, Patsatsi A, Lazaridou E, Tzatzagou G, Lambropoulos A, Chatzikyriakidou A. Association of DPP4 Gene Variants with Classic and DPP4 Inhibitor-Associated Bullous Pemphigoid. International Journal of Molecular Sciences. 2025; 26(23):11698. https://doi.org/10.3390/ijms262311698
Chicago/Turabian StyleAchilla, Charoula, Christina Foutsitzidou, Parthena Meltzanidou, Aikaterini Patsatsi, Elizabeth Lazaridou, Glykeria Tzatzagou, Alexandros Lambropoulos, and Anthoula Chatzikyriakidou. 2025. "Association of DPP4 Gene Variants with Classic and DPP4 Inhibitor-Associated Bullous Pemphigoid" International Journal of Molecular Sciences 26, no. 23: 11698. https://doi.org/10.3390/ijms262311698
APA StyleAchilla, C., Foutsitzidou, C., Meltzanidou, P., Patsatsi, A., Lazaridou, E., Tzatzagou, G., Lambropoulos, A., & Chatzikyriakidou, A. (2025). Association of DPP4 Gene Variants with Classic and DPP4 Inhibitor-Associated Bullous Pemphigoid. International Journal of Molecular Sciences, 26(23), 11698. https://doi.org/10.3390/ijms262311698

