Chronic Myeloid Leukemia and the T315I BCR::ABL1 Mutation
Abstract
1. Introduction
2. Chronic Myeloid Leukemia Treatment
3. Mechanisms of Drug Resistance in Chronic Myeloid Leukemia
4. The T315I Mutation
5. Strategies and Treatment Options for T315I Mutation
6. Possible Future Scenarios for Treatment
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| 1G | First Generation |
| 2G | Second Generation |
| 3G | Third Generation |
| A-loop | activation loop |
| C-loop | catalytic loop |
| P-loop | phosphate-binding loop |
| ABL1 | Abelson1 gene |
| AKT | protein-chinasi B |
| ALL | Acute Lymphoblastic Leukemia |
| Allo-HSCT | Allogenic-Hematopoietic Stem Cell Transplant |
| AP | Accelerated Phase |
| ASC | Asciminib |
| ASCEMBL | sciminib vs. Bosutinib in Patients with Chronic Myeloid Leukemia in Chronic Phase |
| ASO-RT-PCR | allele-specific oligonocleotide-reverse transcriptase polymerase chain reaction |
| BCR | Breakpoint Cluster Region gene |
| BFORE | Bosutinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia |
| BOS | Bosutinib |
| BP | Blastic Phase |
| CCyR | Complete Cytogenetic Response |
| CK2 | protein kinase casein kinase 2 |
| CML | Chronic Myeloid Leukemia |
| CP | Chronic Phase |
| DAS | Dasatinib |
| DASISION | Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients |
| DMR | Deep Molecular Response |
| ELN | European LeukemiaNet |
| ENESTnd | Evaluating Nilotinib Efficacy and Safety in Clinical Trials–Newly Diagnosed Patients |
| FDA | Food and Drug Administration |
| FISH | Fluorescence In Situ Hybridization |
| FTIR | Fourier Transform Infrared spectroscopy |
| HDAC | histone deacetylase |
| HSCT | Hematopoietic Stem Cell Transplant |
| HU | hydroxyurea |
| IM | Imatinib |
| KD | Kinase Domain |
| MMR | Major Molecular Response |
| MR4.5 | molecular response with 4.5-log reduction |
| NIL | Nilotinib |
| PACE | Ponatinib Ph-positive acute lymphoblastic leukemia and CML Evaluation |
| PFS | Progression-free Survival |
| Ph | Philadelphia |
| PON | Ponatinib |
| PROTAC | proteolysis-targeting chimeric |
| PTP1B | protein-tyrosine phosphatase 1B |
| TFR | Treatment-Free Remission |
| TKI | Tyrosine Kinase Inhibitor |
| T315I | Threonine-to-Isoleucine mutation at position 315 of BCR-ABL1 gene |
References
- Kreipe, H.H.; Schlegelberger, B. Cytogenetics and genomics in CML and other myeloproliferative neoplasms. Best Pract. Res. Clin. Haematol. 2024, 37, 101552. [Google Scholar] [CrossRef] [PubMed]
- Minciacchi, V.R.; Kumar, R.; Krause, D.S. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells 2021, 10, 117. [Google Scholar] [CrossRef]
- Perrotti, D.; Jamieson, C.; Goldman, J.; Skorski, T. Chronic myeloid leukemia: Mechanisms of blastic transformation. J. Clin. Investig. 2010, 120, 2254–2264. [Google Scholar] [CrossRef]
- Ren, R. Mechanisms of bcr-abl in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer 2005, 5, 172–183. [Google Scholar] [CrossRef]
- Kantarjian, H.; Pui, C.-H.; Jabbour, E. Acute lymphocytic leukaemia. Lancet 2025, 406, 950–962. [Google Scholar] [CrossRef]
- Pirosa, M.C.; Leotta, S.; Cupri, A.; Stella, S.; Martino, E.A.; Scalise, L.; Sapienza, G.; Calafiore, V.; Mauro, E.; Spadaro, A.; et al. Long-Term Molecular Remission Achieved by Antibody Anti-CD22 and Ponatinib in a Patient Affected by Ph’+ Acute Lymphoblastic Leukemia Relapsed after Second Allogeneic Hematopoietic Stem Cell Transplantation: A Case Report. Chemotherapy 2018, 63, 220–224. [Google Scholar] [CrossRef]
- Luatti, S.; Baldazzi, C.; Marzocchi, G.; Ameli, G.; Bochicchio, M.T.; Soverini, S.; Castagnetti, F.; Tiribelli, M.; Gugliotta, G.; Martinelli, G.; et al. Cryptic BCR-ABL fusion gene as variant rearrangement in chronic myeloid leukemia: Molecular cytogenetic characterization and influence on TKIs therapy. Oncotarget 2017, 8, 29906–29913. [Google Scholar] [CrossRef]
- Melo, J.V. BCR-ABL gene variants. Baillieres Clin. Haematol. 1997, 10, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Cross, N.C.; White, H.E.; Colomer, D.; Ehrencrona, H.; Foroni, L.; Gottardi, E.; Lange, T.; Lion, T.; Polakova, K.M.; Dulucq, S.; et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia 2015, 29, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Baccarani, M.; Castagnetti, F.; Gugliotta, G.; Rosti, G.; Soverini, S.; Albeer, A.; Pfirrmann, M.; International BCR-ABL Study Group. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia 2019, 33, 1173–1183. [Google Scholar] [CrossRef]
- Massimino, M.; Tirrò, E.; Stella, S.; Pennisi, M.S.; Vitale, S.R.; Puma, A.; Romano, C.; DI Gregorio, S.; Romeo, M.A.; DI Raimondo, F.; et al. Targeting BCL-2 as a Therapeutic Strategy for Primary p210BCR-ABL1-positive B-ALL Cells. In Vivo 2020, 34, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Sawyers, C.L. Chronic Myeloid Leukemia. N. Engl. J. Med. 1999, 340, 1330–1340. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Radich, J.P.; Dai, H.; Mao, M.; Oehler, V.; Schelter, J.; Druker, B.; Sawyers, C.; Shah, N.; Stock, W.; Willman, C.L.; et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA 2006, 103, 2794–2799. [Google Scholar] [CrossRef]
- Bonifacio, M.; Stagno, F.; Scaffidi, L.; Krampera, M.; Di Raimondo, F. Management of Chronic Myeloid Leukemia in Advanced Phase. Front. Oncol. 2019, 9, 1132. [Google Scholar] [CrossRef]
- Deininger, M.W. Diagnosing and Managing Advanced Chronic Myeloid Leukemia. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e381–e388. [Google Scholar] [CrossRef] [PubMed]
- Stagno, F.; Vigneri, P.; Del Fabro, V.; Stella, S.; Cupri, A.; Massimino, M.; Consoli, C.; Tambè, L.; Consoli, M.L.; Antolino, A.; et al. Influence of complex variant chromosomal translocations in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors. Acta Oncol. 2010, 49, 506–508. [Google Scholar] [CrossRef]
- Stella, S.; Zammit, V.; Vitale, S.R.; Pennisi, M.S.; Massimino, M. Clinical Implications of Discordant Early Molecular Responses in CML Patients Treated with Imatinib. Int. J. Mol. Sci. 2019, 20, 2226. [Google Scholar] [CrossRef]
- Druker, B.J. Circumventing resistance to kinase-inhibitor therapy. N. Engl. J. Med. 2006, 354, 2594–2596. [Google Scholar] [CrossRef] [PubMed]
- Apperley, J.F.; Milojkovic, D.; Cross, N.C.P.; Hjorth-Hansen, H.; Hochhaus, A.; Kantarjian, H.; Lipton, J.H.; Malhotra, H.; Niederwieser, D.; Radich, J.; et al. 2025 European LeukemiaNet recommendations for the management of chronic myeloid leukemia. Leukemia 2025, 39, 1797–1813. [Google Scholar] [CrossRef]
- Soverini, S.; Hochhaus, A.; Nicolini, F.; Gruber, F.; Lange, H.; Saglio, G.; Pane, F.; Müller, M.C.; Ernst, T.; Rosti, G.; et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: Recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011, 118, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; Breccia, M.; Haddad, F.G.; Hehlmann, R.; Issa, G.C.; Malhotra, H.; Nicolini, F.E.; Sasaki, K.; Stenke, L.; Jabbour, E. Management of chronic myeloid leukemia in 2025. Cancer 2025, 131, e35953. [Google Scholar] [CrossRef]
- Kantarjian, H.; Jabbour, E. Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring. Am. J. Hematol. 2024, 99, 2191–2212. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.P. NCCN guidelines updates: Discontinuing TKI therapy in the treatment of chronic myeloid leukemia. J. Natl. Compr. Cancer Netw. 2019, 17, 611–613. [Google Scholar] [CrossRef]
- Branford, S.; Fletcher, L.; Cross, N.C.; Müller, M.C.; Hochhaus, A.; Kim, D.W.; Radich, J.P.; Saglio, G.; Pane, F.; Kamel-Reid, S.; et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 2008, 112, 3330–3338. [Google Scholar] [CrossRef]
- Cross, N.C.; White, H.E.; Müller, M.C.; Saglio, G.; Hochhaus, A. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 2012, 26, 2172–2175. [Google Scholar] [CrossRef]
- Manley, P.W.; Barys, L.; Cowan-Jacob, S.W. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase. Leuk. Res. 2020, 98, 106458. [Google Scholar] [CrossRef]
- Yeung, D.T.; Shanmuganathan, N.; Reynolds, J.; Branford, S.; Walia, M.; Yong, A.S.M.; Shortt, J.; Chee, L.; Viiala, N.; Cunningham, I.; et al. Asciminib monotherapy as frontline treatment of chronic-phase chronic myeloid leukemia: Results from the ASCEND study. Blood 2024, 144, 1993–2001. [Google Scholar] [CrossRef]
- Hochhaus, A.; Wang, J.; Kim, D.W.; Kim, D.D.H.; Mayer, J.; Goh, Y.T. Asciminib in Newly Diagnosed Chronic Myeloid Leukemia. N. Engl. J. Med. 2024, 391, 885–898. [Google Scholar] [CrossRef]
- Hochhaus, A.; Larson, R.A.; Guilhot, F.; Radich, J.P.; Branford, S.; Hughes, T.P.; Baccarani, M.; Deininger, M.W.; Cervantes, F.; Fujihara, S.; et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N. Engl. J. Med. 2017, 376, 917–927. [Google Scholar] [CrossRef]
- Kantarjian, H.; Shah, N.P.; Hochhaus, A.; Cortes, J.; Shah, S.; Ayala, M.; Moiraghi, B.; Shen, Z.; Mayer, J.; Pasquini, R.; et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 2010, 362, 2260–2270. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Shah, N.P.; Cortes, J.E.; Baccarani, M.; Agarwal, M.B.; Undurraga, M.S.; Wang, J.; Ipiña, J.J.K.; Kim, D.-W.; Ogura, M.; et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 2012, 119, 1123–1129. [Google Scholar] [CrossRef]
- Cortes, J.E.; Saglio, G.; Kantarjian, H.M.; Baccarani, M.; Mayer, J.; Boqué, C.; Shah, N.P.; Chuah, C.; Casanova, L.; Bradley-Garelik, B.; et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial. J. Clin. Oncol. 2016, 34, 2333–2340. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Sasaki, K.; Haddad, F.G.; Issa, G.C.; Skinner, J.; Dellasala, S.; Yilmaz, M.; Ferrajoli, A.; Bose, P.; Thompson, P.; et al. Low-dose dasatinib 50 mg/day versus standard-dose dasatinib 100 mg/day as frontline therapy in chronic myeloid leukemia in chronic phase: A propensity score analysis. Am. J. Hematol. 2022, 97, 1413–1418. [Google Scholar] [CrossRef]
- Naqvi, K.; Jabbour, E.; Skinner, J.; Anderson, K.; Dellasala, S.; Yilmaz, M.; Ferrajoli, A.; Bose, P.; Thompson, P.; Alvarado, Y.; et al. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer 2019, 126, 67–75. [Google Scholar] [CrossRef]
- Murai, K.; Ureshino, H.; Kumagai, T.; Tanaka, H.; Nishiwaki, K.; Wakita, S.; Inokuchi, K.; Fukushima, T.; Yoshida, C.; Uoshima, N.; et al. Low-dose dasatinib in older patients with chronic myeloid leukaemia in chronic phase (DAVLEC): A single-arm, multicentre, phase 2 trial. Lancet Haematol. 2021, 8, e902–e911. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Hughes, T.P.; Larson, R.A.; Kim, D.-W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Boquimpani, C.; Pasquini, R.; Clark, R.E.; et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia 2021, 35, 440–453, Correction in Leukemia 2021, 35, 2142–2143. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D.-W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: Results from the randomized BFORE trial. J. Clin. Oncol. 2018, 36, 231–237. [Google Scholar] [CrossRef]
- Brümmendorf, T.H.; Cortes, J.E.; Milojkovic, D.; Gambacorti-Passerini, C.; Clark, R.E.; le Coutre, P.; Garcia-Gutierrez, V.; Chuah, C.; Kota, V.; Lipton, J.H.; et al. Bosutinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: Final results from the BFORE trial. Leukemia 2022, 36, 1825–1833. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.J.; Sasaki, K.; Haddad, F.G.; Issa, G.C.; Garcia-Manero, G.; Kadia, T.M.; Jain, N.; Yilmaz, M.; DiNardo, C.D.; Patel, K.P.; et al. The outcomes of patients with chronic myeloid leukemia treated with third-line BCR::ABL1 tyrosine kinase inhibitors. Am. J. Hematol. 2023, 98, 658–665. [Google Scholar] [CrossRef]
- O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.-S.; Xu, Q.; et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 2009, 16, 401–412. [Google Scholar] [CrossRef]
- Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.D.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; et al. Ponatinib efficacy and safety in Philadelphia chromosome–positive leukemia: Final 5-year results of the phase 2 PACE trial. Blood 2018, 132, 393–404. [Google Scholar] [CrossRef]
- Mauro, M.J.; Minami, Y.; Hochhaus, A.; Lomaia, E.; Voloshin, S.; Turkina, A.; Kim, D.-W.; Apperley, J.F.; Cortes, J.; Abdo, A.; et al. Asciminib remained superior vs bosutinib in late-line CML-CP after nearly 4 years of follow-up in ASCEMBL. Blood Adv. 2025, 9, 4248–4259. [Google Scholar] [CrossRef]
- Hochhaus, A.; Kreil, S.; Corbin, A.; La Rosée, P.; Müller, M.; Lahaye, T.; Hanfstein, B.; Schoch, C.; Cross, N.; Berger, U.; et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002, 16, 2190–2196. [Google Scholar] [CrossRef] [PubMed]
- Yaghmaie, M.; Yeung, C.C. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors. Curr. Hematol. Malig. Rep. 2019, 14, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Soverini, S.; Abruzzese, E.; Bocchia, M.; Bonifacio, M.; Galimberti, S.; Gozzini, A.; Iurlo, A.; Luciano, L.; Pregno, P.; Rosti, G.; et al. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: A position paper. J. Hematol. Oncol. 2019, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, T.; Eide, C.A.; Deininger, M.W.N. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007, 110, 2242–2249. [Google Scholar] [CrossRef]
- Stagno, F.; Stella, S.; Berretta, S.; Massimino, M.; Antolino, A.; Giustolisi, R.; Messina, A.; Di Raimondo, F.; Vigneri, P. Sequential mutations causing resistance to both Imatinib Mesylate and Dasatinib in a chronic myeloid leukaemia patient progressing to lymphoid blast crisis. Leuk. Res. 2008, 32, 673–674. [Google Scholar] [CrossRef]
- Lussana, F.; Intermesoli, T.; Stefanoni, P.; Rambaldi, A. Mechanisms of Resistance to Targeted Therapies in Chronic Myeloid Leukemia. In Mechanisms of Drug Resistance in Cancer Therapy; Mandalà, M., Romano, E., Eds.; Springer: Cham, Switzerland, 2018; Volume 249, pp. 231–250. [Google Scholar]
- Akram, A.M.; Iqbal, Z.; Akhtar, T.; Khalid, A.M.; Sabar, M.F.; Qazi, M.H.; Aziz, Z.; Sajid, N.; Aleem, A.; Rasool, M.; et al. Presence of novel compound BCR-ABL mutations in late chronic and advanced phase imatinib sensitive CML patients indicates their possible role in CML progression. Cancer Biol. Ther. 2017, 18, 214–221. [Google Scholar] [CrossRef]
- Patel, A.B.; O’Hare, T.; Deininger, M.W. Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and the Development of Next Generation ABL Kinase Inhibitors. Hematol. Oncol. Clin. N. Am. 2017, 31, 589–612. [Google Scholar] [CrossRef]
- Eide, C.A.; Brewer, D.; Xie, T.; Schultz, A.R.; Savage, S.L.; Muratcioglu, S. Overcoming clinical BCR-ABL1 compound mutant resistance with combined ponatinib and asciminib therapy. Cancer Cell 2024, 42, 1486–1488. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Huang, H.; Lei, X.; Tang, G.; Cao, X.; Peng, J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem. Biol. Drug Des. 2021, 97, 649–664. [Google Scholar] [CrossRef]
- Rajendran, V.; Gopalakrishnan, C.; Sethumadhavan, R. Pathological role of a point mutation (T315I) in BCR-ABL1 protein—A computational insight. J. Cell. Biochem. 2018, 119, 918–925. [Google Scholar] [CrossRef]
- Chahardouli, B.; Zaker, F.; Mousavi, S.A.; Kazemi, A.; Ostadali, M.; Nadali, F.; Rostami, S.; Alimoghaddam, K.; Ghavamzade, A. Evaluation of T315I mutation frequency in chronic myeloid leukemia patients after imatinib resistance. Hematology 2013, 18, 158–162. [Google Scholar] [CrossRef]
- Mat Yusoff, Y.; Abu Seman, Z.; Othman, N.; Kamaluddin, N.R.; Esa, E.; Zulkiply, N.A.; Abdullah, J.; Zakaria, Z. Prevalence of BCR-ABL T315I Mutation in Malaysian Patients with Imatinib-Resistant Chronic Myeloid Leukemia. Asian Pac. J. Cancer Prev. 2018, 19, 3317–3320. [Google Scholar] [CrossRef] [PubMed]
- Baer, C.; Kern, W.; Koch, S.; Nadarajah, N.; Schindela, S.; Meggendorfer, M.; Haferlach, C.; Haferlach, T. Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation T315I in chronic myeloid leukemia. Haematologica 2016, 101, 830–838. [Google Scholar] [CrossRef]
- Sandt, C.; Feraud, O.; Bonnet, M.L.; Desterke, C.; Khedhir, R.; Flamant, S.; Bailey, C.G.; Rasko, J.E.; Dumas, P.; Bennaceur-Griscelli, A.; et al. Direct and rapid identification of T315I-Mutated BCR-ABL expressing leukemic cells using infrared microspectroscopy. Biochem. Biophys. Res. Commun. 2018, 503, 1861–1867. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.G.; Sasaki, K.; Bidikian, A.; Issa, G.C.; Kadia, T.; Jain, N.; Alvarado, Y.; Short, N.J.; Pemmaraju, N.; Loghavi, S.; et al. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation treated in the pre- and post-ponatinib era. Am. J. Hematol. 2023, 98, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Mauro, M.J.; Cortes, J.E.; Minami, H.; Rea, D.; DeAngelo, D.J.; Breccia, M.; Goh, Y.-T.; Talpaz, M.; Hochhaus, A.; et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N. Engl. J. Med. 2019, 381, 2315–2326. [Google Scholar] [CrossRef]
- Chalandon, Y.; Sbianchi, G.; Gras, L.; Koster, L.; Apperley, J.; Byrne, J.; Salmenniemi, U.; Sengeloev, H.; Aljurf, M.; Helbig, G.; et al. Allogeneic hematopoietic cell transplantation in patients with chronic phase chronic myeloid leukemia in the era of third generation tyrosine kinase inhibitors: A retrospective study by the chronic malignancies working party of the EBMT. Am. J. Hematol. 2023, 98, 112–121. [Google Scholar] [CrossRef]
- Xu, L.P.; Xu, Z.L.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Han, W.; Chen, Y.; Wang, F.-R.; Wang, J.-Z.; Wang, Y.; et al. Allogeneic Stem Cell Transplantation for Patients with T315I BCR-ABL Mutated Chronic Myeloid Leukemia. Biol. Blood Marrow Transplant. 2016, 22, 1080–1086. [Google Scholar] [CrossRef]
- Ting, S.; Mixue, X.; Lixia, Z.; Xueying, L.; Wanzhuo, X.; Xiujin, Y. T315I mutation exerts a dismal prognosis on adult BCR-ABL1-positive acute lymphoblastic leukemia, and salvage therapy with ponatinib or CAR-T cell and bridging to allogeneic hematopoietic stem cell transplantation can improve clinical outcomes. Ann. Hematol. 2020, 99, 829–834. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Jabbour, E.; Deininger, M.; Abruzzese, E.; Apperley, J.; Cortes, J.; Chuah, C.; DeAngelo, D.J.; DiPersio, J.; Hochhaus, A.; et al. Ponatinib after failure of second-generation tyrosine kinase inhibitor in resistant chronic-phase chronic myeloid leukemia. Am. J. Hematol. 2022, 97, 1419–1426, Correction in Am. J. Hematol. 2023, 98, 991. [Google Scholar] [CrossRef]
- Singh, A.P.; Umbarkar, P.; Tousif, S.; Lal, H. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int. J. Cardiol. 2020, 316, 214–221. [Google Scholar] [CrossRef]
- Jabbour, E.; Apperley, J.; Cortes, J.; Rea, D.; Deininger, M.; Abruzzese, E.; Chuah, C.; DeAngelo, D.J.; Hochhaus, A.; Lipton, J.H.; et al. Dose modification dynamics of ponatinib in patients with chronic-phase chronic myeloid leukemia (CP-CML) from the PACE and OPTIC trials. Leukemia 2024, 38, 475–481, Erratum in Leukemia 2024, 38, 2291. [Google Scholar] [CrossRef]
- Nicolini, F.E.; Basak, G.W.; Kim, D.; Olavarria, E.; Pinilla-Ibarz, J.; Apperley, J.F.; Hughes, T.; Niederwieser, D.; Mauro, M.J.; Chuah, C.; et al. Overall survival with ponatinib versus allogeneic stem cell transplantation in Philadelphia chromosome--positive leukemias with the T315I mutation. Cancer 2017, 123, 2875–2880. [Google Scholar] [CrossRef]
- Schneeweiss-Gleixner, M.; Byrgazov, K.; Stefanzl, G.; Berger, D.; Eisenwort, G.; Lucini, C.B.; Herndlhofer, S.; Preuner, S.; Obrova, K.; Pusic, P.; et al. CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1T315I+ clones in TKI-resistant CML. EBioMedicine 2019, 50, 111–121. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, H.; Jiang, S.; Ruan, C.; Liu, H. Deep Molecular Response by IFN-α and Dasatinib Combination in a Patient with T315I-Mutated Chronic Myeloid Leukemia. Pharmacogenomics 2016, 17, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Swoboda, D.M.; Grover, A.; Nodzon, L.; Zhang, L.; Pinilla-Ibarz, J. T315I-mutated myeloid sarcoma. Leuk. Res. Rep. 2019, 12, 100184, Erratum in Leuk. Res. Rep. 2022, 17, 100308. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J. Asciminib: The first-in-class allosteric inhibitor of BCR::ABL1 kinase. Blood Res. 2023, 58 (Suppl. 1), S29–S36. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.J.; Hughes, T.P.; Kim, D.W.; Rea, D.; Cortes, J.E.; Hochhaus, A.; Sasaki, K.; Breccia, M.; Talpaz, M.; Ottmann, O.; et al. Asciminib monotherapy in patients with CML-CP without BCR::ABL1 T315I mutations treated with at least two prior TKIs: 4-year phase 1 safety and efficacy results. Leukemia 2023, 37, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Qiang, W.; Antelope, O.; Zabriskie, M.S.; Pomicter, A.D.; Vellore, N.A.; Szankasi, P.; Rea, D.; Cayuela, J.M.; Kelley, T.W.; Deininger, M.W.; et al. Mechanisms of resistance to the BCRABL1 allosteric inhibitor asciminib. Leukemia 2017, 31, 2844–2847. [Google Scholar] [CrossRef] [PubMed]
- Ernst, P.; Rinke, J.; Franke, G.N.; Dicker, F.; Haferlach, T.; Ernst, T.; Hochhaus, A. Treatment-free remission after third-line therapy with asciminib in chronic myeloid leukemia with an atypical e19a2 BCR::ABL1 transcript and T315I mutation. Leukemia 2024, 38, 2037–2040. [Google Scholar] [CrossRef]
- Mitchell, R.; Hopcroft, L.E.M.; Baquero, P.; Allan, E.K.; Hewit, K.; James, D.; Hamilton, G.; Mukhopadhyay, A.; O’prey, J.; Hair, A.; et al. Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition. J. Natl. Cancer Inst. 2018, 110, 467–478. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Z.; Qin, Y.; Li, W.; Xu, N.; Liu, B.; Zhang, Y.; Meng, L.; Zhu, H.; Du, X.; et al. Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: Results of an open-label, multicenter phase 1/2 trial. J. Hematol. Oncol. 2022, 15, 113, Correction in J. Hematol. Oncol. 2022, 15, 159. Correction in J. Hematol. Oncol. 2023, 16, 13. [Google Scholar] [CrossRef]
- Gleixner, K.V.; Sadovnik, I.; Schneeweiss, M.; Eisenwort, G.; Byrgazov, K.; Stefanzl, G.; Berger, D.; Herrmann, H.; Hadzijusufovic, E.; Lion, T.; et al. A kinase profile-adapted drug combination elicits synergistic cooperative effects on leukemic cells carrying BCR-ABL1T315I in Ph+CML. Leuk. Res. 2019, 78, 36–44. [Google Scholar] [CrossRef]
- Gleixner, K.V.; Filik, Y.; Berger, D.; Schewzik, C.; Stefanzl, G.; Degenfeld-Schonburg, L.; Eisenwort, G.; Schneeweiss-Gleixner, M.; Byrgazov, K.; Sperr, W.R. Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing BCR-ABL1T315I-compound mutations. Am. J. Cancer Res. 2021, 11, 4470–4484. [Google Scholar]
- Curik, N.; Laznicka, A.; Polivkova, V.; Krizkova, J.; Pokorna, E.; Semerak, P.; Suchankova, P.; Burda, P.; Hochhaus, A.; Polakova, K.M. Combination therapies with ponatinib and asciminib in a preclinical model of chronic myeloid leukemia blast crisis with compound mutations. Leukemia 2024, 38, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, L.; Xu, Y.; Ma, X.; Chen, P.; Chen, Z.S.; Wei, L. I13 overrides resistance mediated by the T315I mutation in chronic myeloid leukemia by direct BCR-ABL inhibition. Front. Pharmacol. 2023, 14, 1183052. [Google Scholar] [CrossRef]
- Kawakami, S.; Tsuma-Kaneko, M.; Sawanobori, M.; Uno, T.; Nakamura, Y.; Matsuzawa, H.; Suzuki, R.; Onizuka, M.; Yahata, T.; Naka, K.; et al. Pterostilbene downregulates BCR/ABL and induces apoptosis of T315I-mutated BCR/ABL-positive leukemic cells. Sci. Rep. 2022, 12, 704. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Li, Q.; Tu, Z.; Zhu, S.; Tu, S.; Zhang, Z.; Ding, K.; Lu, X. Design, synthesis, and biological evaluation of Bcr-Abl PROTACs to overcome T315I mutation. Acta Pharm. Sin. B 2021, 11, 1315–1328.76. [Google Scholar] [CrossRef]
- Elgehama, A.; Wang, Y.; Yu, Y.; Zhou, L.; Chen, Z.; Wang, L.; Sun, L.; Gao, J.; Yu, B.; Shen, Y.; et al. Targeting the PTP1B-BCR-ABL1 interaction for the degradation of T315I mutant BCR-ABL1 in chronic myeloid leukemia. Cancer Sci. 2023, 114, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Quezada Meza, C.P.; Salizzato, V.; Calistri, E.; Basso, M.; Zavatti, M.; Marmiroli, S.; Salvi, M.; Carter, B.Z.; Donella-Deana, A.; Borgo, C.; et al. Critical role of protein kinase CK2 in chronic myeloid leukemia cells harboring the T315I BCR::ABL1 mutation. Int. J. Biol. Macromol. 2025, 286, 138305. [Google Scholar] [CrossRef] [PubMed]
- Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; et al. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem. 2011, 54, 635–654. [Google Scholar] [CrossRef] [PubMed]



| Study Name | Total Patients Enrolled | Patients with T315I Mutation at Baseline | Patients Who Developed T315I During Treatment | Clinical Context/Notes |
|---|---|---|---|---|
| IRIS | 1106 | Not captured | Pivotal trial with IM | |
| DASISION | 519 | Emergent | 8 patients developed T315I | |
| ENESTnd | 846 | Emergent | 9 patients developed T315I (4 in NIL 300, 2 NIL 400 and 3 IM treated patients) | Not effective for T315I mutation. |
| BFORE | 536 | Emergent | 6 patients developed T315I (5 in BOS treated and 1 with IM) | BOS not effective for T315I mutation |
| PACE | 449 | 64 | T315I present in 64 patients at baseline | Ponatinib effective in resistant CML including T315I mutation |
| ASCEMBL | 233 | 2 | Not present at baseline in CP-CML |
| Detection Method | T315I Mutation Characteristics | Mechanism/Principle | Reported T315I Prevalence/Context | Advantages/Limitations |
|---|---|---|---|---|
| ASO-RT-PCR | Gatekeeper mutation at codon 315 (Thr → Ile), disrupts hydrogen bond with TKIs, steric hindrance causing resistance to 1G/2G TKIs. | Allele-specific oligonucleotide reverse transcriptase PCR targeting codon 315 mutation | 7% in imatinib-resistant CML; linked to advanced phases | Cost-effective, accessible; may miss low-level mutations |
| ASO-RT-PCR (Malaysia study) | Same mutation features: observed across all CML phases, linked to resistance. | Same principle applied to Malaysian patient cohort | 5.26% in imatinib-resistant CML; present across all CML phases | Simple, feasible in low-resource settings |
| Next-Generation Sequencing (NGS) | Detects structural alteration in ATP-binding site; mutation impacts interactions with Glu286, Met290. | Massively parallel sequencing of BCR::ABL1 kinase domain | Identifies mutations in “failure” or “warning” TKI response categories | High sensitivity; detects low-level mutations missed by Sanger sequencing |
| Ultra-Deep Sequencing | Identifies low-level T315I before clonal expansion; mutation modifies enzyme catalytic center conformation. | High-depth NGS enabling detection of rare mutant alleles | Detects T315I earlier than Sanger sequencing | Allows treatment change before clonal expansion; higher cost |
| FTIR Microspectroscopy | Detects unique spectral signature of T315I-mutated BCR-ABL1 in single cells. | Fourier-transform infrared spectral analysis at single-cell level | Identifies specific spectral signature in T315I-mutated leukemic cells | Rapid, direct, non-destructive; novel technology requiring validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierro, F.; Stella, S.; Fazio, M.; Russo, S.; Massimino, M.; Mirabile, G.; Belletti, D.; Allegra, A.; Stagno, F. Chronic Myeloid Leukemia and the T315I BCR::ABL1 Mutation. Int. J. Mol. Sci. 2025, 26, 11285. https://doi.org/10.3390/ijms262311285
Pierro F, Stella S, Fazio M, Russo S, Massimino M, Mirabile G, Belletti D, Allegra A, Stagno F. Chronic Myeloid Leukemia and the T315I BCR::ABL1 Mutation. International Journal of Molecular Sciences. 2025; 26(23):11285. https://doi.org/10.3390/ijms262311285
Chicago/Turabian StylePierro, Federico, Stefania Stella, Manlio Fazio, Sabina Russo, Michele Massimino, Giuseppe Mirabile, Daniela Belletti, Alessandro Allegra, and Fabio Stagno. 2025. "Chronic Myeloid Leukemia and the T315I BCR::ABL1 Mutation" International Journal of Molecular Sciences 26, no. 23: 11285. https://doi.org/10.3390/ijms262311285
APA StylePierro, F., Stella, S., Fazio, M., Russo, S., Massimino, M., Mirabile, G., Belletti, D., Allegra, A., & Stagno, F. (2025). Chronic Myeloid Leukemia and the T315I BCR::ABL1 Mutation. International Journal of Molecular Sciences, 26(23), 11285. https://doi.org/10.3390/ijms262311285

