MTHFD2: A Retrospective and a Glance into the Future
Abstract
1. Introduction
2. Phase I: Identification and Biochemical Characterization of MTHFD2
3. Phase II: MTHFD2 Emerges as a Promising Cancer Target
4. Phase III: Metabolic Compensation, Non-Canonical Functions, and Discovery of a Paralog
5. Challenges, Uncertainties, and Opportunities for the Development of MTHFD2 Clinical Inhibitors for Cancer Therapy
6. The Emerging Role of MTHFD2 in Immune Cells
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr. 2009, 139, 2402–2405. [Google Scholar] [CrossRef]
- Zheng, Y.; Cantley, L.C. Toward a better understanding of folate metabolism in health and disease. J. Exp. Med. 2019, 216, 253–266. [Google Scholar] [CrossRef]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, H.; Kobayashi, T.; Brenner, D. The emerging role of one-carbon metabolism in T cells. Curr. Opin. Biotechnol. 2021, 68, 193–201. [Google Scholar] [CrossRef]
- Shuvalov, O.; Petukhov, A.; Daks, A.; Fedorova, O.; Vasileva, E.; Barlev, N.A. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017, 8, 23955–23977. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, S.M.; Gao, X.; Dai, Z.; Locasale, J.W. Methionine metabolism in health and cancer: A nexus of diet and precision medicine. Nat. Rev. Cancer 2019, 19, 625–637. [Google Scholar] [CrossRef]
- Visentin, M.; Zhao, R.; Goldman, I.D. The Antifolates. Hematol. Oncol. Clin. N. Am. 2012, 26, 629–648. [Google Scholar] [CrossRef]
- Fernández-Villa, D.; Aguilar, M.R.; Rojo, L. Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications. Int. J. Mol. Sci. 2019, 20, 4996. [Google Scholar] [CrossRef]
- Huennekens, F.M. In search of dihydrofolate reductase. Protein Sci. 1996, 5, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Mejia, N.R.; MacKenzie, R.E. NAD-dependent methylenetetrahydrofolate dehydrogenase is expressed by immortal cells. J. Biol. Chem. 1985, 260, 14616–14620. [Google Scholar] [CrossRef]
- Scrimgeour, K.G.; Huennekens, F.M. Occurrence of a DPN-linked, N5,N10-methylene tetrahydrofolic dehydrogenase in Ehrlich ascites tumor cells. Biochem. Biophys. Res. Commun. 1960, 2, 230–233. [Google Scholar] [CrossRef]
- Christensen, K.E.; Mackenzie, R.E. Chapter 14 Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. In Vitamins & Hormones; John Wiley & Sons: New York, NY, USA, 2008; Volume 79, pp. 393–410. [Google Scholar] [CrossRef]
- MacKenzie, R.E. Folates and Pterins. In Folates and Pterins: Chemistry and Biochemistry of Folates: V.1; Blakley, R.L., Benkovic, S.J., Eds.; Wiley-Interscience: New York, NY, USA, 1984; pp. 255–306. [Google Scholar]
- Ragsdale, S.W.; Ljungdahl, L.G. Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Acetobacterium woodii. J. Biol. Chem. 1984, 259, 3499–3503. [Google Scholar] [CrossRef]
- Mejia, N.R.; Rios-Orlandi, E.M.; MacKenzie, R.E. NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase from ascites tumor cells. Purification and properties. J. Biol. Chem. 1986, 261, 9509–9513. [Google Scholar] [CrossRef]
- Mejia, N.R.; MacKenzie, R.E. NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase in transformed cells is a mitochondrial enzyme. Biochem. Biophys. Res. Commun. 1988, 155, 1–6. [Google Scholar] [CrossRef]
- Bélanger, C.; MacKenzie, R.E. Isolation and characterization of cDNA clones encoding the murine NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase. J. Biol. Chem. 1989, 264, 4837–4843. [Google Scholar] [CrossRef]
- Appling, D.R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 1991, 5, 2645–2651. [Google Scholar] [CrossRef]
- Stover, P.J.; Field, M.S. Trafficking of Intracellular Folates. Adv. Nutr. 2011, 2, 325–331. [Google Scholar] [CrossRef]
- Prasannan, P.; Pike, S.; Peng, K.; Shane, B.; Appling, D.R. Human mitochondrial C1-tetrahydrofolate synthase. J. Biol. Chem. 2003, 278, 43178–43187. [Google Scholar] [CrossRef]
- Pike, S.T.; Rajendra, R.; Artzt, K.; Appling, D.R. Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. J. Biol. Chem. 2010, 285, 4612–4620. [Google Scholar] [CrossRef]
- Patel, H.; Di Pietro, E.; MacKenzie, R.E. Mammalian fibroblasts lacking mitochondrial NAD+-dependent methylenetetrahydrofolate dehydrogenase-cyclohydrolase are glycine auxotrophs. J. Biol. Chem. 2003, 278, 19436–19441. [Google Scholar] [CrossRef]
- Di Pietro, E.; Sirois, J.; Tremblay, M.L.; MacKenzie, R.E. Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development. Mol. Cell. Biol. 2002, 22, 4158–4166. [Google Scholar] [CrossRef]
- Nilsson, R.; Jain, M.; Madhusudhan, N.; Sheppard, N.G.; Strittmatter, L.; Kampf, C.; Huang, J.; Asplund, A.; Mootha, V.K. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 2014, 5, 3128. [Google Scholar] [CrossRef]
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; He, C.; Tao, L.; He, X.; Song, H.; Zhang, G. Increased MTHFD2 expression is associated with poor prognosis in breast cancer. Tumour Biol. 2014, 35, 8685–8690. [Google Scholar] [CrossRef] [PubMed]
- Koufaris, C.; Valbuena, G.N.; Pomyen, Y.; Tredwell, G.D.; Nevedomskaya, E.; Lau, C.H.; Yang, T.; Benito, A.; Ellis, J.K.; Keun, H.C. Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells. Oncogene 2016, 35, 2766–2776. [Google Scholar] [CrossRef]
- Pikman, Y.; Puissant, A.; Alexe, G.; Furman, A.; Chen, L.M.; Frumm, S.M.; Ross, L.; Fenouille, N.; Bassil, C.F.; Lewis, C.A.; et al. Targeting MTHFD2 in acute myeloid leukemia. J. Exp. Med. 2016, 213, 1285–1306. [Google Scholar] [CrossRef]
- Zhu, Z.; Kiang, K.M.-Y.; Li, N.; Liu, J.; Zhang, P.; Jin, L.; He, X.; Zhang, S.; Leung, G.K. Folate enzyme MTHFD2 links one-carbon metabolism to unfolded protein response in glioblastoma. Cancer Lett. 2022, 549, 215903. [Google Scholar] [CrossRef] [PubMed]
- Green, N.H.; Galvan, D.L.; Badal, S.S.; Chang, B.H.; LeBleu, V.S.; Long, J.; Jonasch, E.; Danesh, F.R. MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene 2019, 38, 6211–6225. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, A.S.; Appling, D.R. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 2010, 30, 57–81. [Google Scholar] [CrossRef]
- Xiu, Y.; Field, M.S. The Roles of Mitochondrial Folate Metabolism in Supporting Mitochondrial DNA Synthesis, Oxidative Phosphorylation, and Cellular Function. Curr. Dev. Nutr. 2020, 4, nzaa153. [Google Scholar] [CrossRef]
- Ducker, G.S.; Chen, L.; Morscher, R.J.; Ghergurovich, J.M.; Esposito, M.; Teng, X.; Kang, Y.; Rabinowitz, J.D. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. Cell Metab. 2016, 23, 1140–1153, Erratum in Cell Metab. 2016, 24, 640–641. https://doi.org/10.1016/j.cmet.2016.09.011. [Google Scholar] [CrossRef]
- Koufaris, C.; Gallage, S.; Yang, T.; Lau, C.H.; Valbuena, G.N.; Keun, H.C. Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis, Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion. J. Proteome Res. 2016, 15, 2618–2625. [Google Scholar] [CrossRef]
- Bonagas, N.; Gustafsson, N.M.S.; Henriksson, M.; Marttila, P.; Gustafsson, R.; Wiita, E.; Borhade, S.; Green, A.C.; Vallin, K.S.A.; Sarno, A.; et al. Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nat. Cancer 2022, 3, 156–172. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Garcia Canaveras, J.C.; Chen, Z.; Wang, L.; Liang, L.; Jang, C.; Mayr, J.A.; Zhang, Z.; Ghergurovich, J.M.; Zhan, L.; et al. Serine Catabolism Feeds NADH when Respiration Is Impaired. Cell Metab. 2020, 31, 809–821.e6. [Google Scholar] [CrossRef] [PubMed]
- Bolusani, S.; Young, B.A.; Cole, N.A.; Tibbetts, A.S.; Momb, J.; Bryant, J.D.; Solmonson, A.; Appling, D.R. Mammalian MTHFD2L Encodes a Mitochondrial Methylenetetrahydrofolate Dehydrogenase Isozyme Expressed in Adult Tissues. J. Biol. Chem. 2011, 286, 5166–5174. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Bryant, J.D.; Momb, J.; Appling, D.R. Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J. Biol. Chem. 2014, 289, 15507–15517. [Google Scholar] [CrossRef]
- Nilsson, R.; Nicolaidou, V.; Koufaris, C. Mitochondrial MTHFD isozymes display distinct expression, regulation, and association with cancer. Gene 2019, 716, 144032. [Google Scholar] [CrossRef]
- Jha, V.; Eriksson, L.A. Selectivity analysis of diaminopyrimidine-based inhibitors of MTHFD1, MTHFD2 and MTHFD2L. Sci. Rep. 2024, 14, 21073. [Google Scholar] [CrossRef]
- Huangyang, P.; Simon, M.C. Hidden features: Exploring the non-canonical functions of metabolic enzymes. Dis. Models Mech. 2018, 11, dmm033365. [Google Scholar] [CrossRef]
- Gustafsson Sheppard, N.; Jarl, L.; Mahadessian, D.; Strittmatter, L.; Schmidt, A.; Madhusudan, N.; Tegnér, J.; Lundberg, E.K.; Asplund, A.; Jain, M.; et al. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci. Rep. 2015, 5, 15029. [Google Scholar] [CrossRef]
- Koufaris, C.; Nilsson, R. Protein interaction and functional data indicate MTHFD2 involvement in RNA processing and translation. Cancer Metab. 2018, 6, 12. [Google Scholar] [CrossRef]
- Yue, L.; Pei, Y.; Zhong, L.; Yang, H.; Wang, Y.; Zhang, W.; Chen, N.; Zhu, Q.; Gao, J.; Zhi, M.; et al. Mthfd2 Modulates Mitochondrial Function and DNA Repair to Maintain the Pluripotency of Mouse Stem Cells. Stem Cell Rep. 2020, 15, 529–545. [Google Scholar] [CrossRef]
- Li, G.; Wu, J.; Li, L.; Jiang, P. p53 deficiency induces MTHFD2 transcription to promote cell proliferation and restrain DNA damage. Proc. Natl. Acad. Sci. USA 2021, 118, e2019822118. [Google Scholar] [CrossRef]
- Marttila, P.; Bonagas, N.; Chalkiadaki, C.; Stigsdotter, H.; Schelzig, K.; Shen, J.; Farhat, C.M.; Hondema, A.; Albers, J.; Wiita, E.; et al. The one-carbon metabolic enzyme MTHFD2 promotes resection and homologous recombination after ionizing radiation. Mol. Oncol. 2024, 18, 2179–2195. [Google Scholar] [CrossRef]
- Gustafsson, R.; Jemth, A.-S.; Gustafsson, N.M.S.; Färnegårdh, K.; Loseva, O.; Wiita, E.; Bonagas, N.; Dahllund, L.; Llona-Minguez, S.; Häggblad, M.; et al. Crystal Structure of the Emerging Cancer Target MTHFD2 in Complex with a Substrate-Based Inhibitor. Cancer Res. 2017, 77, 937–948. [Google Scholar] [CrossRef]
- Ju, H.-Q.; Lu, Y.-X.; Chen, D.-L.; Zuo, Z.X.; Liu, Z.X.; Wu, Q.N.; Mo, H.Y.; Wang, Z.X.; Wang, D.S.; Pu, H.Y.; et al. Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. J. Natl. Cancer Inst. 2019, 111, 584–596. [Google Scholar] [CrossRef]
- Sun, Y.; Mu, G.; Xue, Z.; Li, X.; Lin, X.; Han, M. Pharmacological targeting of one-carbon metabolism as a novel therapeutic strategy for glioblastoma. J. Transl. Med. 2023, 21, 424. [Google Scholar] [CrossRef]
- Mo, J.; Gao, Z.; Zheng, L.; Yan, M.; Xue, M.; Xu, J.; Bao, Y.; Wu, J. Targeting mitochondrial one-carbon enzyme MTHFD2 together with pemetrexed confers therapeutic advantages in lung adenocarcinoma. Cell Death Discov. 2022, 8, 307. [Google Scholar] [CrossRef]
- Lee, J.; Chen, X.; Wang, Y.; Nishimura, T.; Li, M.; Ishikawa, S.; Daikoku, T.; Kawai, J.; Tojo, A.; Gotoh, N. A novel oral inhibitor for one-carbon metabolism and checkpoint kinase 1 inhibitor as a rational combination treatment for breast cancer. Biochem. Biophys. Res. Commun. 2021, 584, 7–14. [Google Scholar] [CrossRef]
- Hwang, J.S.; Kang, J.; Kim, J.; Eun, K.; West, S.; Bacho, H.E.; Avalos, V.; Shuff, S.; Shin, D.M.; Saba, N.F.; et al. Non-canonical dihydrolipoyl transacetylase promotes chemotherapy resistance via mitochondrial tetrahydrofolate signaling. Nat. Commun. 2025, 16, 8932. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, X.; Li, S.; Zhang, T.; Liao, J.; Xu, N.; Yuan, Y.; Wang, Q.; Chen, Z.; Huang, J.; et al. Hit to lead optimization of isopentenyl chalcones as novel MTHFD2 inhibitors for cancer treatment: Design, synthesis, in-vitro, in-vivo and in-silico studies. Eur. J. Med. Chem. 2025, 292, 117703. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-H.; Lee, L.-C.; Hsu, T.; Peng, Y.H.; Huang, C.H.; Yeh, T.K.; Lu, C.T.; Huang, Z.T.; Hsueh, C.C.; Kung, F.C.; et al. Development of Potent and Selective Inhibitors of Methylenetetrahydrofolate Dehydrogenase 2 for Targeting Acute Myeloid Leukemia: SAR, Structural Insights, and Biological Characterization. J. Med. Chem. 2024, 67, 21106–21125. [Google Scholar] [CrossRef]
- Green, A.C.; Marttila, P.; Kiweler, N.; Chalkiadaki, C.; Wiita, E.; Cookson, V.; Lesur, A.; Eiden, K.; Bernardin, F.; Vallin, K.S.A.; et al. Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells. Nat. Metab. 2023, 5, 642–659. [Google Scholar] [CrossRef]
- Ron-Harel, N.; Santos, D.; Ghergurovich, J.M.; Sage, P.T.; Reddy, A.; Lovitch, S.B.; Dephoure, N.; Satterstrom, F.K.; Sheffer, M.; Spinelli, J.B.; et al. Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation. Cell Metab. 2016, 24, 104–117. [Google Scholar] [CrossRef]
- Sugiura, A.; Andrejeva, G.; Voss, K.; Heintzman, D.R.; Xu, X.; Madden, M.Z.; Ye, X.; Beier, K.L.; Chowdhury, N.U.; Wolf, M.M.; et al. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 2022, 55, 65–81.e9. [Google Scholar] [CrossRef]
- Ramirez-Hernandez, G.; Bell, M.; Kong, B.; Block, S.; Vander Heiden, M.G.; Kory, N. Inhibition of formate production blocks CD8+ T-cell responses and delays disease onset in a mouse model of type 1 diabetes. bioRxiv 2025, 8. [Google Scholar] [CrossRef]
- Wang, L.W.; Shen, H.; Nobre, L.; Ersing, I.; Paulo, J.A.; Trudeau, S.; Wang, Z.; Smith, N.A.; Ma, Y.; Reinstadler, B.; et al. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metab. 2019, 30, 539–555.e11. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, J.; Li, G.; Sun, X.; Xiang, C.; Chen, H.; Jiang, P. Metabolic determinants of germinal center B cell formation and responses. Nat. Chem. Biol. 2025, 21, 371–382. [Google Scholar] [CrossRef]
- Shang, M.; Ni, L.; Shan, X.; Cui, Y.; Hu, P.; Ji, Z.; Shen, L.; Zhang, Y.; Zhou, J.; Chen, B.; et al. MTHFD2 reprograms macrophage polarization by inhibiting PTEN. Cell Rep. 2023, 42, 112481. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, Z.; Ni, L.; Yu, S.; Shan, X.; Hu, P.; Ji, Z.; Jing, W.; Zhou, Y.; Wang, B.; et al. Induction of MTHFD2 in Macrophages Inhibits Reactive Oxygen Species-mediated NF-κB Activation and Protects against Inflammatory Responses. J. Immunol. 2024, 212, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Elakad, O.; Yang, X.H.; Altaf, A.R.; Yu, W.T.; Bohnenberger, H.; Peng, L.G. MTHFD2 marks pemetrexed resistance in pulmonary adenocarcinoma with EGFR wild type. Discov. Oncol. 2025, 16, 581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, S.; Zhou, H.; Li, R.; Xia, X.; Xiong, H. Identification of MTHFD2 as a prognostic biomarker and ferroptosis regulator in triple-negative breast cancer. Front. Oncol. 2023, 13, 1098357. [Google Scholar] [CrossRef]
- Cui, L.; Chen, H.; Zhao, X. The Prognostic Significance of Immune-Related Metabolic Enzyme MTHFD2 in Head and Neck Squamous Cell Carcinoma. Diagnostics 2020, 10, 689. [Google Scholar] [CrossRef]
- Lin, H.; Huang, B.; Wang, H.; Liu, X.; Hong, Y.; Qiu, S.; Zheng, J. MTHFD2 Overexpression Predicts Poor Prognosis in Renal Cell Carcinoma and is Associated with Cell Proliferation and Vimentin-Modulated Migration and Invasion. Cell. Physiol. Biochem. 2018, 51, 991–1000, Erratum in Cell. Physiol. Biochem. 2019, 52, 1589. https://doi.org/10.33594/000000114. [Google Scholar] [CrossRef] [PubMed]



| Molecule Name | Mode of Action | Comments |
|---|---|---|
| LY345899 | Substrate-based binding | Folate analogue; not selective for MTHFD2; effective against colorectal and glioblastoma cells |
| DS44960156, DS18561882 | Substrate-based binding | Developed on a tricyclic coumarin scaffold; more selective for MTHFD2 |
| Xanthine derivatives | Allosteric binding | Not selective for MTHFD2; low potency |
| Carolacton | Non-substrate binding | Natural product; not selective for MTHFD2; effective against colorectal cancer |
| Diaminopyrimidine Derivatives | Substrate-based binding | Selectivity for MTHFD2 compared to MTHFD1; AML mutant FLT3 cells particularly sensitive |
| TH9619 | Substrate-based binding | Inhibits MTHFD enzymes non-selectively in assays; in cells, specifically targets MTHFD1 and nuclear MTHFD2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koufaris, C.; Nicolaidou, V. MTHFD2: A Retrospective and a Glance into the Future. Int. J. Mol. Sci. 2025, 26, 11025. https://doi.org/10.3390/ijms262211025
Koufaris C, Nicolaidou V. MTHFD2: A Retrospective and a Glance into the Future. International Journal of Molecular Sciences. 2025; 26(22):11025. https://doi.org/10.3390/ijms262211025
Chicago/Turabian StyleKoufaris, Costas, and Vicky Nicolaidou. 2025. "MTHFD2: A Retrospective and a Glance into the Future" International Journal of Molecular Sciences 26, no. 22: 11025. https://doi.org/10.3390/ijms262211025
APA StyleKoufaris, C., & Nicolaidou, V. (2025). MTHFD2: A Retrospective and a Glance into the Future. International Journal of Molecular Sciences, 26(22), 11025. https://doi.org/10.3390/ijms262211025

