From Early Adversity to Neurodegeneration: Stress Biomarkers as Predictive Signals for Lifespan Brain Health
Abstract
1. Introduction
2. Methods
3. Early Childhood Adversity and Biological Embedding
4. Adversity Shared Molecular Mechanisms with Neurodegeneration
4.1. Inflammation and Immune Dysregulation
4.2. Mitochondrial Dysfunction and Allostatic Load
4.3. HPA Axis Dysregulation and Epigenetic Imprints
4.4. Oxidative Stress and Cellular Senescence
4.5. Protein Aggregation and Impaired Proteostasis
4.6. Brain Structure, Biomarker Evidence of Adversity and Neurodegeneration Shared Mechanisms
5. Stress-Related Biomarkers as Early Predictors of ACEs Biological Effects
5.1. Hair Cortisol Concentration (HCC)
5.2. Inflammation and DNA Methylation
5.3. NfL and GFAP (Glial Fibrillary Acidic Protein)
5.4. Tau and β-Amyloid
5.5. Biomarker Continuum Across the Lifespan
6. Positive and Benevolent Childhood Experiences Neurobiological Pathways Through Resilience
7. Future Directions
7.1. Addressing Geographic and Methodological Gaps
7.2. Alignment with Global Frameworks
7.3. Regulatory and Ethical Aspects
7.4. Policy Implications
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACEs | Adverse Childhood Experiences |
| Aβ | Beta-amyloid peptide |
| ALS | Amyotrophic Lateral Sclerosis |
| AOPP | Advanced Oxidation Protein Products |
| BBB | Blood–Brain Barrier |
| BCEs | Benevolent Childhood Experiences |
| BDNF | Brain-Derived Neurotrophic Factor |
| CRP | C-reactive Protein |
| CSF | Cerebrospinal Fluid |
| DLB | Dementia with Lewy Bodies |
| DNA | Deoxyribonucleic Acid |
| EDSS | Expanded Disability Status Scale |
| EBV | Epstein–Barr Virus |
| EAI | Early Adverse Experiences (for Spanish references, optional) |
| FTD | Frontotemporal Dementia |
| GFAP | Glial Fibrillary Acidic Protein |
| GR | Glucocorticoid Receptor |
| HPA | Hypothalamic–Pituitary–Adrenal Axis |
| HD | Huntington Disease |
| IL | Interleukin |
| IL-6 | Interleukin-6 |
| IL-10 | Interleukin-10 |
| IJMS | International Journal of Molecular Sciences |
| LBD | Lewy Body Dementia (alternative term for DLB) |
| MS | Multiple Sclerosis |
| mtDNA | Mitochondrial DNA |
| NDs | Neurodegenerative Diseases |
| NF-κB | Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells |
| NfL | Neurofilament Light Chain |
| NRF2 | Nuclear Factor Erythroid 2-Related Factor 2 |
| OPA1 | Optic Atrophy Protein 1 |
| PCEs | Positive Childhood Experiences (if used synonymously with BCEs) |
| PD | Parkinson’s Disease |
| PET | Positron Emission Tomography |
| PTSD | Post-Traumatic Stress Disorder |
| ROS | Reactive Oxygen Species |
| SOD1 | Superoxide Dismutase 1 |
| suPAR | Soluble Urokinase Plasminogen Activator Receptor |
| Tau181 | Phosphorylated Tau at Threonine 181 |
| Tau217 | Phosphorylated Tau at Threonine 217 |
| TNF-α | Tumor Necrosis Factor Alpha |
| TRAP | Total Radical-Trapping Antioxidant Parameter |
| TSPO | Translocator Protein |
| VDAC1 | Voltage-Dependent Anion Channel 1 |
References
- Fleck, L.; Buß, C.; Bauer, M.; Stein, M.; Mekle, R.; Kock, L.; Klawitter, H.; Godara, M.; Ramler, J.; Entringer, S.; et al. Early-Life Adversity Predicts Markers of Aging-Related Neuroinflammation, Neurodegeneration, and Cognitive Impairment in Women. Ann. Neurol. 2025, 97, 345–358. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2024 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2024, 20, 3708–3821. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2025 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2025, 21, e70235. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; San Luciano, M.; Tanner, C. The epidemiology of Parkinson’s disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef]
- Su, D.; Cui, Y.; He, C.; Yin, P.; Bai, R.; Zhu, J.; Lam, J.S.T.; Zhang, J.; Yan, R.; Zheng, X.; et al. Projections for prevalence of Parkinson’s disease and its driving factors in 195 countries and territories to 2050: Modelling study of Global Burden of Disease Study 2021. BMJ 2025, 388, e080952. [Google Scholar] [CrossRef]
- Pereira, G.M.; Teixeira-Dos-Santos, D.; Soares, N.M.; Marconi, G.A.; Friedrich, D.C.; Saffie Awad, P.; Santos-Lobato, B.L.; Brandão, P.R.P.; Noyce, A.J.; Marras, C.; et al. A systematic review and meta-analysis of the prevalence of Parkinson’s disease in lower to upper-middle-income countries. npj Park. Dis. 2024, 10, 181. [Google Scholar] [CrossRef]
- Khan, G.; Hashim, M.J. Epidemiology of Multiple Sclerosis: Global, Regional, National and Sub-National-Level Estimates and Future Projections. J. Epidemiol. Glob. Health 2025, 15, 21. [Google Scholar] [CrossRef]
- Shi, M.; Liu, Y.; Gong, Q.; Xu, X. Multiple Sclerosis: An Overview of Epidemiology, Risk Factors, and Serological Biomarkers. Acta Neurol. Scand. 2024, 2024, 7372789. [Google Scholar] [CrossRef]
- Mehta, P.; Raymond, J.; Nair, T.; Han, M.; Berry, J.; Punjani, R.; Horton, D.K. Amyotrophic lateral sclerosis estimated prevalence cases from 2022 to 2030, data from the national ALS Registry. Amyotroph. Lateral Scler. Front. Degener. 2025, 26, 290–295. [Google Scholar] [CrossRef]
- Ajitkumar, A.; Lui, F.; De Jesus, O. Huntington Disease. [Updated 2025 Apr 6]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559166/ (accessed on 20 October 2025).
- World Health Organization. Optimizing Brain Health Across the Life Course: WHO Position Paper; WHO: Geneva, Switzerland, 2024; Available online: https://iris.who.int/handle/10665/361251 (accessed on 26 September 2025).
- Rost, N.S.; Salinas, J.; Jordan, J.T.; Banwell, B.; Correa, D.J.; Said, R.R.; Selwa, L.M.; Song, S.; Evans, D.A.; for the American Academy of Neurology’s Committee on Public Engagement. The brain health imperative in the 21st century—A call to action. Neurology 2023, 101, 570–579. [Google Scholar] [CrossRef]
- Berens, A.E.; Jensen, S.K.G.; Nelson, C.A. Biological embedding of childhood adversity: From physiological mechanisms to clinical implications. BMC Med. 2017, 15, 135. [Google Scholar] [CrossRef]
- Kim, A.; Ahn, B.T.; Kim, Y.; Oh, J.W.; Park, J.; Jung, H.W.; Kim, W.J. Associations between adverse childhood experiences and subjective cognitive decline: A scoping review. Arch. Gerontol. Geriatr. 2025, 131, 105773. [Google Scholar] [CrossRef]
- Senaratne, D.N.S.; Thakkar, B.; Smith, B.H.; Hales, T.G.; Marryat, L.; Colvin, L.A. The impact of adverse childhood experiences on multimorbidity: A systematic review and meta-analysis. BMC Med. 2024, 22, 315. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Yang, T.; Tang, Y.; Wang, Y.; Yang, L.; Hu, Y. The Association Between Adverse Childhood Experiences and Patterns of Cognitive Decline: The Mediating Role of Allostatic Load. J. Appl. Gerontol. 2025; Advance online publication. [Google Scholar] [CrossRef]
- Gertje, E.C.; Janelidze, S.; van Westen, D.; Cullen, N.; Stomrud, E.; Palmqvist, S.; Hansson, O.; Mattsson-Carlgren, N. Associations Between CSF Markers of Inflammation, White Matter Lesions, and Cognitive Decline in Individuals Without Dementia. Neurology 2023, 100, e1812–e1824. [Google Scholar] [CrossRef]
- Rose, D.K.; Pfund, G.; Lee, J.K.; Liu, A.J.; Benitez, A.; Fani, N.; Walker, K.A.; Mielke, M.M.; Bateman, J.R. Adverse childhood experiences influence markers of neurodegeneration risk in older adults. Alzheimer’s Dement. 2025, 21, e70523. [Google Scholar] [CrossRef]
- Herman, K.A.; Hautala, D.S.; Aulandez, K.M.W.; Walls, M.L. The resounding influence of benevolent childhood experiences. Transcult. Psychiatry 2024, 61, 339–350. [Google Scholar] [CrossRef]
- Rojas, D.L.; Torres-Soto, N.Y.; Martín-Estal, I.; de Ita, J.R.; Torres, F.C. Impact of benevolent childhood experiences on mental and physical health in Mexican population. Child Abus. Negl. 2025, 167, 107559. [Google Scholar] [CrossRef]
- Nahar, K.; Mousum, S.; Salwa, M.; Fatema, K.; Chowdhury, T.; Tasnim, A.; Khan, M.M.H.; Haque, M.A. Childhood echoes: How benevolent and adverse childhood experiences shape adult mental well-being. Child Abus. Negl. 2025, 163, 107308. [Google Scholar] [CrossRef]
- Lucente, M.; Guidi, J. Allostatic Load in Children and Adolescents: A Systematic Review. Psychother Psychosom. 2023, 92, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, T.; Patro, N.; Patro, I.K. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res. Bull. 2019, 147, 58–68. [Google Scholar] [CrossRef]
- Corney, K.B.; West, E.C.; Quirk, S.E.; Pasco, J.A.; Stuart, A.L.; Manavi, B.A.; Kavanagh, B.E.; Williams, L.J. The Relationship Between Adverse Childhood Experiences and Alzheimer’s Disease: A Systematic Review. Front. Aging Neurosci. 2022, 14, 831378. [Google Scholar] [CrossRef]
- Niu, L.; Gao, Q.; Xie, M.; Yip, T.; Gunnar, M.R.; Wang, W.; Xu, Q.; Zhang, Y.; Lin, D. Association of childhood adversity with HPA axis activity in children and adolescents: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2025, 172, 106124. [Google Scholar] [CrossRef]
- Marsland, A.L.; Jones, E.; Reed, R.G.; Walsh, C.P.; Natale, B.N.; Lindsay, E.K.; Ewing, L.J. Childhood trauma and hair cortisol response over the year following onset of a chronic life event stressor. Psychoneuroendocrinology 2024, 165, 107039. [Google Scholar] [CrossRef]
- Davis, S.L.; Latimer, M.; Rice, M. Biomarkers of Stress and Inflammation in Children. Biol. Res. Nurs. 2023, 25, 559–570. [Google Scholar] [CrossRef]
- Gateau, K.; Schlueter, L.; Pierce, L.J.; Thompson, B.; Gharib, A.; Durazo-Arvizu, R.A.; Nelson, C.A.; Levitt, P. Exploratory study evaluating the relationships between perinatal adversity, oxidative stress, and infant neurodevelopment across the first year of life. PLoS Glob. Public Health 2023, 3, e0001984. [Google Scholar] [CrossRef]
- Samsonov, A.; Urlacher, S.S. Oxidative Stress in Children and Adolescents: Insights Into Human Biology. Am. J. Hum. Biol. 2025, 37, e24200. [Google Scholar] [CrossRef]
- Zhou, A.; Ryan, J. Biological Embedding of Early-Life Adversity and a Scoping Review of the Evidence for Intergenerational Epigenetic Transmission of Stress and Trauma in Humans. Genes 2023, 14, 1639. [Google Scholar] [CrossRef]
- Speranza, L.; Filiz, K.D.; Lippiello, P.; Ferraro, M.G.; Pascarella, S.; Miniaci, M.C.; Volpicelli, F. Enduring Neurobiological Consequences of Early-Life Stress: Insights from Rodent Behavioral Paradigms. Biomedicines 2024, 12, 1978. [Google Scholar] [CrossRef]
- Yu, J.; Haynie, D.L.; Gilman, S.E. Patterns of Adverse Childhood Experiences and Neurocognitive Development. JAMA Pediatr. 2024, 178, 678–687. [Google Scholar] [CrossRef]
- Stinson, E.A.; Sullivan, R.M.; Navarro, G.Y.; Wallace, A.L.; Larson, C.L.; Lisdahl, K.M. Childhood adversity is associated with reduced BOLD response in inhibitory control regions amongst preadolescents from the ABCD study. Dev. Cogn. Neurosci. 2024, 67, 101378. [Google Scholar] [CrossRef]
- Çakır, R.; Topuz, A.G.; Alpay, E.H. Working Memory and Inhibition as Mediators in the Relationship Between Adverse Childhood Experiences and Emotional Eating. Psychol. Rep. 2024. [Google Scholar] [CrossRef]
- He, F.; Zhang, H.; Zheng, G.; Zhou, B.; Fang, Z.; Zhu, H.; Dong, Y.; Hao, G. Adverse childhood experiences and cardiometabolic biomarkers: A causal analysis. J. Affect. Disord. 2025, 381, 418–426. [Google Scholar] [CrossRef]
- Turner, M.B.; Dalmasso, C.; Loria, A.S. The adipose tissue keeps the score: Priming of the adrenal-adipose tissue axis by early life stress predisposes women to obesity and cardiometabolic risk. Front. Endocrinol. 2024, 15, 1481923. [Google Scholar] [CrossRef]
- Valerio, G.; Di Bonito, P.; Calcaterra, V.; Cherubini, V.; Corica, D.; De Sanctis, L.; Di Sessa, A.; Faienza, M.F.; Fornari, E.; Iughetti, L.; et al. Cardiometabolic risk in children and adolescents with obesity: A position paper of the Italian Society for Pediatric Endocrinology and Diabetology. Ital. J. Pediatr. 2024, 50, 205. [Google Scholar] [CrossRef]
- Lind-Holm Mogensen, F.; Seibler, P.; Grünewald, A.; Michelucci, A. Microglial dynamics and neuroinflammation in prodromal and early Parkinson’s disease. J. Neuroinflamm. 2025, 22, 136. [Google Scholar] [CrossRef]
- Chauveau, F.; Winkeler, A.; Chalon, S.; Boutin, H.; Becker, G. PET Imaging Neuroinflammation: Any Credible Altern. TSPO Yet? Mol. Psychiatry 2025, 30, 213–228. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Moccia, M.; Coetzee, T.; Cohen, J.A.; Correale, J.; Graves, J.; Marrie, R.A.; Montalban, X.; Yong, V.W.; Thompson, A.J.; et al. Multiple sclerosis progression: Time for a new mechanism-driven framework. Lancet Neurol. 2023, 22, 78–88. [Google Scholar] [CrossRef]
- Eid, K.; Bjørk, M.H.; Gilhus, N.E.; Torkildsen, Ø. Adverse Childhood Experiences and the Risk of Multiple Sclerosis Development: A Review of Potential Mechanisms. Int. J. Mol. Sci. 2024, 25, 1520. [Google Scholar] [CrossRef]
- Morgan, S.L.; Naderi, P.; Koler, K.; Pita-Juarez, Y.; Prokopenko, D.; Vlachos, I.S.; Tanzi, R.E.; Bertram, L.; Hide, W.A. Most pathways can be related to the pathogenesis of Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 846902. [Google Scholar] [CrossRef]
- Huang, Z.; Jordan, J.D.; Zhang, Q. Early life adversity as a risk factor for cognitive impairment and Alzheimer’s disease. Transl. Neurodegener. 2023, 12, 25. [Google Scholar] [CrossRef]
- Du, F.; Yu, Q.; Swerdlow, R.H.; Waites, C.L. Glucocorticoid-driven mitochondrial damage stimulates tau pathology. Brain 2023, 146, 4378–4394. [Google Scholar] [CrossRef]
- Burke, M.R.; Sotiropoulos, I.; Waites, C.L. The multiple roles of chronic stress and glucocorticoids in Alzheimer’s disease pathogenesis. Trends Neurosci. 2024, 47, 933–948. [Google Scholar] [CrossRef]
- Watamura, N.; Foiani, M.S.; Bez, S.; Bourdenx, M.; Santambrogio, A.; Frodsham, C.; Camporesi, E.; Brinkmalm, G.; Zetterberg, H.; Patel, S.; et al. La hiperfosforilación in vivo de tau se asocia con pérdida sináptica y anomalías conductuales en ausencia de semillas de tau. Nat. Neurosci. 2025, 28, 293–307. [Google Scholar] [CrossRef]
- Schweighauser, M.; Shi, Y.; Murzin, A.G.; Garringer, H.J.; Vidal, R.; Murrell, J.R.; Erro, M.E.; Seelaar, H.; Ferrer, I.; van Swieten, J.C.; et al. Distinct tau filament folds in human MAPT mutants P301L and P301T. Nat. Struct. Mol. Biol. 2025, 32, 1470–1478. [Google Scholar] [CrossRef]
- Ravasia, K.; Hirsch-Reinshagen, V. Selective cellular and regional vulnerability in frontotemporal lobar degeneration: A scoping review. Free Neuropathol. 2025, 6, 11. [Google Scholar] [CrossRef]
- Liang, J.; Li, R.; Wong, G.; Huang, X. Demencia por cuerpos de Lewy: Exploración de biomarcadores e interacciones patogénicas de β-amiloide, tau y α-sinucleína. Mol. Neurodegener. 2025, 20, 90. [Google Scholar] [CrossRef]
- Geibl, F.F.; Henrich, M.T.; Xie, Z.; Zampese, E.; Ueda, J.; Tkatch, T.; Wokosin, D.L.; Nasiri, E.; Grotmann, C.A.; Dawson, V.L.; et al. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at risk in Parkinson’s disease. Mol. Neurodegener. 2024, 19, 69. [Google Scholar] [CrossRef]
- Banarase, T.A.; Sammeta, S.S.; Wankhede, N.L.; Mangrulkar, S.V.; Rahangdale, S.R.; Aglawe, M.M.; Taksande, B.G.; Upaganlawar, A.B.; Umekar, M.J.; Kale, M.B. Mitophagy regulation in aging and neurodegenerative disease. Biophys. Rev. 2023, 15, 239–255. [Google Scholar] [CrossRef]
- Wang, S.; Long, H.; Hou, L.; Feng, B.; Ma, Z.; Wu, Y.; Zeng, Y.; Cai, J.; Zhang, D.W.; Zhao, G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 304. [Google Scholar] [CrossRef]
- Argueti-Ostrovsky, S.; Alfahel, L.; Kahn, J.; Israelson, A. All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells 2021, 10, 2438. [Google Scholar] [CrossRef]
- Yu, Q.; Du, F.; Belli, I.; Gomes, P.A.; Sotiropoulos, I.; Waites, C.L. Glucocorticoid stress hormones stimulate vesicle-free tau secretion and spreading in the brain. Cell Death Dis. 2024, 15, 73. [Google Scholar] [CrossRef]
- Ramos-González, E.J.; Bitzer-Quintero, O.K.; Ortiz, G.; Hernández-Cruz, J.J.; Ramírez-Jirano, L.J. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024, 39, 292–301. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, H.; Feng, J. Emerging role of microglia in inter-cellular transmission of α-synuclein in Parkinson’s disease. Front. Aging Neurosci. 2024, 16, 1411104. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y. Serum neurofilament light chain: A novel biomarker for cardiovascular diseases in individuals without hypertension. Sci. Rep. 2024, 14, 26117. [Google Scholar] [CrossRef]
- Isaac, A.J.; Rodriguez, A.M.; D’Anna-Hernandez, K.; Gemmell, N.; Acedo, G.R.; Dougherty, L.R.; Bufferd, S.J. Preschool-aged children’s hair cortisol and parents’ behavior, psychopathology, and stress. Psychoneuroendocrinology 2023, 151, 106052. [Google Scholar] [CrossRef]
- Martins, R.C.; Tovo-Rodrigues, L.; Oliveira, I.; Blumenberg, C.; Bertoldi, A.D.; Silveira, M.F.; Domingues, M.R.; Silveira, M.P.T.; Gonzalez, A.; Murray, J. Determinants of hair cortisol in preschool children and their mothers: A Brazilian birth cohort study. Psychoneuroendocrinology 2023, 150, 106027. [Google Scholar] [CrossRef]
- Li, Y.; Jia, W.; Yan, N.; Hua, Y.; Han, T.; Yang, J.; Ma, L.; Ma, L. Associations between chronic stress and hair cortisol in children: A systematic review and meta-analysis. J. Affect. Disord. 2023, 329, 438–447. [Google Scholar] [CrossRef]
- Hennessey, E.-M.P.; Kepinska, O.; Haft, S.L.; Chan, M.; Sunshine, I.; Jones, C.; Hancock, R.; Hoeft, F. Hair cortisol and dehydroepiandrosterone concentrations: Associations with executive function in early childhood. Biol. Psychol. 2020, 155, 107946. [Google Scholar] [CrossRef]
- Mposhi, A.; Turner, J.D. How can early life adversity still exert an effect decades later? A question of timing, tissues and mechanisms. Front. Immunol. 2023, 14, 1215544. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Z.; Qiu, Y.; Sun, D.; Zhou, H. Peripheral GFAP and NfL as early biomarkers for dementia: Longitudinal insights from the UK Biobank. BMC Med. 2024, 22, 192. [Google Scholar] [CrossRef]
- Meng, T.; Fei, Q.; Lv, T.; Chen, S. Association of serum neurofilament light chain with cognitive impairment: Findings from the National Health and Nutrition Examination Survey. Front. Aging Neurosci. 2025, 17, 1517663. [Google Scholar] [CrossRef]
- Di Filippo, M.; Gaetani, L.; Centonze, D.; Hegen, H.; Kuhle, J.; Teunissen, C.E.; Tintoré, M.; Villar, L.M.; Willemse, E.A.J.; Zetterberg, H.; et al. Fluid biomarkers in multiple sclerosis: From current to future applications. Lancet Reg. Health Eur. 2024, 44, 101009. [Google Scholar] [CrossRef]
- Palpatzis, E.; Akinci, M.; Aguilar-Dominguez, P.; Garcia-Prat, M.; Blennow, K.; Zetterberg, H.; Carboni, M.; Kollmorgen, G.; Wild, N.; Fauria, K.; et al. Lifetime Stressful Events Associated with Alzheimer’s Pathologies, Neuroinflammation and Brain Structure in a Risk Enriched Cohort. Ann. Neurol. 2024, 95, 1058–1068. [Google Scholar] [CrossRef]
- Lee, J.K.; Johnson, L.; Hall, J.R.; Bateman, J.R.; Barnes, L.L.; O’Bryant, S.; Mielke, M.M. Chronic stress, social support, and Alzheimer’s blood-based biomarkers in the HABS-HD study. Alzheimer’s Dement. 2025, 21, e70043. [Google Scholar] [CrossRef]
- Narayan, A.J.; Merrick, J.S.; Lane, A.S.; Larson, M.D. A multisystem, dimensional interplay of assets versus adversities: Revised benevolent childhood experiences (BCEs) in the context of childhood maltreatment, threat, and deprivation. Dev. Psychopathol. 2023, 35, 2444–2463. [Google Scholar] [CrossRef]
- Han, D.; Dieujuste, N.; Doom, J.R.; Narayan, A.J. A systematic review of positive childhood experiences and adult outcomes: Promotive and protective processes for resilience in the context of childhood adversity. Child Abus. Negl. 2023, 144, 106346. [Google Scholar] [CrossRef]
- Ashour, R.; Halstead, E.J.; Mangar, S.; Lin, V.K.Q.; Azhari, A.; Carollo, A.; Esposito, G.; Threadgold, L.; Dimitriou, D. Childhood experiences and sleep problems: A cross-sectional study on the indirect relationship mediated by stress, resilience and anxiety. PLoS ONE 2024, 19, e0299057. [Google Scholar] [CrossRef]
- Owens, J.H.; Windon, C.C.; Mungas, D.; Whitmer, R.A.; Gilsanz, P.; Manly, J.J.; Glymour, M.M. Positive Childhood Experiences, Cognition, and Biomarkers of Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2025, 22, 525. [Google Scholar] [CrossRef]
- Streitz, M.L.; Bui, Q.; Xiong, C.; Moulder, K.L.; Morris, J.C. Cross-sectional evaluation of early childhood experiences and AD biomarkers in older adults. Alzheimer’s Dement. 2025, 20 (Suppl. S7), e086628. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, H. Childhood Peer Relationships and Dementia Risk in Chinese Older Adults: A Mediation Analysis. Int. J. Geriatr. Psychiatry 2024, 39, e70022. [Google Scholar] [CrossRef]
- Schoentgen, B.; Gagliardi, G.; Défontaines, B. Environmental and Cognitive Enrichment in Childhood as Protective Factors in the Adult and Aging Brain. Front. Psychol. 2020, 11, 1814. [Google Scholar] [CrossRef]
- Miguel, P.M.; Pereira, L.O.; Silveira, P.P.; Meaney, M.J. Early environmental influences on the development of children’s brain structure and function. Dev. Med. Child Neurol. 2019, 61, 1127–1133. [Google Scholar] [CrossRef]
- Kalisch, R.; Russo, S.J.; Müller, M.B. Neurobiology and systems biology of stress resilience. Physiol. Rev. 2024, 104, 1205–1263. [Google Scholar] [CrossRef]
- Nestler, E.J.; Russo, S.J. Neurobiological basis of stress resilience. Neuron 2024, 112, 1911–1929. [Google Scholar] [CrossRef]
- Torres-Berrío, A.; Bortolami, A.; Peña, C.J.; Nestler, E.J. Neurobiology of resilience to early life stress. Neuropsychopharmacology 2025. [Google Scholar] [CrossRef]
- Kentner, A.C.; Cryan, J.F.; Brummelte, S. Resilience priming: Translational models for understanding resiliency and adaptation to early life adversity. Dev. Psychobiol. 2019, 61, 350–375. [Google Scholar] [CrossRef]
- Trumpff, C.; Monzel, A.S.; Sandi, C.; Menon, V.; Klein, H.U.; Fujita, M.; Lee, A.; Petyuk, V.A.; Hurst, C.; Duong, D.M.; et al. Psychosocial experiences are associated with human brain mitochondrial biology. Proc. Natl. Acad. Sci. USA 2024, 121, e2317673121. [Google Scholar] [CrossRef]
- Blevins, E.J.; Slopen, N.; Koenen, K.C.; Mikesell, C.; Basu, A. Perspectives on integrating biological assessments to address the health impacts of childhood adversity. Harv. Rev. Psychiatry, 2024; Advance online publication. [Google Scholar] [CrossRef]
- Migeot, J.; Panesso, C.; Duran-Aniotz, C.; Ávila-Rincón, C.; Ochoa, C.; Huepe, D.; Santamaría-García, H.; Miranda, J.J.; Escobar, M.J.; Pina-Escudero, S.; et al. Allostasis, health, and development in Latin America. Neurosci. Biobehav. Rev. 2024, 162, 105697. [Google Scholar] [CrossRef]
- Sisitsky, M.; Hare, M.; DiMarzio, K.; Gallat, A.; Magariño, L.; Parent, J. Associations between early life adversity and youth psychobiological outcomes. J. Abnorm. Child Psychol. 2023, 51, 1789–1800. [Google Scholar] [CrossRef]
- Holz, N.E.; Berhe, O.; Sacu, S.; Schwarz, E.; Tesarz, J.; Heim, C.M.; Tost, H. Early social adversity, altered brain functional connectivity, and mental health risk. Biol. Psychiatry 2023, 93, 430–441. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet Standing Commission. Lancet 2024, 404, 1234–1298. [Google Scholar] [CrossRef]

| Mechanistic Process | Signaling Pathway or Molecular Axis/Cellular Effect/Mechanism Relevance in Neurodegeneration | References |
|---|---|---|
| Tau phosphorylation | Driven by GC–GR signaling through GSK3β and CDK5, leading to tau hyperphosphorylation, microtubule destabilization, and neurofibrillary tangle formation, contributing to neuronal dysfunction in AD, FTD, and DLB. | [42,43,44,45,46,47,48,49,54] |
| FKBP5 methylation/expression | GC–GR activation alters FKBP5 and downstream NF-κB/HPA-axis feedback, enhancing stress reactivity and maladaptive inflammatory priming that increases neuroinflammatory vulnerability in AD and PD. | [42,43,45,54] |
| Aβ accumulation | GC–GR regulation of BACE1 and HPA-axis stress signaling promotes excess amyloid-β production and impaired clearance, facilitating plaque deposition and synaptic loss in AD and DLB. | [43,45,49] |
| α-synuclein aggregation | ROS-induced NF-κB/TLR2–mediated microglial activation amplifies cytokine signaling and proteostatic failure, accelerating α-syn aggregation and its propagation through vulnerable neural circuits in PD and DLB. | [49,50,56] |
| Oxidative stress (8-OHdG, MDA) | Activation of NF-κB, MAPK, and mitochondrial ROS pathways induces DNA oxidation, lipid peroxidation, and impaired repair, representing a shared mechanism that accelerates aging processes and pathological spread in AD, PD, MS. | [42,43,45,50,55] |
| Biomarker | Sample | Biological Pathway/Mechanism | Representative Neurodegenerative Conditions | Mechanistic Link to Early-Life Adversity | References |
|---|---|---|---|---|---|
| Cortisol (HCC, plasma) | Hair, plasma | Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, resulting in chronic hypercortisolemia or attenuated stress reactivity | AD, PD, MS | Chronic HPA overactivation following early stress induces hippocampal atrophy, neuronal loss, and tau phosphorylation. Elevated HCC reflects cumulative adversity and predicts cognitive decline. | [25,41,58,59,60,61] |
| IL-6, TNF-α, CRP | Plasma/PET neuroimaging | Pro-inflammatory cytokines and acute-phase protein reflecting systemic and central neuroinflammation via NF-κB and JAK–STAT activation; associated with microglial priming and increased TSPO-PET signal | AD, PD, MS | Early adversity induces chronic immune activation and glucocorticoid resistance, sustaining elevated IL-6 and TNF-α levels, microglial activation, and neuroinflammatory aging. | [27,37,38,39,40,41] |
| FKBP5 (mRNA expression) | Blood | Glucocorticoid receptor co-chaperone that modulates HPA feedback and stress sensitivity | AD, PD, FTD | Early stress alters FKBP5 methylation and expression, increasing GR sensitivity and inflammatory signaling, facilitating tau hyperphosphorylation and neuronal vulnerability. | [27,30,42,43,45,54,62] |
| 8-OHdG, MDA, 2-isoprostane, telomere shortening, mtDNA depletion | Plasma, lymphocytes (DNA/RNA via qPCR) | Oxidative stress and mitochondrial damage markers reflecting DNA and lipid oxidation and telomere attrition | AD, PD, MS | Chronic toxic stress accelerates cellular aging, oxidative injury, and mitochondrial dysfunction. Promotes amyloid-β deposits, tau and α-synuclein aggregation, and demyelination. | [42,43,45,50,55] |
| NfL (Neurofilament light chain) | Serum, plasma | Marker of axonal injury and neurodegeneration | AD, PD, MS, ALS | Elevated NfL levels correlate with ACE exposure and predict structural brain changes and cognitive decline before symptom onset. | [1,52,57,63,64,65] |
| GFAP (Glial fibrillary acidic protein) | Serum, plasma | Marker of astrocytic reactivity and chronic neuroinflammation | AD, MS, DLB | Persistent stress promotes astroglial activation; elevated GFAP indicates neuroinflammation and glial injury associated with early adversity and dementia risk. | [1,63,65] |
| Protein aggregation markers (p-tau181/217, Aβ42/40, α-synuclein) | CSF, plasma | Proteostatic imbalance, ER stress, and impaired autophagy–proteasome activity | AD, PD, DLB | Stress-induced mitochondrial dysfunction and impaired proteostasis lead to accumulation of misfolded proteins; stress accelerates tau propagation and α-synuclein spread. | [43,45,49,50,56,66,67] |
| Neuroimaging biomarkers (TSPO-PET, MRI) | PET, MRI | Visualization of neuroinflammation and stress-related cortical and hippocampal alterations | AD, PD, MS | Early adversity increases TSPO-PET signal (microglial activation) and reduces cortical and hippocampal volumes, reflecting neuroinflammatory remodeling and stress-related atrophy. | [1,38,39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemus-Roldan, K.; Castorena Torres, F.; León Rojas, D.; Rodríguez-de-Ita, J. From Early Adversity to Neurodegeneration: Stress Biomarkers as Predictive Signals for Lifespan Brain Health. Int. J. Mol. Sci. 2025, 26, 11013. https://doi.org/10.3390/ijms262211013
Lemus-Roldan K, Castorena Torres F, León Rojas D, Rodríguez-de-Ita J. From Early Adversity to Neurodegeneration: Stress Biomarkers as Predictive Signals for Lifespan Brain Health. International Journal of Molecular Sciences. 2025; 26(22):11013. https://doi.org/10.3390/ijms262211013
Chicago/Turabian StyleLemus-Roldan, Kenny, Fabiola Castorena Torres, Daniela León Rojas, and Julieta Rodríguez-de-Ita. 2025. "From Early Adversity to Neurodegeneration: Stress Biomarkers as Predictive Signals for Lifespan Brain Health" International Journal of Molecular Sciences 26, no. 22: 11013. https://doi.org/10.3390/ijms262211013
APA StyleLemus-Roldan, K., Castorena Torres, F., León Rojas, D., & Rodríguez-de-Ita, J. (2025). From Early Adversity to Neurodegeneration: Stress Biomarkers as Predictive Signals for Lifespan Brain Health. International Journal of Molecular Sciences, 26(22), 11013. https://doi.org/10.3390/ijms262211013

