Molecular Genetics of Primary Congenital Hypothyroidism: Established and Emerging Contributors to Thyroid Dysgenesis
Abstract
1. Introduction
2. Genes Associated with Thyroid Dysgenesis (Table 1)
2.1. TSHR
2.2. PAX8
2.3. FOXE1
2.4. NKX2.1
2.5. NKX2.5
2.6. GLIS3
2.7. JAG1
2.8. NTN1
2.9. CDCA8
2.10. TUBB1
| Gene | Location | Mode of Inheritance | Gene Product | Evidence | Type of Dysgenesis | Associated Malformations |
|---|---|---|---|---|---|---|
| TSHR [13,25,106] | 14q31 | AD, AR | TSHR | Established | Hypoplasia | - |
| PAX8 [20,42,50] | 2q12-q14 | AD | PAX8 | Established | Hypoplasia (most common), agenesis, ectopy | Urogenital malformations |
| FOXE1 [14,54] | 9q22 | AR | FOXE1 (TTF2) | Established | Hypoplasia, agenesis | Bamforth–Lazarus syndrome: cleft palate, spiky hair, bifid epiglottis, choanal atresia |
| NKX2.1 [23,58,64] | 14q13 | AD | NKX2.1 (TTF1) | Established | Hypoplasia, agenesis | Brain-lung-thyroid syndrome (hypotonia at birth, benign hereditary chorea, RDS at birth, interstitial lung disease) |
| NKX2.5 [68,70,81] | 5q35 | AD | NKX2.5 | Candidate | Uknown role | Cardiac defects |
| GLIS3 [82,83,87] | 9p24 | AR | GLI-zinc finger protein family 3 | Established | Hypoplasia, agenesis | Permanent neonatal diabetes, polycystic kidney disease, hepatic fibrosis, facial dysmorphism, glaucoma, osteopenia, skeletal abnormalities |
| JAG1 [91,96] | 20p12.2 | AD | Jagged-1 | Emerging | Hypoplasia | Alagille syndrome: cardiac, liver, kidneys, skeleton, eye defects, facial dysmorphism |
| NTN1 [97,98] | 17p13.1 | AD | Netrin-1 | Candidate | Ectopia | Cardiac defects, arthrogryposis, congenital mirror movement disorder |
| CDCA8 [24,99,102] | 1p34.3 | AD, AR | Borealin | Established | Ectopia, agenesis | - |
| TUBB1 [103,104] | 20q13.32 | AD, AR | β1-tubulin | Emerging | Ectopia, hypoplasia | Large platelets |
2.11. Novel Candidate Genes
3. Congenital Malformations and Syndromes Associated with CH
| Author | Population | Congenital Malformations |
|---|---|---|
| Olivieri, 2002 [129] | 1420 | Cardiovascular 5.5% Urogenital 0.4% Musculoskeletal 1% Gastrointestinal 0.5% Nervous system 0.8% |
| Kreisner, 2005 [130] | 76 | Cardiovascular 10.5% |
| Gu, 2009 [116] | 1520 | Cardiovascular 8.9% Urogenital 1.58% Musculoskeletal % Gastrointestinal 2.41% Nervous system 1.05% |
| Kumar, 2009 [131] | 980 | Cardiovascular 17.6% Urogenital 8.9% Musculoskeletal 1.2% Gastrointestinal 2.9% |
| Reddy, 2010 [113] | 17 | Cardiovascular 29% Neural tube defects 41% |
| Monroy-Santoyo, 2011 [115] | 212 | |
| Ravazi, 2012 [117] | 150 | Cardiovascular 4.9% Developmental hip dysplasia 2.6% |
| Wędrychowicz, 2019 [119] | 54 | Cardiovascular 18% Urogenital 9.25% Musculoskeletal 11.1% Gastrointestinal 12.96% Respiratory 9.25% CNS 5.55% |
| Tuli, 2020 [122] | 105 | Cardiovascular 16.1% Urogenital 6.7% Musculoskeletal 4.8% Gastrointestinal: 4.8% |
| Mazahir, 2020 [118] | 204 | Cardiovascular 16% Urogenital 14% |
| Danner, 2023 [114] | 438 | Cardiovascular 6.4% Urogenital 1.4% Musculoskeletal 5.3% Facial, cleft lift/palate:1.4% |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Prezioso, G.; Giannini, C.; Chiarelli, F. Effect of Thyroid Hormones on Neurons and Neurodevelopment. Horm. Res. Paediatr. 2018, 90, 73–81. [Google Scholar] [CrossRef]
- Lipska, E.; Lecka-Ambroziak, A.; Witkowski, D.; Szamotulska, K.; Mierzejewska, E.; Ołtarzewski, M. Primary Congenital Hypothyroidism in Children Below 3 Years Old—Etiology and Treatment with Overtreatment and Undertreatment Risks, a 5-Year Single Centre Experience. Front. Endocrinol. 2022, 13, 895507. [Google Scholar] [CrossRef]
- Rastogi, M.V.; LaFranchi, S.H. Congenital hypothyroidism. Orphanet J. Rare Dis. 2010, 5, 17. [Google Scholar] [CrossRef]
- van Trotsenburg, P.; Stoupa, A.; Léger, J.; Rohrer, T.; Peters, C.; Fugazzola, L.; Cassio, A.; Heinrichs, C.; Beauloye, V.; Pohlenz, J.; et al. Congenital Hypothyroidism: A 2020–2021 Consensus Guidelines Update—An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid 2021, 31, 387–419. [Google Scholar] [CrossRef]
- Rose, S.R.; Wassner, A.J.; Wintergerst, K.A.; Yayah-Jones, N.H.; Hopkin, R.J.; Chuang, J.; Smith, J.R.; Abell, K.; LaFranchi, M.S.H.; Section on Endocrinology Executive Committee; et al. Congenital Hypothyroidism: Screening and Management. Pediatrics 2023, 151, e2022060419. [Google Scholar] [CrossRef]
- Korkmaz, H.A. Clinical Insight into Congenital Hypothyroidism Among Children. Children 2025, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Stoupa, A.; Carré, A.; Polak, M.; Szinnai, G.; Schoenmakers, N. Genetics of primary congenital hypothyroidism: Three decades of discoveries and persisting etiological challenges. Eur. Thyroid. J. 2025, 14, e240348. [Google Scholar] [CrossRef] [PubMed]
- Aminzadeh, M. Higher prevalence of permanent congenital hypothyroidism in the Southwest of Iran mostly caused by dyshormonogenesis: A five-year follow-up study. Arch. Endocrinol. Metab. 2018, 62, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Donbaloğlu, Z.; Çetinkaya, S.; Aycan, Z.; Karacan Küçükali, G.; Şakar, M.; Savaş-Erdeve, Ş. Evaluation of permanent and transient congenital hypothyroidism in cases referred from National Neonatal Screening Program. J. Paediatr. Child Health 2022, 58, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Eng, L.; Lam, L. Thyroid Function During the Fetal and Neonatal Periods. NeoReviews 2020, 21, e30–e36. [Google Scholar] [CrossRef]
- Fernández, L.P.; López-Márquez, A.; Santisteban, P. Thyroid transcription factors in development, differentiation and disease. Nat. Rev. Endocrinol. 2015, 11, 29–42. [Google Scholar] [CrossRef]
- Montanelli, L.; Tonacchera, M. Genetics and phenomics of hypothyroidism and thyroid dys- and agenesis due to PAX8 and TTF1 mutations. Mol. Cell. Endocrinol. 2010, 322, 64–71. [Google Scholar] [CrossRef]
- Abu-Khudir, R.; Larrivée-Vanier, S.; Wasserman, J.D.; Deladoëy, J. Disorders of thyroid morphogenesis. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 143–159. [Google Scholar] [CrossRef]
- Szinnai, G. Genetics of normal and abnormal thyroid development in humans. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Maiorana, R.; Carta, A.; Floriddia, G.; Leonardi, D.; Buscema, M.; Sava, L.; Calaciura, F.; Vigneri, R. Thyroid hemiagenesis: Prevalence in normal children and effect on thyroid function. J. Clin. Endocrinol. Metab. 2003, 88, 1534–1536. [Google Scholar] [CrossRef]
- Ruchala, M.; Szczepanek, E.; Szaflarski, W.; Moczko, J.; Czarnywojtek, A.; Pietz, L.; Nowicki, M.; Niedziela, M.; Zabel, M.; Köhrle, J.; et al. Increased risk of thyroid pathology in patients with thyroid hemiagenesis: Results of a large cohort case–control study. Eur. J. Endocrinol. 2010, 162, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Cavarzere, P.; Mancioppi, V.; Battiston, R.; Lupieri, V.; Morandi, A.; Maffeis, C. Primary congenital hypothyroidism: A clinical review. Front. Endocrinol. 2025, 16, 1592655. [Google Scholar] [CrossRef] [PubMed]
- Uyttendaele, M.; Lambert, S.; Tenoutasse, S.; Boros, E.; Ziereisen, F.; Van Vliet, G.; Heinrichs, C.; Brachet, C. Congenital Hypothyroidism: Long-Term Experience with Early and High Levothyroxine Dosage. Horm. Res. Paediatr. 2016, 85, 188–197. [Google Scholar] [CrossRef]
- Gmür, S.; Konrad, D.; Fingerhut, R. Prevalence of Transient Hypothyroidism in Children Diagnosed with Congenital Hypothyroidism between 2000 and 2016. Int. J. Mol. Sci. 2023, 24, 2817. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, G.; Cheng, F.; Sun, F.; Fang, Y.; Zhang, C.; Wang, Z.; Wu, F.; Zhang, J.; Zhao, S.; et al. The mutation screening in candidate genes related to thyroid dysgenesis by targeted next-generation sequencing panel in the Chinese congenital hypothyroidism. Clin. Endocrinol. 2022, 96, 617–626. [Google Scholar] [CrossRef]
- Alcántara-Ortigoza, M.A.; Sánchez-Verdiguel, I.; Fernández-Hernández, L.; Enríquez-Flores, S.; González-Núñez, A.; Hernández-Martínez, N.L.; Sánchez, C.; González-Del Angel, A. Further Evidence That Defects in Main Thyroid Dysgenesis-Related Genes Are an Uncommon Etiology for Primary Congenital Hypothyroidism in Mexican Patients: Report of Rare Variants in FOXE1, NKX2-5 and TSHR. Children 2021, 8, 457. [Google Scholar] [CrossRef]
- Narumi, S.; Muroya, K.; Asakura, Y.; Adachi, M.; Hasegawa, T. Transcription factor mutations and congenital hypothyroidism: Systematic genetic screening of a population-based cohort of Japanese patients. J. Clin. Endocrinol. Metab. 2010, 95, 1981–1985. [Google Scholar] [CrossRef]
- Mio, C.; Grani, G.; Durante, C.; Damante, G. Molecular defects in thyroid dysgenesis. Clin. Genet. 2020, 97, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Stoupa, A.; Kariyawasam, D.; Polak, M.; Carré, A. Genetics of congenital hypothyroidism: Modern concepts. Pediatr. Investig. 2022, 6, 123–134. [Google Scholar] [CrossRef]
- Parmentier, M.; Libert, F.; Maenhaut, C.; Lefort, A.; Gérard, C.; Perret, J.; Van Sande, J.; Dumont, J.E.; Vassart, G. Molecular cloning of the thyrotropin receptor. Science 1989, 246, 1620–1622. [Google Scholar] [CrossRef]
- Misrahi, M.; Loosfelt, H.; Atger, M.; Sar, S.; Guiochon-Mantel, A.; Milgrom, E. Cloning, sequencing and expression of human TSH receptor. Biochem. Biophys. Res. Commun. 1990, 166, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Rousseau-Merck, M.; Misrahi, M.; Loosfelt, H.; Atger, M.; Milgrom, E.; Berger, R. Assignment of the human thyroid stimulating hormone receptor (TSHR) gene to chromosome 14q31. Genomics 1990, 8, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Nadeali, Z.; Mohammadi-Zaniani, Z.; Biglari, S.; Molavi, N.; Zardoui, K.; Mirfendereski, S.; Hashemipour, M.; Tabatabaiefar, M.A.; Polychronakos, C. Investigating TSHR gene variants in consanguineous families: Novel insights into variable expression in familial congenital hypothyroidism. Front. Endocrinol. 2025, 16, 1559281. [Google Scholar] [CrossRef]
- Cangul, H.; Schoenmakers, N.A.; Saglam, H.; Doganlar, D.; Saglam, Y.; Eren, E.; Kendall, M.; Tarim, O.; Barrett, T.G.; Chatterjee, K.; et al. A deletion including exon 2 of the TSHR gene is associated with thyroid dysgenesis and severe congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 2014, 27, 731–735. [Google Scholar] [CrossRef]
- Stein, S.A.; Oates, E.L.; Hall, C.R.; Grumbles, R.M.; Fernandez, L.M.; Taylor, N.A.; Puett, D.; Jin, S. Identification of a point mutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol. Endocrinol. 1994, 8, 129–138. [Google Scholar] [CrossRef]
- Postiglione, M.P.; Parlato, R.; Rodriguez-Mallon, A.; Rosica, A.; Mithbaokar, P.; Maresca, M.; Marians, R.C.; Davies, T.F.; Zannini, M.S.; De Felice, M.; et al. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc. Natl. Acad. Sci. USA 2002, 99, 15462–15467. [Google Scholar] [CrossRef]
- Marians, R.C.; Ng, L.; Blair, H.C.; Unger, P.; Graves, P.N.; Davies, T.F. Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc. Natl. Acad. Sci. USA 2002, 99, 15776–15781. [Google Scholar] [CrossRef]
- Persani, L.; Calebiro, D.; Cordella, D.; Weber, G.; Gelmini, G.; Libri, D.; de Filippis, T.; Bonomi, M. Genetics and phenomics of hypothyroidism due to TSH resistance. Mol. Cell. Endocrinol. 2010, 322, 72–82. [Google Scholar] [CrossRef]
- Biebermann, H.; Schöneberg, T.; Krude, H.; Schultz, G.; Gudermann, T.; Grüters, A. Mutations of the human thyrotropin receptor gene causing thyroid hypoplasia and persistent congenital hypothyroidism. J. Clin. Endocrinol. Metab. 1997, 82, 3471–3480. [Google Scholar] [CrossRef] [PubMed]
- Abramowicz, M.J.; Duprez, L.; Parma, J.; Vassart, G.; Heinrichs, C. Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland. J. Clin. Investig. 1997, 99, 3018–3024. [Google Scholar] [CrossRef]
- Da, D.-Z.; Wang, Y.; Wang, M.; Long, Z.; Wang, Q.; Liu, J. Congenital Hypothyroidism Patients with Thyroid Hormone Receptor Variants Are Not Rare: A Systematic Review. Inquiry 2021, 58, 469580211067943. [Google Scholar] [CrossRef] [PubMed]
- Ramos, H.E.; Carré, A.; Chevrier, L.; Szinnai, G.; Tron, E.; Cerqueira, T.L.; Léger, J.; Cabrol, S.; Puel, O.; Queinnec, C.; et al. Extreme phenotypic variability of thyroid dysgenesis in six new cases of congenital hypothyroidism due to PAX8 gene loss-of-function mutations. Eur. J. Endocrinol. 2014, 171, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.G.; Zhang, S.S.; Zhang, L.Q.; Li, W.J.; Zhang, A.Q.; Lu, K.Ν.; Wang, M.J.; Yan, S.L.; Ma, X. Screening of PAX8 mutations in Chinese patients with congenital hypothyroidism. J. Endocrinol. Investig. 2012, 10, 889–892. [Google Scholar] [CrossRef]
- Pasca di Magliano, M.; Di Lauro, R.; Zannini, M. Pax8 has a key role in thyroid cell differentiation. Proc. Natl. Acad. Sci. USA 2000, 97, 13144–13149. [Google Scholar] [CrossRef]
- Mansouri, A.; Chowdhury, K.; Gruss, P. Follicular cells of the thyroid gland require Pax8 gene function. Nat. Genet. 1998, 19, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Macchia, P.E.; Lapi, P.; Krude, H.; Pirro, M.T.; Missero, C.; Chiovato, L.; Souabni, A.; Baserga, M.; Tassi, V.; Pinchera, A.; et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat. Genet. 1998, 19, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Nettore, I.C.; Cacace, V.; De Fusco, C.; Colao, A.; Macchia, P.E. The molecular causes of thyroid dysgenesis: A systematic review. J. Endocrinol. Investig. 2013, 8, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Congdon, T.; Nguyen, L.Q.; Nogueira, C.R.; Habiby, R.L.; Medeiros-Neto, G.; Kopp, P. A novel mutation (Q40P) in PAX8 associated with congenital hypothyroidism and thyroid hypoplasia: Evidence for phenotypic variability in mother and child. J. Clin. Endocrinol. Metab. 2001, 86, 3962–3967. [Google Scholar] [CrossRef]
- Vincenzi, M.; Camilot, M.; Ferrarini, E.; Teofoli, F.; Venturi, G.; Gaudino, R.; Cavarzere, P.; De Marco, G.; Agretti, P.; Dimida, A.; et al. Identification of a novel pax8 gene sequence variant in four members of the same family: From congenital hypothyroidism with thyroid hypoplasia to mild subclinical hypothyroidism. BMC Endocr. Disord. 2014, 14, 69. [Google Scholar] [CrossRef]
- Al Taji, E.; Biebermann, H.; Límanová, Z.; Hníková, O.; Zikmund, J.; Dame, C.; Grüters, A.; Lebl, J.; Krude, H. Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: Identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. Eur. J. Endocrinol. 2007, 156, 521–529. [Google Scholar] [CrossRef]
- Iwahashi-Odano, M.; Nagasaki, K.; Fukami, M.; Nishioka, J.; Yatsuga, S.; Asakura, Y.; Adachi, M.; Muroya, K.; Hasegawa, T.; Narumi, S. Congenital Hypothyroidism Due to Truncating PAX8 Mutations: A Case Series and Molecular Function Studies. J. Clin. Endocrinol. Metab. 2020, 105, dgaa584. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, X.; Zou, H.; Ge, Y.; Wang, F.; Wang, Y.; Yan, S.; Xia, H.; Xing, M. Identification and characterization of novel PAX8 mutations in Congenital Hypothyroidism (CH) in a Chinese population. Oncotarget 2017, 8, 8707–8716. [Google Scholar] [CrossRef]
- Li, M.; Wang, F.; Wang, X.; Zang, Y.; Liu, W.; Wang, F.; Zhang, L.; Tang, Q.; Liu, S.; Zhao, D. Genetic testing of PAX8 mutations associated with thyroid dysgenesis in Chinese congenital hypothyroidism patients. Endokrynol. Pol. 2020, 71, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Li, G.-Y.; Wu, X.-J.; Jia, Q.; Lyu, G.-T.; Wang, M.-L.; Wang, J. Novel non-synonymous mutations of PAX8 in a cohort of Chinese with congenital hypothyroidism. Chin. Med. J. 2019, 132, 1322–1327. [Google Scholar] [CrossRef]
- Tanase-Nakao, K.; Muroya, K.; Adachi, M.; Abe, K.; Hasegawa, T.; Narumi, S. A patient with congenital hypothyroidism due to a PAX8 frameshift variant accompanying a urogenital malformation. Clin. Pediatr. Endocrinol. 2022, 31, 250–255. [Google Scholar] [CrossRef]
- Meeus, L.; Gilbert, B.; Rydlewski, C.; Parma, J.; Roussie, A.L.; Abramowicz, M.; Vilain, C.; Christophe, D.; Costagliola, S.; Vassart, G. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J. Clin. Endocrinol. Metab. 2004, 89, 4285–4291. [Google Scholar] [CrossRef]
- Smol, T.; Ribero-Karrouz, W.; Edery, P.; Gorduza, D.B.; Catteau-Jonard, S.; Manouvrier-Hanu, S.; Ghoumid, J. Mayer-Rokitansky-Künster-Hauser syndrome due to 2q12.1q14.1 deletion: PAX8 the causing gene? Eur. J. Med. Genet. 2020, 63, 103812. [Google Scholar] [CrossRef]
- Iwahashi-Odano, M.; Kitamura, M.; Narumi, S. A case of syndromic congenital hypothyroidism with a 15.2 Mb interstitial deletion on 2q12.3q14.2 involving PAX8. Clin. Pediatr. Endocrinol. 2023, 32, 65–71. [Google Scholar] [CrossRef]
- Clifton-Bligh, R.J.; Wentworth, J.M.; Heinz, P.; Crisp, M.S.; John, R.; Lazarus, J.H.; Ludgate, M.; Chatterjee, V.K. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat. Genet. 1998, 19, 399–401. [Google Scholar] [CrossRef] [PubMed]
- Trueba, S.S.; Augé, J.; Mattei, G.; Etchevers, H.; Martinovic, J.; Czernichow, P.; Vekemans, M.; Polak, M.; Attié-Bitach, T. PAX8, TITF1, and FOXE1 Gene Expression Patterns during Human Development: New Insights into Human Thyroid Development and Thyroid Dysgenesis-Associated Malformations. J. Clin. Endocrinol. Metab. 2005, 90, 455–462. [Google Scholar] [CrossRef] [PubMed]
- De Felice, M.; Ovitt, C.; Biffali, E.; Rodriguez-Mallon, A.; Arra, C.; Anastassiadis, K.; Macchia, P.E.; Mattei, M.-G.; Mariano, A.; Schöler, H.; et al. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat. Genet. 1998, 19, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Sarma, A.S.; Banda, L.; Vupputuri, M.; Desai, A.; Dalal, A. A new FOXE1 homozygous frameshift variant expands the genotypic and phenotypic spectrum of Bamforth–Lazarus syndrome. Eur. J. Med. Genet. 2022, 65, 104591. [Google Scholar] [CrossRef]
- Guazzi, S.; Price, M.; De Felice, M.; Damante, G.; Mattei, M.G.; Di Lauro, R. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 1990, 9, 3631–3639. [Google Scholar] [CrossRef]
- Lazzaro, D.; Price, M.; de Felice, M.; Di Lauro, R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 1991, 113, 1093–1104. [Google Scholar] [CrossRef]
- Kimura, S.; Hara, Y.; Pineau, T.; Fernandez-Salguero, P.; Fox, C.H.; Ward, J.M.; Gonzalez, F.J. The T/ebp null mouse: Thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996, 10, 60–69. [Google Scholar] [CrossRef]
- Bruno, M.D.; Bohinski, R.J.; Huelsman, K.M.; Whitsett, J.A.; Korfhagen, T.R. Lung cell-specific expression of the murine surfactant protein A (SP-A) gene is mediated by interactions between the SP-A promoter and thyroid transcription factor-1. J. Biol. Chem. 1995, 270, 6531–6536. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.E.; Bachurski, C.J.; Burhans, M.S.; Glasser, S.W. Transcription of the lung-specific surfactant protein C gene is mediated by thyroid transcription factor 1. J. Biol. Chem. 1996, 271, 6881–6888. [Google Scholar] [CrossRef]
- Willemsen, M.A.; Breedveld, G.J.; Wouda, S.; Otten, B.J.; Yntema, J.L.; Lammens, M.; de Vries, B.B.A. Brain-Thyroid-Lung syndrome: A patient with a severe multi-system disorder due to a de novo mutation in the thyroid transcription factor 1 gene. Eur. J. Pediatr. 2005, 164, 28–30. [Google Scholar] [CrossRef] [PubMed]
- de Filippis, T.; Marelli, F.; Vigone, M.C.; Di Frenna, M.; Weber, G.; Persani, L. Novel NKX2-1 Frameshift Mutations in Patients with Atypical Phenotypes of the Brain-Lung-Thyroid Syndrome. Eur. Thyroid. J. 2014, 3, 227–233. [Google Scholar] [CrossRef]
- Carré, A.; Szinnai, G.; Castanet, M.; Sura-Trueba, S.; Tron, E.; Broutin-L’Hermite, I.; Barat, P.; Goizet, C.; Lacombe, D.; Moutard, M.-L.; et al. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: Rescue by PAX8 synergism in one case. Hum. Mol. Genet. 2009, 18, 2266–2276. [Google Scholar] [CrossRef] [PubMed]
- Thorwarth, A.; Schnittert-Hübener, S.; Schrumpf, P.; Müller, I.; Jyrch, S.; Dame, C.; Biebermann, H.; Kleinau, G.; Katchanov, J.; Schuelke, M.; et al. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J. Med. Genet. 2014, 51, 375–387. [Google Scholar] [CrossRef]
- Carmona-Hidalgo, B.; Martín-Gómez, C.; Herrera-Ramos, E.; Rodríguez-López, R.; Fontanet, L.-N.; Moreno, J.C.; Blasco-Amaro, J.A.; Léger, J.; Dario-Ortigoza-Escobar, J. NKX2-1-Related Disorders Guideline Working Group Systematic review of thyroid function in NKX2-1-related disorders: Screening and diagnosis. PLoS ONE 2024, 19, e0303880. [Google Scholar] [CrossRef]
- Turbay, D.; Wechsler, S.B.; Blanchard, K.M.; Izumo, S. Molecular cloning, chromosomal mapping, and characterization of the human cardiac-specific homeobox gene hCsx. Mol. Med. 1996, 2, 86–96. [Google Scholar] [CrossRef]
- Persani, L.; Rurale, G.; de Filippis, T.; Galazzi, E.; Muzza, M.; Fugazzola, L. Genetics and management of congenital hypothyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 387–396. [Google Scholar] [CrossRef]
- Schott, J.-J.; Benson, D.W.; Basson, C.T.; Pease, W.; Silberbach, G.M.; Moak, J.P.; Maron, B.J.; Seidman, C.E.; Seidman, J.G. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998, 281, 108–111. [Google Scholar] [CrossRef]
- Reamon-Buettner, S.M.; Borlak, J. NKX2-5: An update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum. Mutat. 2010, 31, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Dentice, M.; Cordeddu, V.; Rosica, A.; Ferrara, A.M.; Santarpia, L.; Salvatore, D.; Chiovato, L.; Perri, A.; Moschini, L.; Fazzini, C.; et al. Missense mutation in the transcription factor NKX2-5: A novel molecular event in the pathogenesis of thyroid dysgenesis. J. Clin. Endocrinol. Metab. 2006, 91, 1428–1433. [Google Scholar] [CrossRef]
- Szczepanek-Parulska, E.; Zybek-Kocik, A.; Wartofsky, L.; Ruchala, M. Thyroid Hemiagenesis: Incidence, Clinical Significance, and Genetic Background. J. Clin. Endocrinol. Metab. 2017, 102, 3124–3137. [Google Scholar] [CrossRef]
- Cerqueira, T.L.; Ramos, Y.; Strappa, G.; Martin, D.S.; Jesus, M.; Gonzaga, J.; Ferreira, P.; Costa, A.; Fernandes, V.; Amorim, T.; et al. The c.63A>G polymorphism in the NKX2.5 gene is associated with thyroid hypoplasia in children with thyroid dysgenesis. Arch. Endocrinol. Metab. 2015, 59, 562–567. [Google Scholar] [CrossRef]
- Long, W.; Lu, G.; Zhou, W.; Yang, Y.; Zhang, B.; Zhou, H.; Jiang, L.; Yu, B. Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism. Endocr. J. 2018, 65, 1019–1028. [Google Scholar] [CrossRef]
- Szczepanek-Parulska, E.; Budny, B.; Borowczyk, M.; Zhukov, I.; Szutkowski, K.; Zawadzka, K.; Tahir, R.; Minczykowski, A.; Niedziela, M.; Ruchała, M. NKX2-5 Variant in Two Siblings with Thyroid Hemiagenesis. Int. J. Mol. Sci. 2022, 23, 3414. [Google Scholar] [CrossRef]
- Peters, C.; van Trotsenburg, A.S.P.; Schoenmakers, N. DIAGNOSIS OF ENDOCRINE DISEASE: Congenital hypothyroidism: Update and perspectives. Eur. J. Endocrinol. 2018, 179, R297–R317. [Google Scholar] [CrossRef]
- Cerqueira, T.L.d.O.; Ramos, Y.R.; Strappa, G.B.; de Jesus, M.S.; Santos, J.G.; Sousa, C.; Carvalho, G.; Fernandes, V.; Boa-Sorte, N.; Amorim, T.; et al. Mutation screening in the genes PAX-8, NKX2-5, TSH-R, HES-1 in cohort of 63 Brazilian children with thyroid dysgenesis. Arch. Endocrinol. Metab. 2018, 62, 466–471. [Google Scholar] [CrossRef]
- Brust, E.S.; Beltrao, C.B.; Chammas, M.C.; Watanabe, T.; Sapienza, M.T.; Marui, S. Absence of mutations in PAX8, NKX2.5, and TSH receptor genes in patients with thyroid dysgenesis. Arq. Bras. Endocrinol. Metabol. 2012, 56, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Khatami, M.; Heidari, M.M.; Tabesh, F.; Ordooei, M.; Salehifar, Z. Mutation analysis of the NKX2.5 gene in Iranian pediatric patients with congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 2017, 30, 857–862. [Google Scholar] [CrossRef] [PubMed]
- van Engelen, K.; Mommersteeg, M.T.; Baars, M.J.; Lam, J.; Ilgun, A.; van Trotsenburg, A.S.; Smets, A.M.; Christoffels, V.M.; Mulder, B.J.; Postma, A.V. The ambiguous role of NKX2-5 mutations in thyroid dysgenesis. PLoS ONE 2012, 7, e52685. [Google Scholar] [CrossRef]
- Dimitri, P. The role of GLIS3 in thyroid disease as part of a multisystem disorder. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 175–182. [Google Scholar] [CrossRef]
- Umair, M.; Wasif, N.; Albalawi, A.M.; Ramzan, K.; Alfadhel, M.; Ahmad, W.; Basit, S. Exome sequencing revealed a novel loss-of-function variant in the GLI3 transcriptional activator 2 domain underlies nonsyndromic postaxial polydactyly. Mol. Genet. Genom. Med. 2019, 7, e00627. [Google Scholar] [CrossRef] [PubMed]
- Senée, V.; Chelala, C.; Duchatelet, S.; Feng, D.; Blanc, H.; Cossec, J.-C.; Charon, C.; Nicolino, M.; Boileau, P.; Cavener, D.R.; et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat. Genet. 2006, 38, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, P.; Warner, J.T.; Minton, J.A.L.; Patch, A.M.; Ellard, S.; Hattersley, A.T.; Barr, S.; Hawkes, D.; Wales, J.K.; Gregory, J.W. Novel GLIS3 mutations demonstrate an extended multisystem phenotype. Eur. J. Endocrinol. 2011, 164, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Sarıkaya, E.; Kendirci, M.; Demir, M.; Dündar, M. Neonatal Diabetes, Congenital Hypothyroidism, and Congenital Glaucoma Coexistence: A Case of GLIS3 Mutation. J. Clin. Res. Pediatr. Endocrinol. 2023, 15, 426–430. [Google Scholar] [CrossRef]
- Kang, H.S.; Grimm, S.A.; Jothi, R.; Santisteban, P.; Jetten, A.M. GLIS3 regulates transcription of thyroid hormone biosynthetic genes in coordination with other thyroid transcription factors. Cell Biosci. 2023, 13, 32. [Google Scholar] [CrossRef]
- Kang, H.S.; Grimm, S.A.; Liao, X.-H.; Jetten, A.M. GLIS3 expression in the thyroid gland in relation to TSH signaling and regulation of gene expression. Cell. Mol. Life Sci. 2024, 81, 65. [Google Scholar] [CrossRef] [PubMed]
- Szczepanek-Parulska, E.; Budny, B.; Borowczyk, M.; Zawadzka, K.; Sztromwasser, P.; Ruchała, M. Compound heterozygous GLI3 variants in siblings with thyroid hemiagenesis. Endocrine 2020, 71, 514–519. [Google Scholar] [CrossRef]
- Dimitri, P.; Habeb, A.M.; Garbuz, F.; Millward, A.; Wallis, S.; Moussa, K.; Akcay, T.; Taha, D.; Hogue, J.; Slavotinek, A.; et al. Expanding the Clinical Spectrum Associated with GLIS3 Mutations. J. Clin. Endocrinol. Metab. 2015, 100, E1362–E1369, Erratum in J. Clin. Endocrinol. Metab. 2015, 100, 4685. https://doi.org/10.1210/jc.2015-3829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.; Wang, X.; Wang, F.; Wang, F.; Zhao, D.; Liu, S. JAG1 Variants Confer Genetic Susceptibility to Thyroid Dysgenesis and Thyroid Dyshormonogenesis in 813 Congenital Hypothyroidism in China. Int. J. Gen. Med. 2024, 17, 885–894. [Google Scholar] [CrossRef]
- Kopan, R. Notch Signaling. Cold Spring Harb. Perspect. Biol. 2012, 4, a011213. [Google Scholar] [CrossRef]
- Marelli, F.; Persani, L. Role of Jagged1-Notch pathway in thyroid development. J. Endocrinol. Investig. 2017, 41, 75–81. [Google Scholar] [CrossRef]
- Porazzi, P.; Marelli, F.; Benato, F.; de Filippis, T.; Calebiro, D.; Argenton, F.; Tiso, N.; Persani, L. Disruptions of global and JAGGED1-mediated notch signaling affect thyroid morphogenesis in the zebrafish. Endocrinology 2012, 153, 5645–5658. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Krantz, I.D.; Deng, Y.; Genin, A.; Banta, A.B.; Collins, C.C.; Qi, M.; Trask, B.J.; Kuo, W.L.; Cochran, J.; et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 1997, 16, 243–251. [Google Scholar] [CrossRef] [PubMed]
- de Filippis, T.; Marelli, F.; Nebbia, G.; Porazzi, P.; Corbetta, S.; Fugazzola, L.; Gastaldi, R.; Vigone, M.C.; Biffanti, R.; Frizziero, D.; et al. JAG1 Loss-Of-Function Variations as a Novel Predisposing Event in the Pathogenesis of Congenital Thyroid Defects. J. Clin. Endocrinol. Metab. 2016, 101, 861–870. [Google Scholar] [CrossRef]
- Méneret, A.; Franz, E.A.; Trouillard, O.; Oliver, T.C.; Zagar, Y.; Robertson, S.P.; Welniarz, Q.; Gardner, R.M.; Gallea, C.; Srour, M.; et al. Mutations in the netrin-1 gene cause congenital mirror movements. J. Clin. Investig. 2017, 127, 3923–3936. [Google Scholar] [CrossRef]
- Opitz, R.; Hitz, M.-P.; Vandernoot, I.; Trubiroha, A.; Abu-Khudir, R.; Samuels, M.; Désilets, V.; Costagliola, S.; Andelfinger, G.; Deladoëy, J. Functional zebrafish studies based on human genotyping point to netrin-1 as a link between aberrant cardiovascular development and thyroid dysgenesis. Endocrinology 2015, 156, 377–388. [Google Scholar] [CrossRef]
- Gassmann, R.; Carvalho, A.; Henzing, A.J.; Ruchaud, S.; Hudson, D.F.; Honda, R.; Nigg, E.A.; Gerloff, D.L.; Earnshaw, W.C. Borealin: A novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 2004, 166, 179–191. [Google Scholar] [CrossRef]
- Carré, A.; Stoupa, A.; Kariyawasam, D.; Gueriouz, M.; Ramond, C.; Monus, T.; Léger, J.; Gaujoux, S.; Sebag, F.; Glaser, N.; et al. Mutations in BOREALIN cause thyroid dysgenesis. Hum. Mol. Genet. 2017, 26, 599–610. [Google Scholar] [CrossRef]
- Didier-Mathon, H.; Stoupa, A.; Kariyawasam, D.; Yde, S.; Cochant-Priollet, B.; Groussin, L.; Sébag, F.; Cagnard, N.; Nitschke, P.; Luton, D.; et al. Borealin/CDCA8 deficiency alters thyroid development and results in papillary tumor-like structures. Front. Endocrinol. 2023, 14, 1286747. [Google Scholar] [CrossRef]
- Zou, M.; Alzahrani, A.S.; Al-Odaib, A.; Alqahtani, M.A.; Babiker, O.; Al-Rijjal, R.A.; BinEssa, H.A.; Kattan, W.E.; Al-Enezi, A.F.; Al Qarni, A.; et al. Molecular Analysis of Congenital Hypothyroidism in Saudi Arabia: SLC26A7 Mutation Is a Novel Defect in Thyroid Dyshormonogenesis. J. Clin. Endocrinol. Metab. 2018, 103, 1889–1898. [Google Scholar] [CrossRef]
- Downing, K.H. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu. Rev. Cell Dev. Biol. 2000, 16, 89–111. [Google Scholar] [CrossRef]
- Stoupa, A.; Adam, F.; Kariyawasam, D.; Strassel, C.; Gawade, S.; Szinnai, G.; Kauskot, A.; Lasne, D.; Janke, C.; Natarajan, K.; et al. TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol. Med. 2018, 10, e9569. [Google Scholar] [CrossRef]
- Wang, F.; Sun, C.; Wang, Y.; Wang, F.; Liu, S.; Li, M. Genetic and functional analysis of TUBB1 variants in congenital hypothyroidism. Endokrynol. Pol. 2025, 76, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Gagné, N.; Parma, J.; Deal, C.; Vassart, G.; Van Vliet, G. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: Are athyreosis and ectopic thyroid distinct entities? J. Clin. Endocrinol. Metab. 1998, 83, 1771–1775. [Google Scholar] [CrossRef]
- Choukair, D.; Eberle, B.; Vick, P.; Hermanns, P.; Weiss, B.; Paramasivam, N.; Schlesner, M.; Lornsen, K.; Roeth, R.; Klutmann, C.; et al. Identification of Transient Receptor Potential Channel 4-Associated Protein as a Novel Candidate Gene Causing Congenital Primary Hypothyroidism. Horm. Res. Paediatr. 2020, 93, 16–29. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, R.-J.; Fang, Y.; Yan, C.-Y.; Zhang, C.-R.; Wu, F.-Y.; Yang, R.-M.; Han, B.; Song, H.-D.; Zhao, S.-X. Identification of Eukaryotic Translation Initiation Factor 4B as a Novel Candidate Gene for Congenital Hypothyroidism. J. Clin. Endocrinol. Metab. 2024, 109, 3282–3292. [Google Scholar] [CrossRef] [PubMed]
- Vick, P.; Eberle, B.; Choukair, D.; Weiss, B.; Roeth, R.; Schneider, I.; Paramasivam, N.; Bettendorf, M.; Rappold, G.A. Identification of ZBTB26 as a Novel Risk Factor for Congenital Hypothyroidism. Genes 2021, 12, 1862. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.M.; Zhan, M.; Zhou, Q.Y.; Ye, X.P.; Wu, F.Y.; Dong, M.; Sun, F.; Fang, Y.; Zhang, R.J.; Zhang, C.R.; et al. Upregulation of GBP1 in thyroid primordium is required for developmental thyroid morphogenesis. Genet Med. 2021, 23, 1944–1951. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stoupa, A.; Chaabane, R.; Guériouz, M.; Raynaud-Ravni, C.; Nitschke, P.; Bole-Feysot, C.; Mnif, M.; Ammar Keskes, L.; Hachicha, M.; Belguith, N.; et al. Thyroid Hypoplasia in Congenital Hypothyroidism Associated with Thyroid Peroxidase Mutations. Thyroid 2018, 28, 941–944. [Google Scholar] [CrossRef]
- Kizys, M.M.L.; A Louzada, R.; Mitne-Neto, M.; Jara, J.R.; Furuzawa, G.K.; de Carvalho, D.P.; Dias-Da-Silva, M.R.; Nesi-França, S.; Dupuy, C.; Maciel, R.M.B. DUOX2 Mutations Are Associated with Congenital Hypothyroidism with Ectopic Thyroid Gland. J. Clin. Endocrinol. Metab. 2017, 102, 4060–4071. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.A.; Rajagopal, G.; Harinarayan, C.V.; Vanaja, V.; Rajasekhar, D.; Suresh, V.; Sachan, A. High prevalence of associated birth defects in congenital hypothyroidism. Int. J. Pediatr. Endocrinol. 2010, 2010, 940980. [Google Scholar] [CrossRef]
- Danner, E.; Jääskeläinen, J.; Niuro, L.; Huopio, H.; Niinikoski, H.; Viikari, L.; Kero, J.; Sund, R. Comorbidity in Congenital Hypothyroidism—A Nationwide, Population-based Cohort Study. J. Clin. Endocrinol. Metab. 2023, 108, e1695–e1701. [Google Scholar] [CrossRef]
- Monroy-Santoyo, S.; Ibarra-González, I.; Fernández-Lainez, C.; Greenawalt-Rodríguez, S.; Chacón-Rey, J.; Calzada-León, R.; Vela-Amieva, M. Higher incidence of thyroid agenesis in Mexican newborns with congenital hypothyroidism associated with birth defects. Early Hum. Dev. 2012, 88, 61–64. [Google Scholar] [CrossRef]
- Gu, Y.-H.; Harada, S.; Kato, T.; Inomata, H.; Aoki, K.; Hirahara, F. Increased Incidence of Extrathyroidal Congenital Malformations in Japanese Patients with Congenital Hypothyroidism and Their Relationship with Down Syndrome and Other Factors. Thyroid 2009, 19, 869–879. [Google Scholar] [CrossRef]
- Razavi, Z.; Yavarikia, A.; Torabian, S. Congenital Anomalies in Infant with Congenital Hypothyroidism. Oman Med. J. 2012, 27, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Mazahir, F.A.; Khadora, M.M. A retrospective analysis of congenital anomalies in congenital hypothyroidism. J. Pediatr. Endocrinol. Metab. 2020, 33, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Wędrychowicz, A.; Furtak, A.; Prośniak, A.; Żuberek, M.; Szczerkowska, M.; Pacut, P.; Lemańska, D.; Słuszniak, A.; Starzyk, J. Extrathyroidal congenital defects in children with congenital hypothyroidism—observations from a single paediatric centre in Central Europe with a review of literature. Pediatr. Endocrinol. Diabetes Metab. 2019, 25, 114–121. [Google Scholar] [CrossRef]
- Devos, H.; Rodd, C.; Gagné, N.; Laframboise, R.; Van Vliet, G. A search for the possible molecular mechanisms of thyroid dysgenesis: Sex ratios and associated malformations. J. Clin. Endocrinol. Metab. 1999, 84, 2502–2506. [Google Scholar] [CrossRef]
- Fagman, H.; Nilsson, M. Morphogenesis of the thyroid gland. Mol. Cell. Endocrinol. 2010, 323, 35–54. [Google Scholar] [CrossRef]
- Tuli, G.; Munarin, J.; Tessaris, D.; Matarazzo, P.; Einaudi, S.; de Sanctis, L. Incidence of primary congenital hypothyroidism and relationship between diagnostic categories and associated malformations. Endocrine 2021, 71, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Purow, J.; Waidner, L.; Ale, H. Review of the Pathophysiology and Clinical Manifestations of 22q11.2 Deletion and Duplication Syndromes. Clin. Rev. Allergy Immunol. 2025, 68, 23. [Google Scholar] [CrossRef] [PubMed]
- Fagman, H.; Liao, J.; Westerlund, J.; Andersson, L.; Morrow, B.; Nilsson, M. The 22q11 deletion syndrome candidate gene Tbx1 determines thyroid size and positioning. Hum. Mol. Genet. 2007, 16, 276–285. [Google Scholar] [CrossRef]
- Ghoumid, J.; Stichelbout, M.; Jourdain, A.-S.; Frenois, F.; Lejeune-Dumoulin, S.; Alex-Cordier, M.-P.; Lebrun, M.; Guerreschi, P.; Duquennoy-Martinot, V.; Vinchon, M.; et al. Blepharocheilodontic syndrome is a CDH1 pathway–related disorder due to mutations in CDH1 and CTNND1. Genet Med. 2017, 19, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.E.; Moore, C.A.; Fernhoff, P.M.; Brown, A.L.; Khoury, M.J. Population study of congenital hypothyroidism and associated birth defects, Atlanta, 1979-1992. Am. J. Med. Genet. 1997, 71, 29–32. [Google Scholar] [CrossRef]
- Kariyawasam, D.; Rachdi, L.; Carré, A.; Martin, M.; Houlier, M.; Janel, N.; Delabar, J.-M.; Scharfmann, R.; Polak, M. DYRK1A BAC transgenic mouse: A new model of thyroid dysgenesis in Down syndrome. Endocrinology 2015, 156, 1171–1180. [Google Scholar] [CrossRef]
- Gorini, F.; Coi, A.; Pierini, A.; Assanta, N.; Bottoni, A.; Santoro, M. Hypothyroidism in Patients with Down Syndrome: Prevalence and Association with Congenital Heart Defects. Children 2024, 11, 513. [Google Scholar] [CrossRef]
- Olivieri, A.; Stazi, M.A.; Mastroiacovo, P.; Fazzini, C.; Medda, E.; Spagnolo, A.; De Angelis, S.; Grandolfo, M.E.; Taruscio, D.; Cordeddu, V.; et al. A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: Data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J. Clin. Endocrinol. Metab. 2002, 87, 557–562. [Google Scholar] [CrossRef]
- Kreisner, E.; Neto, E.; Gross, J. High prevalence of extrathyroid malformations in a cohort of Brazilian patients with permanent primary congenital hypothyroidism. Thyroid 2005, 15, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Gordillo, R.; Kaskel, F.J.; Druschel, C.M.; Woroniecki, R.P. Increased prevalence of renal and urinary tract anomalies in children with congenital hypothyroidism. J. Pediatr. 2009, 154, 263–266. [Google Scholar] [CrossRef]
- Larrivée-Vanier, S.; Jean-Louis, M.; Magne, F.; Bui, H.; Rouleau, G.A.; Spiegelman, D.; Samuels, M.E.; Kibar, Z.; Van Vliet, G.; Deladoëy, J. Whole-Exome Sequencing in Congenital Hypothyroidism Due to Thyroid Dysgenesis. Thyroid 2022, 32, 486–495. [Google Scholar] [CrossRef]
- Perry, R.; Heinrichs, C.; Bourdoux, P.; Khoury, K.; Szöts, F.; Dussault, J.H.; Vassart, G.; Van Vliet, G. Discordance of monozygotic twins for thyroid dysgenesis: Implications for screening and for molecular pathophysiology. J. Clin. Endocrinol. Metab. 2002, 87, 4072–4077. [Google Scholar] [CrossRef]
- Léger, J.; Marinovic, D.; Garel, C.; Bonaïti-Pellié, C.; Polak, M.; Czernichow, P. Thyroid developmental anomalies in first degree relatives of children with congenital hypothyroidism. J. Clin. Endocrinol. Metab. 2002, 87, 575–580. [Google Scholar] [CrossRef]
- Stoppa-Vaucher, S.; Van Vliet, G.; Deladoëy, J. Variation by Ethnicity in the Prevalence of Congenital Hypothyroidism Due to Thyroid Dysgenesis. Thyroid 2011, 21, 13–18. [Google Scholar] [CrossRef]
- Amendola, E.; De Luca, P.; Macchia, P.E.; Terracciano, D.; Rosica, A.; Chiappetta, G.; Kimura, S.; Mansouri, A.; Affuso, A.; Arra, C.; et al. A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 2005, 146, 5038–5047. [Google Scholar] [CrossRef]
- Stoupa, A.; Kariyawasam, D.; Muzza, M.; de Filippis, T.; Fugazzola, L.; Polak, M.; Persani, L.; Carré, A. New genetics in congenital hypothyroidism. Endocrine 2021, 71, 696–705. [Google Scholar] [CrossRef] [PubMed]
- de Filippis, T.; Gelmini, G.; Paraboschi, E.; Vigone, M.C.; Di Frenna, M.; Marelli, F.; Bonomi, M.; Cassio, A.; Larizza, D.; Moro, M.; et al. A frequent oligogenic involvement in congenital hypothyroidism. Hum. Mol. Genet. 2017, 26, 2507–2514. [Google Scholar] [CrossRef] [PubMed]
- Carré, A.; Castanet, M.; Sura-Trueba, S.; Szinnai, G.; Van Vliet, G.; Trochet, D.; Amiel, J.; Léger, J.; Czernichow, P.; Scotet, V.; et al. Polymorphic length of FOXE1 alanine stretch: Evidence for genetic susceptibility to thyroid dysgenesis. Hum. Genet. 2007, 122, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Deladoëy, J.; Vassart, G.; Van Vliet, G. Possible non-Mendelian mechanisms of thyroid dysgenesis. Endocr. Dev. 2007, 10, 29–42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dermitzaki, N.; Serbis, A.; Baltogianni, M.; Gialamprinou, D.; Giaprou, L.E.; Kosmeri, C.; Giapros, V. Molecular Genetics of Primary Congenital Hypothyroidism: Established and Emerging Contributors to Thyroid Dysgenesis. Int. J. Mol. Sci. 2025, 26, 10849. https://doi.org/10.3390/ijms262210849
Dermitzaki N, Serbis A, Baltogianni M, Gialamprinou D, Giaprou LE, Kosmeri C, Giapros V. Molecular Genetics of Primary Congenital Hypothyroidism: Established and Emerging Contributors to Thyroid Dysgenesis. International Journal of Molecular Sciences. 2025; 26(22):10849. https://doi.org/10.3390/ijms262210849
Chicago/Turabian StyleDermitzaki, Niki, Anastasios Serbis, Maria Baltogianni, Dimitra Gialamprinou, Lida Eleni Giaprou, Chrysoula Kosmeri, and Vasileios Giapros. 2025. "Molecular Genetics of Primary Congenital Hypothyroidism: Established and Emerging Contributors to Thyroid Dysgenesis" International Journal of Molecular Sciences 26, no. 22: 10849. https://doi.org/10.3390/ijms262210849
APA StyleDermitzaki, N., Serbis, A., Baltogianni, M., Gialamprinou, D., Giaprou, L. E., Kosmeri, C., & Giapros, V. (2025). Molecular Genetics of Primary Congenital Hypothyroidism: Established and Emerging Contributors to Thyroid Dysgenesis. International Journal of Molecular Sciences, 26(22), 10849. https://doi.org/10.3390/ijms262210849

