Charting the Future: Advanced Technologies for Sustainable Parasite Control in Aquaculture
Abstract
1. Introduction
2. Natural-Based Approaches
2.1. Plant-Based Treatments
| Parasites | Fish Species | Drugs | Usage | Effect | References |
|---|---|---|---|---|---|
| Euclinostomum heterostomum | Tilapia zillii | Verbesina alternifolia EOs | 24 h/600 mg/L | 100% anthelmintic | [63] |
| Mentha piperita EOs | 24 h/1000 mg/L | 50% anthelmintic | |||
| Dactylogyrus spp. | Poecilia reticulata Oreochromis niloticus | Lippia origanoides EOs | 5 min/100 mg/L | 100% anthelmintic | [63] |
| Lippia sidoides EOs | 5 min/100 mg/L | 100% anthelmintic | |||
| Gyrodactylus spp. | Poecilia reticulata Oreochromis niloticus | Methanol extract of Dioscorea collettii var. hypoglauca | 10 mg/L | 100% anthelmintic | [58] |
| Dioscin isolated from D. collettii var. hypoglauca | 2 h/0.6 mg/L | 100% anthelmintic (in vivo) | |||
| Neoechinorhynchus buttnerae | Tambaqui Colossoma macropomum | Oleoresins from Copaifera duckei | 24 h/0.1868 mg/mL | 100% anthelmintic | [62] |
| Oleoresins from Copaifera pubiflora | 24 h/0.1868 mg/mL | 100% anthelmintic | |||
| Oleoresins from Copaifera reticulata | 24 h/0.1868 mg/mL | 100% anthelmintic | |||
| Neobenedenia girellae | marine fishes (in vitro assay) | Pomegranate extract | 8 h/62.5 mg/L | 100% anthelmintic | [64] |
| Trichodina sp. | Oreochromis niloticus | Allium sativum | 2 d/800 ppm | 100% anthelmintic | [59] |
| Terminalia catappa | 2 d/800 ppm | 100% anthelmintic | |||
| Gyrodactylus | Oreochromis niloticus | crushed garlic cloves (Allium sativum) | 300 mg/L | 68% elimination of disease | [65] |
| garlic oil (Allium sativum) | 4 h/2, 2.5 and 3 ppt | 100% anthelmintic | |||
| Gyrodactyluskobayashii | Carassius auratus (model fish) | plant-derived plumbagin | 30–60 min/0.4–0.7 mg/L | 100% anthelmintic | [60] |
2.2. Microbial-Based Approaches
Probiotics
| Parasites | Fish Species | Probiotic | Probiotic Administration Route | References |
|---|---|---|---|---|
| Saprolegnia parasitica A3 | Pangasius hypophthalamus Sauvage | Lactobacillus plantarum FNCC 226 | Immersion | [88] |
| Clonorchis sinensis | Ctenopharyngodon idella | Bacillus subtilis | Diet | [85] |
| Ichthyophthirius multifiliis | Oncorhynchus mykiss | Aeromonas sobria GC2 | Diet | [94] |
| Trichodina | Oreochromis niloticus | Effective Microorganisms (EMs) | Diet | [95] |
| Myxobolus sp. | Cyprinus carpio | Bacillus spp., Lactobacillus sp. and Nitrosomonas sp. | Immersion | [96] |
3. Genetic and Molecular Therapeutic Approaches
3.1. RNA Interference (RNAi)
3.2. CRISPR/Cas9
4. Immune-Based Approaches
4.1. Vaccine
4.2. Immunostimulant
5. Environmental Control Strategies
5.1. Water Source Management
5.2. Pond Cleaning and Environmental Safety
5.3. Density and Feeding Management
5.4. Water Quality Maintenance
5.5. Tool Management and Wastewater Treatment
6. Application of Modern Auxiliary Technologies
6.1. Nanoparticles
| Type of Nanoparticles (NPs) | Application | Key Findings | References |
|---|---|---|---|
| Poly (lactic-co-glycolic acid) (PLGA) | Encapsulation of rifampicin to treat Mycobacterium marinum infections in zebrafish embryos (Danio rerio) | More effective than rifampicin alone; significantly improves embryo survival rates | [203] |
| Chitosan nanoparticles (CNPs) | Delivery of dsRNA to control Yellow Head Virus (YHV) and White Spot Syndrome Virus (WSSV) | Precisely targets pathogen genes; significantly improves shrimp survival rates | [186] |
| Lipid nanoparticles (LNPs) | Delivery of VP28 vaccine to combat White Spot Disease (WSD) in shrimp | Superior immune protection compared to non-encapsulated vaccine | [188] |
| Chitosan, silver, selenium NPs | Anthelmintic effects on Clinostomum spp. and Prohemistomum vivax in Nile tilapia (Oreochromis niloticus) | All three showed insecticidal effects, with CNPs exhibiting the best performance | [194] |
| Ag, ZnO, Au NPs | Treatment of Ichthyophthirius multifiliis (theronts and tomonts) in rainbow trout (Oncorhynchus mykiss) | AgNPs (10 ng mL−1) caused 100% theront mortality within 2 h and inhibited tomont reproduction; reduced infectivity in vivo | [204] |
| Silver NPs | Treatment of Argulus siamensis (adult and copepodid stages) in freshwater fish (Labeo rohita) | 100% mortality at 25–50 ppm in vitro; strong antiparasitic efficacy | [205] |
| Iron oxide NPs | Control of Argulus siamensis infestation in Labeo rohita | In vivo bath (2.25 mg mL−1, 4 days) removed 100% parasites with moderate fish safety | [206] |
| Chitosan–silver nanocomposites | Treatment of Lernaea cyprinacea infection in goldfish (Carassius auratus) | 5.5 ppm for 24 h dislodged all parasites and promoted wound healing | [207] |
| Silver NPs | Anthelmintic treatment of Cichlidogyrus spp. (Monogenea; adults and eggs) in freshwater fish | 36 µg L−1 for 1 h achieved 100% mortality: tegumental disruption under SEM | [208] |
6.2. Biosensors
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
| FAO | Food and Agriculture Organization |
| EOs | Essential oils |
| RNAi | RNA interference |
| dsRNA | Double-stranded RNA |
| Hsp70C | Heat shock protein 70C |
| iAg | Immobilized antigen |
| RPS | Relative protection |
| SOD | Superoxide dismutase |
| UV | Ultraviolet |
| NPs | Nanoparticles |
| MNPs | Metal Nanoparticles |
| CBNs | Carbon-Based Nanoparticles |
| LNPs | Lipid Nanoparticles |
| PNPs | Polymeric Nanoparticles |
| CNPs | Chitosan nanoparticles |
| PLGA | Poly (lactic-co-glycolic acid) |
| FDA | Food and Drug Administration |
| YHV | Yellow Head Virus |
| WSSV | White Spot Syndrome Virus |
| WSD | White Spot Disease |
| AuNPs | Gold nanoparticles |
| SPR | Surface Plasmon Resonance |
| OFIs | Optical Fiber Immunosensors |
| LAMP | In loop-mediated isothermal amplification |
| PCR | Polymerase Chain Reaction |
| IMS | Immunomagnetic Separation |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| Cyspep | Cysteine Protease B C-terminal peptide |
| SERS | Surface-Enhanced Raman Scattering |
References
- FAO. The State of World Fisheries and Aquaculture 2024–Blue Transformation in Action; FAO: Rome, Italy, 2024; p. 264. [Google Scholar]
- Kline, S.J.; Archdeacon, T.P.; Bonar, S.A. Effects of Praziquantel on Eggs of the Asian Tapeworm Bothriocephalus acheilognathi. North. Am. J. Aquac. 2011, 71, 380–383. [Google Scholar] [CrossRef]
- Mohammed, R.A.; Shehata, S.; Ghanem, M.H.; Abdelhadi, Y.M.; Radwan, M.K. Prevalence of Cestode Parasites of Some freshwater Fishes Cultivated In EL-Abbasa Fish Farm, Egypt. Egypt. Acad. J. Biol. Sci. B Zool. 2018, 10, 61–69. [Google Scholar] [CrossRef]
- Yera, H.; Kuchta, R.; Brabec, J.; Peyron, F.; Dupouy-Camet, J. First identification of eggs of the Asian fish tapeworm Bothriocephalus acheilognathi (Cestoda: Bothriocephalidea) in human stool. Parasitol. Int. 2013, 62, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A. Parasites causing disease in wild and cultured fish in Newfoundland. Icel. Agric. Sci. 2009, 22, 29–35. [Google Scholar]
- Rahkonen, R.; Aalto, J.; Koski, P.; Särkkä, J.; Juntunen, K. Cestode larvae Diphyllobothrium dendriticum as a cause of heart disease leading to mortality in hatchery-reared sea trout and brown trout. Dis. Aquat. Org. 1996, 25, 15–22. [Google Scholar] [CrossRef]
- Scholz, T.; Garcia, H.H.; Kuchta, R.; Wicht, B. Update on the human broad tapeworm (genus diphyllobothrium), including clinical relevance. Clin. Microbiol. Rev. 2009, 22, 146–160. [Google Scholar] [CrossRef]
- Kuchta, R.; Esteban, J.-G.; Brabec, J.; Scholz, T. Misidentification of Diphyllobothrium species related to global fish trade, Europe. Emerg. Infect. Dis. 2014, 20, 1955. [Google Scholar] [CrossRef]
- Fan, C.-K.; Barčák, D.; Scholz, T.; Sonko, P.; Orosová, M.; Su, K.-E.; Chang, C.-C.; Lee, Y.-J.; Kuchta, R.; Oros, M. Human diphyllobothriosis in Taiwan: A review of cases and molecular evidence of Dibothriocephalus nihonkaiensis. Food Waterborne Parasitol. 2023, 33, e00213. [Google Scholar] [CrossRef]
- Aunamika, S.J.; Roy, B.C.; Islam, Z.; Ahmed, N.; Rahman, M.K.; Biswas, H.; Hasan, M.M.; Taluker, M.H. Prevalence of fish-borne zoonotic parasites and their molecular identification in Bhola district of Bangladesh. Bangladesh J. Fish. 2021, 33, 283–294. [Google Scholar] [CrossRef]
- Yoshida, K.; Saito, M.; Sumiyoshi, A.; Makino, H.; Tashiro, M.; Ichikawa-Seki, M. Dibothriocephalus nihonkaiensis infection accompanied with vitamin B(12) deficiency: A case report. J. Infect. Chemother. 2025, 31, 102815. [Google Scholar] [CrossRef]
- Van De, N.; Waikagul, J.; Dalsgaard, A.; Chai, J.-Y.; Sohn, W.-M.; Murrell, K.D. Fishborne zoonotic intestinal trematodes, Vietnam. Emerg. Infect. Dis. 2007, 13, 1828. [Google Scholar] [CrossRef]
- Chai, J.-Y.; Murrell, K.D.; Lymbery, A.J. Fish-borne parasitic zoonoses: Status and issues. Int. J. Parasitol. 2005, 35, 1233–1254. [Google Scholar] [CrossRef]
- Cong, W.; Elsheikha, H.M. Focus: Zoonotic Disease: Biology, epidemiology, clinical features, diagnosis, and treatment of selected fish-borne parasitic zoonoses. Yale J. Biol. Med. 2021, 94, 297. [Google Scholar]
- Abd, E.S.M.; Gareh, A.; Mohamed, H.I.; Alrashdi, B.M.; Dyab, A.K.; El-Khadragy, M.F.; Khairy Elbarbary, N.; Fouad, A.M.; El-Gohary, F.A.; Elmahallawy, E.K.; et al. Prevalence and Morphological Investigation of Parasitic Infection in Freshwater Fish (Nile Tilapia) from Upper Egypt. Animals 2023, 13, 1088. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.-L.; Fu, Y.-W.; Guo, X.-C.; Guo, S.-G.; Huang, S.-L.; Zhang, Q.-Z. Immune responses of Ctenopharyngodon idella juveniles against the ciliated parasite’s reinfection induced by Ichthyophthirius multifiliis theronts at the threshold density. Aquaculture 2025, 607, 742638. [Google Scholar] [CrossRef]
- Kumar, V.; Das, B.K.; Swain, H.S.; Chowdhury, H.; Roy, S.; Bera, A.K.; Das, R.; Parida, S.N.; Dhar, S.; Jana, A.K.; et al. Outbreak of Ichthyophthirius multifiliis associated with Aeromonas hydrophila in Pangasianodon hypophthalmus: The role of turmeric oil in enhancing immunity and inducing resistance against co-infection. Front. Immunol. 2022, 13, 956478. [Google Scholar] [CrossRef] [PubMed]
- Boerlage, A.S.; Shrestha, S.; Leinonen, I.; Jansen, M.D.; Revie, C.W.; Reeves, A.; Toma, L. Sea lice management measures for farmed Atlantic salmon (Salmo salar) in Scotland: Costs and effectiveness. Aquaculture 2024, 580, 740274. [Google Scholar] [CrossRef]
- Abolofia, J.; Asche, F.; Wilen, J.E. The cost of lice: Quantifying the impacts of parasitic sea lice on farmed salmon. Mar. Resour. Econ. 2017, 32, 329–349. [Google Scholar] [CrossRef]
- Shivam, S.; El-Matbouli, M.; Kumar, G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines 2021, 9, 179. [Google Scholar] [CrossRef]
- Madsen, H.; Stauffer, J.R., Jr. Aquaculture of Animal Species: Their Eukaryotic Parasites and the Control of Parasitic Infections. Biology 2024, 13, 41. [Google Scholar] [CrossRef]
- Maezono, M.; Nielsen, R.; Buchmann, K.; Nielsen, M. The Current State of Knowledge of the Economic Impact of Diseases in Global Aquaculture. Rev. Aquac. 2025, 17, e70039. [Google Scholar] [CrossRef]
- Shinn, A.; Avenant-Oldewage, A.; Bondad-Reantaso, M.; Cruz-Laufer, J.; García-Vásquez, A.; Hernández-Orts, J.; Kuchta, R.; Longshaw, M.; Metselaar, M.; Pariselle, A. A global review of problematic and pathogenic parasites of farmed tilapia. Rev. Aquac. 2023, 15, 92–153. [Google Scholar] [CrossRef]
- Aldrin, M.; Huseby, R.B.; Stige, L.C.; Helgesen, K.O. Estimated effectiveness of treatments against salmon lice in marine salmonid farming. Aquaculture 2023, 575, 739749. [Google Scholar] [CrossRef]
- Mitchell, A.; Darwish, A. Efficacy of 6-, 12-, and 24-h Praziquantel Bath Treatments against Asian Tapeworms Bothriocephalus acheilognathi in Grass Carp. North. Am. J. Aquac. 2009, 71, 30–34. [Google Scholar] [CrossRef]
- Rigos, G.; Kogiannou, D.; Vasilaki, A.; Kotsiri, M. Evaluation of Praziquantel Efficacy against Zeuxapta seriolae Infections in Greater Amberjack, Seriola dumerili. Appl. Sci. 2021, 11, 4656. [Google Scholar] [CrossRef]
- Scholz, T. Parasites in cultured and feral fish. Vet. Parasitol. 1999, 84, 317–335. [Google Scholar] [CrossRef]
- Geitung, L.; Wright, D.W.; Stien, L.H.; Oppedal, F.; Karlsbakk, E. Tapeworm (Eubothrium sp.) infestation in sea caged Atlantic salmon decreased by lice barrier snorkels during a commercial-scale study. Aquaculture 2021, 541, 736774. [Google Scholar] [CrossRef]
- Langford, K.H.; Oxnevad, S.; Schoyen, M.; Thomas, K.V. Do antiparasitic medicines used in aquaculture pose a risk to the Norwegian aquatic environment? Environ. Sci. Technol. 2014, 48, 7774–7780. [Google Scholar] [CrossRef]
- Tang, Y.; Lou, X.; Yang, G.; Tian, L.; Wang, Y.; Huang, X. Occurrence and human health risk assessment of antibiotics in cultured fish from 19 provinces in China. Front. Cell Infect. Microbiol. 2022, 12, 964283. [Google Scholar] [CrossRef]
- Overton, K.; Dempster, T.; Oppedal, F.; Kristiansen, T.S.; Gismervik, K.; Stien, L.H. Salmon lice treatments and salmon mortality in Norwegian aquaculture: A review. Rev. Aquac. 2019, 11, 1398–1417. [Google Scholar] [CrossRef]
- Bui, S.; Madaro, A.; Nilsson, J.; Fjelldal, P.G.; Iversen, M.H.; Brinchman, M.F.; Venås, B.; Schrøder, M.B.; Stien, L.H. Warm water treatment increased mortality risk in salmon. Vet. Anim. Sci. 2022, 17, 100265. [Google Scholar] [CrossRef]
- Thompson, C.; Madaro, A.; Oppedal, F.; Stien, L.H.; Bui, S. Delousing Efficacy and Physiological Impacts on Atlantic Salmon of Freshwater and Hyposaline Bath Treatments. 2023. Available online: https://www.hi.no/templates/reporteditor/report-pdf?id=67938&00685741 (accessed on 30 October 2025).
- Taylor, R.S.; Slinger, J.; Stratford, C.; Rigby, M.; Wynne, J.W. Evaluation of the Infectious Potential of Neoparamoeba perurans Following Freshwater Bathing Treatments. Microorganisms 2021, 9, 967. [Google Scholar] [CrossRef]
- Hoai, T.; Trinh, T.; Giang, N. The Effects of Short Freshwater Bath Treatments on the Susceptibility to Different Stages of Neobenedenia girellae Infecting Barramundi (Lates calcarifer). Vietnam. J. Agric. Sci. 2019, 2, 409–417. [Google Scholar] [CrossRef]
- Pincinato, R.B.M.; Oglend, A.; Smith, M.D.; Asche, F. Biological control of a parasite: The efficacy of cleaner fish in salmon farming. Ecol. Econ. 2025, 227, 108359. [Google Scholar] [CrossRef]
- Martins, M.L.; de Souza, A.P.; Lessa, J.G.M.; Brasil, E.M.; Magnotti, C.; Tsuzuki, M.Y.; Dutra, S.A.P. The cleaner fish Elacatinus figaro can control the monogenean Neobenedenia melleni, an ectoparasite of Lebranche mullet Mugil liza and does not decrease the hematological response. J. Parasit. Dis. 2025, 49, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Walde, C.S.; Stormoen, M.; Pettersen, J.M.; Persson, D.; Røsæg, M.V.; Bang Jensen, B. How delousing affects the short-term growth of Atlantic salmon (Salmo salar). Aquaculture 2022, 561, 738720. [Google Scholar] [CrossRef]
- Zhu, F. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture 2020, 526, 735422. [Google Scholar] [CrossRef]
- Effendi, I.; Yoswaty, D.; Syawal, H.; Austin, B.; Lyndon, A.R.; Kurniawan, R.; Wahyuni, S.; Al-Harbi, A. The Use of Medicinal Herbs in Aquaculture Industry: A Review. In Current Aspects in Pharmaceutical Research and Development; Book Publisher International: Hooghly, India, 2022; Volume 7, pp. 7–20. [Google Scholar]
- Singh, A.; Mishra, A.; Chaudhary, R.; Kumar, V. Role of Herbal Plants in Prevention and Treatment of Parasitic Diseases. J. Sci. Res. 2020, 64, 50–58. [Google Scholar] [CrossRef]
- Canhao-Dias, M.; Paz-Silva, A.; Madeira de Carvalho, L.M. The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals—A systematic review. Vet. Parasitol. 2020, 283, 109173. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.A.; Robledo, D.; Sveen, L.; Daniels, R.R.; Krasnov, A.; Coates, A.; Jin, Y.H.; Barrett, L.T.; Lillehammer, M.; Kettunen, A.H.; et al. Applying genetic technologies to combat infectious diseases in aquaculture. Rev. Aquac. 2023, 15, 491–535. [Google Scholar] [CrossRef]
- Ferdous, M.A.; Islam, S.I.; Habib, N.; Almehmadi, M.; Allahyani, M.; Alsaiari, A.A.; Shafie, A. CRISPR-Cas Genome Editing Technique for Fish Disease Management: Current Study and Future Perspective. Microorganisms 2022, 10, 2012. [Google Scholar] [CrossRef] [PubMed]
- Pires, N.M.M.; Dong, T.; Yang, Z.; da Silva, L. Recent methods and biosensors for foodborne pathogen detection in fish: Progress and future prospects to sustainable aquaculture systems. Crit. Rev. Food Sci. Nutr. 2021, 61, 1852–1876. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Dawood, M.A.; Menanteau-Ledouble, S.; El-Matbouli, M. The nature and consequences of co-infections in tilapia: A review. J. Fish Dis. 2020, 43, 651–664. [Google Scholar] [CrossRef]
- Pandey, G.; Madhuri, S.; Mandloi, A. Medicinal plants useful in fish diseases. Plant Arch. 2012, 12, 1–4. [Google Scholar]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Doan, H.V.; Soltani, E.; Ingelbrecht, J.; Soltani, M. Medicinal Herbs and Plants: Potential Treatment of Monogenean Infections in Fish. Rev. Fish. Sci. Aquac. 2020, 28, 260–282. [Google Scholar] [CrossRef]
- Srichaiyo, N.; Tongsiri, S.; Hoseinifar, S.H.; Dawood, M.A.; Jaturasitha, S.; Esteban, M.Á.; Ringø, E.; Van Doan, H. The effects gotu kola (Centella asiatica) powder on growth performance, skin mucus, and serum immunity of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Rep. 2020, 16, 100239. [Google Scholar] [CrossRef]
- Shekarabi, S.P.H.; Omidi, A.H.; Dawood, M.A.; Adel, M.; Avazeh, A.; Heidari, F. Effect of Black Mulberry (Morus nigra) Powder on Growth Performance, Biochemical Parameters, Blood Carotenoid Concentration, and Fillet Color of Rainbow Trout. Ann. Anim. Sci. 2020, 20, 125–136. [Google Scholar] [CrossRef]
- Sadeghi, F.; Ahmadifar, E.; Shahriari Moghadam, M.; Ghiyasi, M.; Dawood, M.A.; Yilmaz, S. Lemon, Citrus aurantifolia, peel and Bacillus licheniformis protected common carp, Cyprinus carpio, from Aeromonas hydrophila infection by improving the humoral and skin mucosal immunity, and antioxidative responses. J. World Aquac. Soc. 2021, 52, 124–137. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Dawood, M.A.; Elnesr, S.S.; Dhama, K. Curcumin and its different forms: A review on fish nutrition. Aquaculture 2021, 532, 736030. [Google Scholar] [CrossRef]
- Valentim, D.; Duarte, J.; Oliveira, A.; Cruz, R.; Carvalho, J.; Conceição, E.; Fernandes, C.; Tavares-Dias, M. Nanoemulsion from essential oil of Pterodon emarginatus (Fabaceae) shows in vitro efficacy against monogeneans of Colossoma macropomum (Pisces: Serrasalmidae). J. Fish Dis. 2018, 41, 443–449. [Google Scholar] [CrossRef]
- KP, A.K.M.; Haniffa, M. Evaluation of antibacterial activity of medicinal plants on fish pathogen Aeromonas hydrophila. J. Res. Biol. 2011, 1, 1–5. [Google Scholar]
- Pu, H.; Li, X.; Du, Q.; Cui, H.; Xu, Y. Research progress in the application of Chinese herbal medicines in aquaculture: A review. Engineering 2017, 3, 731–737. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El Basuini, M.F.; Zaineldin, A.I.; Yilmaz, S.; Hasan, M.T.; Ahmadifar, E.; El Asely, A.M.; Abdel-Latif, H.M.R.; Alagawany, M.; Abu-Elala, N.M.; et al. Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Dong, J.; Liu, Y.; Yang, Q.; Xu, N.; Yang, Y.; Ai, X. Antiparasitic efficacy of herbal extracts and active compound against Gyrodactylus kobayashii in Carassius auratus. Front. Vet. Sci. 2021, 8, 665072. [Google Scholar] [CrossRef] [PubMed]
- Chitmanat, C.; Tongdonmuan, K.; Nunsong, W. The use of crude extracts from traditional medicinal plants to eliminate Trichodina sp. in tilapia (Oreochromis niloticus) fingerlings. Songklanakarin J. Sci. Technol. 2005, 27, 359–364. [Google Scholar]
- Tu, X.; Duan, C.; Wu, S.; Fu, S.; Ye, J. Identification of plumbagin as an effective chemotherapeutic agent for treatment of Gyrodactylus infections. Aquaculture 2021, 535, 736372. [Google Scholar] [CrossRef]
- Malheiros, D.F.; Maciel, P.O.; Videira, M.N.; Tavares-Dias, M. Toxicity of the essential oil of Mentha piperita in Arapaima gigas (pirarucu) and antiparasitic effects on Dawestrema spp. (Monogenea). Aquaculture 2016, 455, 81–86. [Google Scholar] [CrossRef]
- de Seixas, A.T.; Gallani, S.U.; Noronha, L.d.S.; Silva, J.J.M.; Paschoal, J.A.R.; Bastos, J.K.; Valladão, G.M.R. Copaifera oleoresins as a novel natural product against acanthocephalan in aquaculture: Insights in the mode of action and toxicity. Aquac. Res. 2020, 51, 4681–4688. [Google Scholar] [CrossRef]
- Mahdy, O.A.; Abdel-Maogood, S.Z.; Mohammed, F.F.; Salem, M.A. Effect of Verbesina alternifolia and Mentha piperita oil extracts on newly excysted metacercaria of Euclinostomum heterostomum (Rudolphi, 1809) (Digenea: Clinostomatidae) from naturally infected kidneys of Tilapia zillii in Egypt. J. Egypt. Soc. Parasitol. 2017, 47, 513–521. [Google Scholar]
- Liu, H.R.; Liu, Y.M.; Hou, T.L.; Li, C.T.; Zhang, Q.Z. Antiparasitic Efficacy of Crude Plant Extracts and Compounds Purified from Plants against the Fish Monogenean Neobenedenia girellae. J. Aquat. Anim. Health 2021, 33, 155–161. [Google Scholar] [CrossRef]
- Abd El-Galil, M.A.; Aboelhadid, S.M. Trials for the control of trichodinosis and gyrodactylosis in hatchery reared Oreochromis niloticus fries by using garlic. Vet. Parasitol. 2012, 185, 57–63. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.O.; Dhama, K.; Abdel-Latif, H.M.R. The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol. 2021, 117, 36–52. [Google Scholar] [CrossRef]
- Division, N. Probiotics in Food. In FAO Food and Nutrition Paper; FAO/WHO: Rome, Italy, 2006; p. 56. [Google Scholar]
- Nwogu, N.A.; Olaji, E.D.; Eghomwanre, A. Application of probiotics in Nigeria aquaculture: Current status, challenges and prospects. Inter. Res. J. Microbiol. 2011, 2, 215–219. [Google Scholar]
- Hoseinifar, S.H.; Sun, Y.Z.; Wang, A.; Zhou, Z. Probiotics as Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Ringø, E.; Shenavar Masouleh, A.; Esteban, M.Á. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: A review. Rev. Aquac. 2016, 8, 89–102. [Google Scholar] [CrossRef]
- Moriarty, D. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 1998, 164, 351–358. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.; Bøgwald, J.; Castex, M.; Ringø, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 302, 1–18. [Google Scholar] [CrossRef]
- Franco, W. Postbiotics and parabiotics derived from bacteria and yeast: Current trends and future perspectives. CyTA J. Food 2024, 22, 2425838. [Google Scholar] [CrossRef]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 2014, 5, 207. [Google Scholar] [CrossRef] [PubMed]
- Simón, R.; Docando, F.; Nuñez-Ortiz, N.; Tafalla, C.; Díaz-Rosales, P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front. Immunol. 2021, 12, 653025. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S. Probiotics in Fish Aquaculture: The Cure Against Parasitic Diseases? Master’s Thesis, University of Groningen, Groningen, The Netherlands, 2019. [Google Scholar]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV). Fish Shellfish Immunol. 2010, 29, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Sîrbu, E.; Dima, M.F.; Tenciu, M.; Cretu, M.; Coadă, M.T.; Țoțoiu, A.; Cristea, V.; Patriche, N. Effects of dietary supplementation with probiotics and prebiotics on growth, physiological condition, and resistance to pathogens challenge in Nile tilapia (Oreochromis niloticus). Fishes 2022, 7, 273. [Google Scholar] [CrossRef]
- Kong, Y.; Gao, C.; Du, X.; Zhao, J.; Li, M.; Shan, X.; Wang, G. Effects of single or conjoint administration of lactic acid bacteria as potential probiotics on growth, immune response and disease resistance of snakehead fish (Channa argus). Fish. Shellfish Immunol. 2020, 102, 412–421. [Google Scholar] [CrossRef]
- Waiyamitra, P.; Zoral, M.A.; Saengtienchai, A.; Luengnaruemitchai, A.; Decamp, O.; Gorgoglione, B.; Surachetpong, W. Probiotics modulate tilapia resistance and immune response against tilapia lake virus infection. Pathogens 2020, 9, 919. [Google Scholar] [CrossRef]
- Nageswara, P.; Babu, D. Probiotics as an alternative therapy to minimize or avoid antibiotics use in aquaculture. Fish. Chimes 2006, 26, 112–114. [Google Scholar]
- Sahu, M.K.; Swarnakumar, N.; Sivakumar, K.; Thangaradjou, T.; Kannan, L. Probiotics in aquaculture: Importance and future perspectives. Indian. J. Microbiol. 2008, 48, 299–308. [Google Scholar] [CrossRef]
- Banerjee, G.; Ray, A.K. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 2017, 115, 66–77. [Google Scholar] [CrossRef]
- Sun, H.; Shang, M.; Tang, Z.; Jiang, H.; Dong, H.; Zhou, X.; Lin, Z.; Shi, C.; Ren, P.; Zhao, L.; et al. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from cercaria infection. Appl. Microbiol. Biotechnol. 2020, 104, 1633–1646. [Google Scholar] [CrossRef]
- Sharifuzzaman, S.; Austin, B. Probiotics for disease control in aquaculture. Diagn. Control Dis. Fish Shellfish 2017, 189–222. [Google Scholar]
- Sihag, R.C.; Sharma, P. Probiotics: The new ecofriendly alternative measures of disease control for sustainable aquaculture. J. Fish. Aquat. Sci. 2012, 7, 72–103. [Google Scholar] [CrossRef]
- Nurhajati, J.; Aryantha, I.; Indah, D. The curative action of Lactobacillus plantarum FNCC 226 to Saprolegnia parasitica A3 on catfish (Pangasius hypophthalamus Sauvage). Int. Food Res. J. 2012, 19, 1723–1727. [Google Scholar]
- Garcia, L.d.O.; Becker, A.G.; Cunha, M.A.; Baldisserotto, B.; Copatti, C.E.; Kochhann, D. Effects of water pH and hardness on infection of silver catfish, Rhamdia quelen, fingerlings by Ichthyophthirius multifiliis. J. World Aquac. Soc. 2011, 42, 399–405. [Google Scholar] [CrossRef]
- C De, B.; Meena, D.; Behera, B.; Das, P.; Das Mohapatra, P.; Sharma, A. Probiotics in fish and shellfish culture: Immunomodulatory and ecophysiological responses. Fish. Physiol. Biochem. 2014, 40, 921–971. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, S.; Cai, Y.; Guo, X.; Cao, Z.; Zhang, Y.; Liu, S.; Yuan, W.; Zhu, W.; Zheng, Y. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish. Shellfish Immunol. 2017, 60, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Thy, H.T.T.; Tri, N.N.; Quy, O.M.; Fotedar, R.; Kannika, K.; Unajak, S.; Areechon, N. Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish. Shellfish Immunol. 2017, 60, 391–399. [Google Scholar]
- Sánchez-Ortiz, A.C.; Angulo, C.; Luna-González, A.; Álvarez-Ruiz, P.; Mazón-Suástegui, J.M.; Campa-Córdova, Á.I. Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei. Fish. Shellfish Immunol. 2016, 59, 95–102. [Google Scholar] [CrossRef]
- Pieters, N.; Brunt, J.; Austin, B.; Lyndon, A.R. Efficacy of in-feed probiotics against Aeromonas bestiarum and Ichthyophthirius multifiliis skin infections in rainbow trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol. 2008, 105, 723–732. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.; Bessat, M.; Fadel, A.; Elblehi, S. Responses of dietary supplementation of probiotic effective microorganisms (EMs) in Oreochromis niloticus on growth, hematological, intestinal histopathological, and antiparasitic activities. Aquac. Int. 2020, 28, 947–963. [Google Scholar] [CrossRef]
- Yanuhar, U.; Junirahma, N.; Susilowati, K.; Caesar, N.; Musa, M. Effects of Probiotic Treatment on Histopathology of Koi Carp (Cyprinus carpio) Infected by Myxobolus sp. Proc. J. Phys. Conf. Ser. 2019, 012051. [Google Scholar] [CrossRef]
- Abbas, F.; Hafeez-ur-Rehman, M.; Mubeen, N.; Bhatti, A.; Daniel, I. Parasites of Fish and Aquaculture and their Control. In Parasitism and Parasitic Control in Animals; CABI Publishing: Wallingford, UK, 2023; pp. 248–266. [Google Scholar]
- Chauhan, A.; Singh, R. Probiotics in aquaculture: A promising emerging alternative approach. Symbiosis 2018, 77, 99–113. [Google Scholar] [CrossRef]
- Blewett, H.J.; Taylor, C.G. Dietary zinc deficiency in rodents: Effects on T-cell development, maturation and phenotypes. Nutrients 2012, 4, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Kokou, F.; Sarropoulou, E.; Cotou, E.; Rigos, G.; Henry, M.; Alexis, M.; Kentouri, M. Effects of fish meal replacement by a soybean protein on growth, histology, selected immune and oxidative status markers of gilthead sea bream, Sparus aurata. J. World Aquac. Soc. 2015, 46, 115–128. [Google Scholar] [CrossRef]
- Nimrat, S.; Vuthiphandchai, V. In vitro evaluation of commercial probiotic products used for marine shrimp cultivation in Thailand. Afr. J. Biotechnol. 2011, 10, 4643–4650. [Google Scholar]
- Elaswad, A.; Dunham, R. Disease reduction in aquaculture with genetic and genomic technology: Current and future approaches. Rev. Aquac. 2017, 10, 876–898. [Google Scholar] [CrossRef]
- Labreuche, Y.; Warr, G.W. Insights into the antiviral functions of the RNAi machinery in penaeid shrimp. Fish Shellfish Immunol. 2013, 34, 1002–1010. [Google Scholar] [CrossRef]
- Hannon, G.J. RNA interference. Nature 2002, 418, 244–251. [Google Scholar] [CrossRef]
- Abo-Al-Ela, H.G. RNA Interference in Aquaculture: A Small Tool for Big Potential. J. Agric. Food Chem. 2021, 69, 4343–4355. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Lezer, Y.; Aflalo, E.D.; Manor, R.; Sharabi, O.; Abilevich, L.K.; Sagi, A. On the safety of RNAi usage in aquaculture: The case of all-male prawn stocks generated through manipulation of the insulin-like androgenic gland hormone. Aquaculture 2015, 435, 157–166. [Google Scholar] [CrossRef]
- Shpak, N.; Manor, R.; Aflalo, E.D.; Sagi, A. Three generations of cultured prawn without W chromosome. Aquaculture 2017, 467, 41–48. [Google Scholar] [CrossRef]
- Lima, P.C.; Harris, J.O.; Cook, M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. Fish. Shellfish Immunol. 2013, 34, 729–743. [Google Scholar] [CrossRef]
- Ohashi, H.; Umeda, N.; Hirazawa, N.; Ozaki, Y.; Miura, C.; Miura, T. Expression of vasa (vas)-related genes in germ cells and specific interference with gene functions by double-stranded RNA in the monogenean, Neobenedenia girellae. Int. J. Parasitol. 2007, 37, 515–523. [Google Scholar] [CrossRef]
- Saleh, M.; Kumar, G.; Abdel-Baki, A.A.; Dkhil, M.A.; El-Matbouli, M.; Al-Quraishy, S. In Vitro Gene Silencing of the Fish Microsporidian Heterosporis saurida by RNA Interference. Nucleic Acid. Ther. 2016, 26, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Menanteau-Ledouble, S.; Kotob, M.H.; El-Matbouli, M. A RNAi-based therapeutic proof of concept targets salmonid whirling disease in vivo. PLoS ONE 2017, 12, e0178687. [Google Scholar] [CrossRef] [PubMed]
- Eichner, C.; Nilsen, F.; Grotmol, S.; Dalvin, S. A method for stable gene knock-down by RNA interference in larvae of the salmon louse (Lepeophtheirus salmonis). Exp. Parasitol. 2014, 140, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Aquino-Jarquin, G. Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Mol. Genet. Metab. 2021, 134, 77–86. [Google Scholar] [CrossRef]
- Robinson, N.A.; Østbye, T.K.K.; Kettunen, A.H.; Coates, A.; Barrett, L.T.; Robledo, D.; Dempster, T. A guide to assess the use of gene editing in aquaculture. Rev. Aquac. 2023, 16, 775–784. [Google Scholar] [CrossRef]
- Muir, W.M.; Howard, R.D. Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 13853–13856. [Google Scholar] [CrossRef]
- Aikio, S.; Valosaari, K.-R.; Kaitala, V. Mating preference in the invasion of growth enhanced fish. Oikos 2008, 117, 406–414. [Google Scholar] [CrossRef]
- McDowell, N. Stream of escaped farm fish raises fears for wild salmon. Nature 2002, 416, 571. [Google Scholar] [CrossRef]
- McGinnity, P.; Stone, C.; Taggart, J.B.; Cooke, D.; Cotter, D.; Hynes, R.; McCamley, C.; Cross, T.; Ferguson, A. Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: Use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J. Mar. Sci. 1997, 54, 998–1008. [Google Scholar] [CrossRef]
- Kleppe, L.; Fjelldal, P.G.; Andersson, E.; Hansen, T.; Sanden, M.; Bruvik, A.; Skaftnesmo, K.O.; Furmanek, T.; Kjærner-Semb, E.; Crespo, D.; et al. Full production cycle performance of gene-edited, sterile Atlantic salmon-growth, smoltification, welfare indicators and fillet composition. Aquaculture 2022, 560, 738456. [Google Scholar] [CrossRef]
- Almeida, F.L.; Skaftnesmo, K.O.; Andersson, E.; Kleppe, L.; Edvardsen Norberg, B.; Fjelldal, P.G.; Hansen, T.J.; Schulz, R.W.; Wargelius, A. The Piwil1 N domain is required for germ cell survival in Atlantic salmon. Front. Cell Dev. Biol. 2022, 10, 977779. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yakovlev, I.A.; Van Eerde, A.; Su, J.; Clarke, J.L. Plant-produced vaccines: Future applications in aquaculture. Front. Plant Sci. 2021, 12, 718775. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Dhama, K.; Vakharia, V.N.; Hoseinifar, S.H.; Karthik, K.; Tiwari, R.; Khandia, R.; Munjal, A.; Salgado-Miranda, C.; Joshi, S.K. Advances in aquaculture vaccines against fish pathogens: Global status and current trends. Rev. Fish. Sci. Aquac. 2017, 25, 184–217. [Google Scholar] [CrossRef]
- Du, Y.; Hu, X.; Miao, L.; Chen, J. Current status and development prospects of aquatic vaccines. Front. Immunol. 2022, 13, 1040336. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, J.; Chen, K.; Gao, T.; Yao, H.; Liu, Y.; Zhang, W.; Lu, C. Development of Streptococcus agalactiae vaccines for tilapia. Dis. Aquat. Org. 2016, 122, 163–170. [Google Scholar] [CrossRef]
- Kumar, A.; Middha, S.K.; Menon, S.V.; Paital, B.; Gokarn, S.; Nelli, M.; Rajanikanth, R.B.; Chandra, H.M.; Mugunthan, S.P.; Kantwa, S.M.; et al. Current Challenges of Vaccination in Fish Health Management. Animals 2024, 14, 2692. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kwon, M.G.; Seo, J.S.; Hwang, S.D.; Jeong, J.M.; Lee, J.H.; Jeong, A.R.; Jee, B.Y. Current use and management of commercial fish vaccines in Korea. Fish Shellfish Immunol. 2020, 102, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, B.; Mo, Z.; Li, A.; Dan, X. Cryptocaryon irritans (Brown, 1951) is a serious threat to aquaculture of marine fish. Rev. Aquac. 2022, 14, 218–236. [Google Scholar] [CrossRef]
- Josepriya, T.A.; Chien, K.H.; Lin, H.Y.; Huang, H.N.; Wu, C.J.; Song, Y.L. Immobilization antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis. Fish Shellfish Immunol. 2015, 45, 517–527. [Google Scholar] [CrossRef]
- Dan, X.-M.; Zhang, T.-W.; Li, Y.-W.; Li, A.-X. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine. Fish Shellfish Immunol. 2013, 34, 885–891. [Google Scholar] [CrossRef]
- Shin, S.-M.; Kole, S.; Lee, J.; Choi, J.S.; Jung, S.-J. Formulation of chitosan microsphere-based oral vaccine against the scuticociliate parasite Miamiensis avidus: Evaluation of its protective immune potency in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2023, 142, 109159. [Google Scholar] [CrossRef]
- Kole, S.; Dar, S.A.; Shin, S.M.; Jeong, H.J.; Jung, S.J. Potential Efficacy of Chitosan-Poly (Lactide-Co-Glycolide)-Encapsulated Trivalent Immersion Vaccine in Olive Flounder (Paralichthys olivaceus) Against Viral Hemorrhagic Septicemia Virus, Streptococcus parauberis Serotype I, and Miamiensis avidus (Scuticociliate). Front. Immunol. 2021, 12, 761130. [Google Scholar] [CrossRef]
- Tamer, C.; Cavunt, A.; Durmaz, Y.; Ozan, E.; Kadi, H.; Kalayci, G.; Ozkan, B.; Isidan, H.; Albayrak, H. Inactivated infectious pancreatic necrosis virus (IPNV) vaccine and E.coli-expressed recombinant IPNV-VP2 subunit vaccine afford protection against IPNV challenge in rainbow trout. Fish Shellfish Immunol. 2021, 115, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Dzikowski, R.; Deitsch, K. Antigenic variation by protozoan parasites: Insights from Babesia bovis. Mol. Microbiol. 2006, 59, 364–366. [Google Scholar] [CrossRef]
- Vallejos-Vidal, E.; Reyes-López, F.; MacKenzie, S. Immunostimulant diets and oral vaccination in fish. Diagn. Control Dis. Fish Shellfish 2017, 147–184. [Google Scholar]
- Adams, A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef]
- Liang, R.; Li, J.; Ruan, Y.; Zhu, S. The design and parameter optimization of automatic positioning mechanism for automatic injection system of fry vaccine. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015; p. 1. [Google Scholar]
- Embregts, C.W.; Forlenza, M. Oral vaccination of fish: Lessons from humans and veterinary species. Dev. Comp. Immunol. 2016, 64, 118–137. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Sun, F.; Liu, Q.; Wang, Q.; Zhang, Y.; Liu, X. An oral vaccine based on chitosan/aluminum adjuvant induces both local and systemic immune responses in turbot (Scophthalmus maximus). Vaccine 2021, 39, 7477–7484. [Google Scholar] [CrossRef]
- Andresen, A.M.S.; Gjøen, T. Chitosan nanoparticle formulation attenuates poly (I: C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 40, 100915. [Google Scholar] [CrossRef]
- Kang, S.H.; Hong, S.J.; Lee, Y.-K.; Cho, S. Oral Vaccine delivery for intestinal immunity—Biological basis, barriers, delivery system, and m cell targeting. Polymers 2018, 10, 948. [Google Scholar] [CrossRef]
- Chettri, J.K.; Jaafar, R.M.; Skov, J.; Kania, P.W.; Dalsgaard, I.; Buchmann, K. Booster immersion vaccination using diluted Yersinia ruckeri bacterin confers protection against ERM in rainbow trout. Aquaculture 2015, 440, 1–5. [Google Scholar] [CrossRef]
- Du, Y.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. The influence of concentration of inactivated Edwardsiella tarda bacterin and immersion time on antigen uptake and expression of immune-related genes in Japanese flounder (Paralichthys olivaceus). Microb. Pathog. 2017, 103, 19–28. [Google Scholar] [CrossRef]
- Jose Priya, T.A.; Kappalli, S. Modern biotechnological strategies for vaccine development in aquaculture—Prospects and challenges. Vaccine 2022, 40, 5873–5881. [Google Scholar] [CrossRef] [PubMed]
- Ching, J.J.; Shuib, A.S.; Abdul Majid, N.; Mohd Taufek, N. Immunomodulatory activity of β-glucans in fish: Relationship between β-glucan administration parameters and immune response induced. Aquac. Res. 2020, 52, 1824–1845. [Google Scholar] [CrossRef]
- Vijayaram, S.; Sun, Y.Z.; Zuorro, A.; Ghafarifarsani, H.; Van Doan, H.; Hoseinifar, S.H. Bioactive immunostimulants as health-promoting feed additives in aquaculture: A review. Fish Shellfish Immunol. 2022, 130, 294–308. [Google Scholar] [CrossRef]
- Machuca, C.; Méndez-Martínez, Y.; Reyes-Becerril, M.; Angulo, C. Yeast β-glucans as fish immunomodulators: A review. Animals 2022, 12, 2154. [Google Scholar] [CrossRef]
- Reyes-Becerril, M.; Guardiola, F.A.; Sanchez, V.; Maldonado, M.; Angulo, C. Sterigmatomyces halophilus β-glucan improves the immune response and bacterial resistance in Pacific red snapper (Lutjanus peru) peripheral blood leucocytes: In vitro study. Fish Shellfish Immunol. 2018, 78, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Voloski, A.P.; de Figueiredo Soveral, L.; Dazzi, C.C.; Sutili, F.; Frandoloso, R.; Kreutz, L.C. β-Glucan improves wound healing in silver catfish (Rhamdia quelen). Fish. Shellfish Immunol. 2019, 93, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Villanueva, L.T.; Ascencio-Valle, F.; Macías-Rodríguez, M.E.; Tovar-Ramírez, D. Effects of dietary β-1,3/1,6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides. Fish. Physiol. Biochem. 2014, 40, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.L.; Speare, D.J. Review of the sequential development of Loma salmonae (Microsporidia) based on experimental infections of rainbow trout (Oncorhynchus mykiss) and Chinook salmon (O. tshawytscha). Folia Parasitol. 2005, 52, 63–68. [Google Scholar] [CrossRef]
- Guselle, N.J.; Markham, R.J.; Speare, D.J. Timing of intraperitoneal administration of beta-1,3/1,6 glucan to rainbow trout, Oncorhynchus mykiss (Walbaum), affects protection against the microsporidian Loma salmonae. J. Fish Dis. 2007, 30, 111–116. [Google Scholar] [CrossRef]
- Perveen, S.; Yang, L.; Zhou, S.; Feng, B.; Xie, X.; Zhou, Q.; Qian, D.; Wang, C.; Yin, F. beta-1,3-Glucan from Euglena gracilis as an immunostimulant mediates the antiparasitic effect against Mesanophrys sp. on hemocytes in marine swimming crab (Portunus trituberculatus). Fish Shellfish Immunol. 2021, 114, 28–35. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Rathi, D.-N.G.; Mustar, S.; Lee, J.C. Microalgae as an Eco-Friendly and Functional Ingredient for Sustainable Aquafeed. Aquac. J. 2025, 5, 14. [Google Scholar] [CrossRef]
- Ma, K.; Bao, Q.; Wu, Y.; Chen, S.; Zhao, S.; Wu, H.; Fan, J. Evaluation of Microalgae as Immunostimulants and Recombinant Vaccines for Diseases Prevention and Control in Aquaculture. Front. Bioeng. Biotechnol. 2020, 8, 2020. [Google Scholar] [CrossRef]
- Bahi, A.; Ramos-Vega, A.; Angulo, C.; Monreal-Escalante, E.; Guardiola, F.A. Microalgae with immunomodulatory effects on fish. Rev. Aquac. 2023, 15, 1522–1539. [Google Scholar] [CrossRef]
- Mohan, K.; Ravichandran, S.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Seedevi, P.; Abirami, R.G.; Rajan, D.K. Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immunol. 2019, 86, 1177–1193. [Google Scholar] [CrossRef]
- Shastak, Y.; Pelletier, W. Captivating Colors, Crucial Roles: Astaxanthin’s Antioxidant Impact on Fish Oxidative Stress and Reproductive Performance. Animals 2023, 13, 3357. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Leng, X.; Zhang, C.; Han, Z.; Zhang, F. Effects of dietary astaxanthins on pigmentation of flesh and tissue antioxidation of rainbow trout (Oncorhynchus mykiss). Aquac. Int. 2013, 21, 579–589. [Google Scholar] [CrossRef]
- Ozório, R.Á.; Lopes, R.G.; Vieira, F.d.N.; Bolívar-Ramírez, N.C.; Oliveira, C.Y.B.d.; Barracco, M.A.A.M.; Owatari, M.S.; Fracalossi, D.M.; Derner, R.B. Crude Polysaccharide Extract from the Microalga Porphyridium cruentum Improved Nonspecific Immune Responses and Resistance in Penaeus vannamei Exposed to Vibrio alginolyticus. Aquac. J. 2024, 4, 104–113. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, S.; Jia, X.; Zhou, W.; Sun, X.; Han, C.; Lu, Y. Effects of dietary hot water extracts of Chlorella vulgaris on muscle component, non-specific immunity, antioxidation, and resistance to non-ionic ammonia stress in Pacific white shrimp Litopenaeus vannamei. Front. Mar. Sci. 2024, 11, 2024. [Google Scholar] [CrossRef]
- Okasha, L.A.; Abdellatif, J.I.; Abd-Elmegeed, O.H.; Sherif, A.H. Overview on the role of dietary Spirulina platensis on immune responses against Edwardsiellosis among Oreochromis niloticus fish farms. BMC Vet. Res. 2024, 20, 290. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yang, F.; Zhu, L.; Zhan, L.; Numasawa, T.; Deng, J. Effects of dietary astaxanthin supplementation on growth performance, antioxidant status, immune response, and intestinal health of rainbow trout (Oncorhynchus mykiss). Anim. Nutr. 2024, 17, 387–396. [Google Scholar] [CrossRef]
- Besednova, N.N.; Zaporozhets, T.S.; Andryukov, B.G.; Kryzhanovsky, S.P.; Ermakova, S.P.; Kuznetsova, T.A.; Voronova, A.N.; Shchelkanov, M.Y. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar. Drugs 2021, 19, 637. [Google Scholar] [CrossRef] [PubMed]
- Douxfils, J.; Fierro-Castro, C.; Mandiki, S.N.; Emile, W.; Tort, L.; Kestemont, P. Dietary β-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2017, 63, 285–296. [Google Scholar] [CrossRef]
- Bricknell, I.; Dalmo, R.A. The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol. 2005, 19, 457–472. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, M.; Pereiro, P.; Reyes-Lopez, F.; Tort, L.; Figueras, A.; Novoa, B. Analysis of the Long-Lived Responses Induced by Immunostimulants and Their Effects on a Viral Infection in Zebrafish (Danio rerio). Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.; Teame, T.; Ran, C.; Yang, Y.; Yao, Y.; Ding, Q.; Liu, S.; Li, S.; Zhang, Z.; et al. Immune disorders induced by improper use of dietary immunostimulants in aquatic animals: Research progress and prospective solutions by targeting gut microbiota. Rev. Aquac. 2023, 16, 608–621. [Google Scholar] [CrossRef]
- Terech-Majewska, E. Improving disease prevention and treatment in controlled fish culture. Arch. Pol. Fish. 2016, 24, 115–165. [Google Scholar] [CrossRef]
- Luis, A.I.S.; Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F. Trends in aquaculture sciences: From now to use of nanotechnology for disease control. Rev. Aquac. 2019, 11, 119–132. [Google Scholar] [CrossRef]
- Sommerville, C. Advances in non-chemical methods for parasite prevention and control in fish. In Infectious Disease in Aquaculture; Woodhead Publishing: Sawston, UK, 2012; pp. 480–512. [Google Scholar]
- Scholz, T.; Kuchta, R.; Oros, M. Tapeworms as pathogens of fish: A review. J. Fish Dis. 2021, 44, 1883–1900. [Google Scholar] [CrossRef]
- Lu, G.-L.; Jiang, B.; Li, Z.-C.; Li, A.-X. Ultraviolet light and ozone controls Cryptocaryon irritans infection in factory aquaculture. Aquaculture 2022, 548, 737598. [Google Scholar] [CrossRef]
- Maina, K.; Mbuthia, P.; Waruiru, R.; Nzalawahe, J.; Murugami, J.; Njagi, L.; Mdegela, R.; Mavuti, S. Risk factors associated with parasites of farmed fish in Kiambu County, Kenya. Int. J. Fish. Aquat. Stud. 2017, 5, 217–223. [Google Scholar]
- Mathenge, C.G. Prevalence, Intensity and Pathological Lesions Associated with Helminth Infections in Farmed and Wild Fish in Upper Tana River Basin, Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2010. [Google Scholar]
- Thien, C.P.; Dalsgaard, A.; Thanh Nhan, N.; Olsen, A.; Murrell, K.D. Prevalence of zoonotic trematode parasites in fish fry and juveniles in fish farms of the Mekong Delta, Vietnam. Aquaculture 2009, 295, 1–5. [Google Scholar] [CrossRef]
- Elisafitri, M.; Satyantini, W.; Arief, M.; Sulmartiwi, L. Parasitic disease in Koi fish (Cyprinus carpio) in freshwater ponds with different densities in Sukabumi, West Java. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Hangzhou, China, 17–19 July 2021; p. 012050. [Google Scholar]
- Mwainge, V.M.; Ogwai, C.; Aura, C.M.; Mutie, A.; Ombwa, V.; Nyaboke, H.; Oyier, K.N.; Nyaundi, J. An overview of fish disease and parasite occurrence in the cage culture of Oreochromis niloticus: A case study in Lake Victoria, Kenya. Aquat. Ecosyst. Health Manag. 2021, 24, 43–55. [Google Scholar] [CrossRef]
- Shah, I.M.; Khurshid, I.; Maqbool, N.; Ahmad, F.; Ahmad, S.M. Unveiling the potential of parasites as proxy bioindicators for water quality assessment in river Jhelum Kashmir, India. Environ. Monit. Assess. 2024, 196, 1156. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Lv, J.; Li, X.; Li, Y.; Zhang, Y.; Wang, X.; Liang, H.; Wang, Y.; Xie, J.; Shi, C. Unlocking Eco-solutions: Analyzing parasitic disease resistance in Yellow River carp (Cyprinus carpio haematopterus) under different ecological treatments. Aquaculture 2024, 582, 740500. [Google Scholar] [CrossRef]
- Bowman, D.M. More than a decade on: Mapping today’s regulatory and policy landscapes following the publication of nanoscience and nanotechnologies: Opportunities and uncertainties. NanoEthics 2017, 11, 169–186. [Google Scholar] [CrossRef]
- Giri, S.S.; Kim, S.G.; Kang, J.W.; Kim, S.W.; Kwon, J.; Lee, S.B.; Jung, W.J.; Park, S.C. Applications of carbon nanotubes and polymeric micro-/nanoparticles in fish vaccine delivery: Progress and future perspectives. Rev. Aquac. 2021, 13, 1844–1863. [Google Scholar] [CrossRef]
- Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 2011, 6, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Dawit Moges, F.; Patel, P.; Parashar, S.K.S.; Das, B. Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: A holistic review. Aquaculture 2020, 519, 734770. [Google Scholar] [CrossRef]
- Bhattacharyya, A. Nanoparticles from drug delivery to insect pest control. Akshar 2009, 1, 1–7. [Google Scholar]
- Jonjaroen, V.; Charoonnart, P.; Jitrakorn, S.; Payongsri, P.; Surarit, R.; Saksmerprome, V.; Niamsiri, N. Nanoparticles-based double-stranded RNA delivery as an antiviral agent in shrimp aquaculture. Rev. Aquac. 2024, 16, 1647–1673. [Google Scholar] [CrossRef]
- Muruganandam, M.; Chipps, S.; Ojasvi, P. On the advanced technologies to enhance fisheries production and management. Acta Sci. Agric. 2019, 3, 216–222. [Google Scholar] [CrossRef]
- Mavichak, R.; Takano, T.; Kondo, H.; Hirono, I.; Wada, S.; Hatai, K.; Inagawa, H.; Takahashi, Y.; Yoshimura, T.; Kiyono, H.; et al. The effect of liposome-coated recombinant protein VP28 against white spot syndrome virus in kuruma shrimp, Marsupenaeus japonicus. J. Fish Dis. 2010, 33, 69–74. [Google Scholar] [CrossRef]
- De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Kim, M.-G.; Park, J.Y.; Shon, Y.; Kim, G.; Shim, G.; Oh, Y.-K. Nanotechnology and vaccine development. Asian J. Pharm. Sci. 2014, 9, 227–235. [Google Scholar] [CrossRef]
- Okeke, E.S.; Chukwudozie, K.I.; Nyaruaba, R.; Ita, R.E.; Oladipo, A.; Ejeromedoghene, O.; Atakpa, E.O.; Agu, C.V.; Okoye, C.O. Antibiotic resistance in aquaculture and aquatic organisms: A review of current nanotechnology applications for sustainable management. Environ. Sci. Pollut. Res. Int. 2022, 29, 69241–69274. [Google Scholar] [CrossRef]
- Chalamcheria, V. Nano vaccines: New paradigm in aqua health sector. J. Aquac. Mar. Biol. 2015, 3, 00061. [Google Scholar] [CrossRef]
- Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 2019, 14, 1084–1087. [Google Scholar] [CrossRef]
- Mahdy, O.A.; Salem, M.A.; Abdelsalam, M.; Attia, M.M. An innovative approach to control fish-borne zoonotic metacercarial infections in aquaculture by utilizing nanoparticles. Sci. Rep. 2024, 14, 25307. [Google Scholar] [CrossRef]
- Sharma, P.; Pant, S.; Rai, S.; Yadav, R.B.; Sharma, S.; Dave, V. Green synthesis and characterization of silver nanoparticles by Allium cepa L. to produce silver nano-coated fabric and their antimicrobial evaluation. Appl. Organomet. Chem. 2018, 32, e4146. [Google Scholar] [CrossRef]
- Kuan, G.C.; Sheng, L.P.; Rijiravanich, P.; Marimuthu, K.; Ravichandran, M.; Yin, L.S.; Lertanantawong, B.; Surareungchai, W. Gold-nanoparticle based electrochemical DNA sensor for the detection of fish pathogen Aphanomyces invadans. Talanta 2013, 117, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Seethalakshmi, P.; Rajeev, R.; Kiran, G.S.; Selvin, J. Shrimp disease management for sustainable aquaculture: Innovations from nanotechnology and biotechnology. Aquac. Int. 2021, 29, 1591–1620. [Google Scholar] [CrossRef]
- Nasr-Eldahan, S.; Nabil-Adam, A.; Shreadah, M.A.; Maher, A.M.; El-Sayed Ali, T. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquac. Int. 2021, 29, 1459–1480. [Google Scholar] [CrossRef] [PubMed]
- Meghani, N.; Dave, S.; Kumar, A. Introduction to Nanofood. In Nano-Food Engineering; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Vicari, T.; Dagostim, A.C.; Klingelfus, T.; Galvan, G.L.; Monteiro, P.S.; da Silva Pereira, L.; de Assis, H.C.S.; Cestari, M.M. Co-exposure to titanium dioxide nanoparticles (NpTiO2) and lead at environmentally relevant concentrations in the Neotropical fish species Hoplias intermedius. Toxicol. Rep. 2018, 5, 1032–1043. [Google Scholar] [CrossRef]
- Sayes, C.M.; Marchione, A.A.; Reed, K.L.; Warheit, D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007, 7, 2399–2406. [Google Scholar] [CrossRef]
- Khosravi-Katuli, K.; Prato, E.; Lofrano, G.; Guida, M.; Vale, G.; Libralato, G. Effects of nanoparticles in species of aquaculture interest. Environ. Sci. Pollut. Res. 2017, 24, 17326–17346. [Google Scholar] [CrossRef]
- Fenaroli, F.; Westmoreland, D.; Benjaminsen, J.; Kolstad, T.; Skjeldal, F.M.; Meijer, A.H.; van der Vaart, M.; Ulanova, L.; Roos, N.; Nystrom, B. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: Direct visualization and treatment. ACS Nano 2014, 8, 7014–7026. [Google Scholar] [CrossRef]
- Saleh, M.; Abdel-Baki, A.-A.; Dkhil, M.A.; El-Matbouli, M.; Al-Quraishy, S. Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis. Parasitology 2017, 144, 1802–1810. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, S.; Brahmchari, R.K.; Singh, A.B.; Rajendran, K.V.; Shukla, S.P.; Sharma, R.; Raman, R.P. Anti-parasitic efficacy of green-synthesized silver nanoparticles on Argulus siamensis: An ectoparasite of fish and their effect on the expression of ion channel genes. Aquac. Int. 2024, 33, 83. [Google Scholar] [CrossRef]
- Brahmchari, R.K.; Kumari, P.; Kumar, S.; Prasad, K.P.; Srivastava, P.P.; Bedekar, M.K.; Raman, R.P. In vivo antiparasitic activity of biogenic Iron nanoparticles on ectoparasitic branchiuran, Argulus siamensis in Labeo rohita and effect on parasite ion channel genes. BMC Vet. Res. 2025, 21, 579. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elala, N.M.; Attia, M.M.; Abd-Elsalam, R.M. Chitosan-silver nanocomposites in goldfish aquaria: A new perspective in Lernaea cyprinacea control. Int. J. Biol. Macromol. 2018, 111, 614–622. [Google Scholar] [CrossRef]
- Pimentel-Acosta, C.A.; Morales-Serna, F.N.; Chávez-Sánchez, M.C.; Lara, H.H.; Pestryakov, A.; Bogdanchikova, N.; Fajer-Ávila, E.J. Efficacy of silver nanoparticles against the adults and eggs of monogenean parasites of fish. Parasitol. Res. 2019, 118, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Aguilar, M.R.; Pattiya Arachchillage, K.G.G.; Chandra, S.; Rangan, S.; Ghosal Gupta, S.; Artes Vivancos, J.M. Biosensors for Public Health and Environmental Monitoring: The Case for Sustainable Biosensing. ACS Sustain. Chem. Eng. 2024, 12, 10296–10312. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Krishnani, K.K. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. Sci. Total Environ. 2022, 838, 156128. [Google Scholar] [CrossRef]
- Simone Soares, M.; Singh, R.; Kumar, S.; Jha, R.; Nedoma, J.; Martinek, R.; Marques, C. The role of smart optical biosensors and devices on predictive analytics for the future of aquaculture systems. Opt. Laser Technol. 2024, 177, 111049. [Google Scholar] [CrossRef]
- Islam, S.I.; Ahammad, F.; Mohammed, H. Cutting-edge technologies for detecting and controlling fish diseases: Current status, outlook, and challenges. J. World Aquac. Soc. 2024, 55, e13051. [Google Scholar] [CrossRef]
- Srinivasan, R.; Umesh, S.; Murali, S.; Asokan, S.; Siva Gorthi, S. Bare fiber Bragg grating immunosensor for real-time detection of Escherichia coli bacteria. J. Biophotonics 2017, 10, 224–230. [Google Scholar] [CrossRef]
- Kaushik, S.; Tiwari, U.K.; Pal, S.S.; Sinha, R.K. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosens. Bioelectron. 2019, 126, 501–509. [Google Scholar] [CrossRef]
- Saleh, M.; Soliman, H.; El-Matbouli, M. Gold nanoparticles as a potential tool for diagnosis of fish diseases. Vet. Infect. Biol. Mol. Diagn. High-Throughput Strateg. 2015, 1247, 245–252. [Google Scholar]
- Zhao, G.; Ding, J.; Yu, H.; Yin, T.; Qin, W. Potentiometric aptasensing of Vibrio alginolyticus based on DNA nanostructure-modified magnetic beads. Sensors 2016, 16, 2052. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, A.; Gray, D.W.; Tsai, M.-Y.; Shields, N.; Montrose, A.; Creedon, N.; Lovera, P.; O’Riordan, A.; Mooney, M.H.; Vogel, E.M. A potentiometric biosensor for rapid on-site disease diagnostics. Biosens. Bioelectron. 2016, 79, 669–678. [Google Scholar] [CrossRef]
- Pires, N.M.M.; Dong, T. A cascade-like silicon filter for improved recovery of oocysts from environmental waters. Environ. Technol. 2014, 35, 781–790. [Google Scholar] [CrossRef]
- Laczka, O.; Skillman, L.; Ditcham, W.G.; Hamdorf, B.; Wong, D.K.; Bergquist, P.; Sunna, A. Application of an ELISA-type screen printed electrode-based potentiometric assay to the detection of Cryptosporidium parvum oocysts. J. Microbiol. Methods 2013, 95, 182–185. [Google Scholar] [CrossRef]
- Santos-de-Souza, R.; Souza-Silva, F.; de Albuquerque-Melo, B.C.; Ribeiro-Guimaraes, M.L.; de Castro Cortes, L.M.; Pereira, B.A.S.; Silva-Almeida, M.; Cysne-Finkelstein, L.; de Oliveira Junior, F.O.R.; Pereira, M.C.S.; et al. Insights into the tracking of the cysteine proteinase B COOH-terminal polypeptide of Leishmania (Leishmania) amazonensis by surface plasmon resonance. Parasitol. Res. 2019, 118, 1249–1259. [Google Scholar] [CrossRef]
- Xue, Y.; Kong, Q.; Ding, H.; Xie, C.; Zheng, B.; Zhuo, X.; Ding, J.; Tong, Q.; Lou, D.; Lu, S.; et al. A novel loop-mediated isothermal amplification-lateral-flow-dipstick (LAMP-LFD) device for rapid detection of Toxoplasma gondii in the blood of stray cats and dogs. Parasite 2021, 28, 41. [Google Scholar] [CrossRef] [PubMed]
- Fanouraki, E.; Papandroulakis, N.; Ellis, T.; Mylonas, C.; Scott, A.; Pavlidis, M. Water cortisol is a reliable indicator of stress in European sea bass, Dicentrarchus labrax. Behaviour 2008, 145, 1267–1281. [Google Scholar] [CrossRef]
- Leitão, C.; Leal-Junior, A.; Almeida, A.R.; Pereira, S.O.; Costa, F.M.; Pinto, J.L.; Marques, C. Cortisol AuPd plasmonic unclad POF biosensor. Biotechnol. Rep. 2021, 29, e00587. [Google Scholar] [CrossRef] [PubMed]
- Brijs, J.; Fore, M.; Grans, A.; Clark, T.D.; Axelsson, M.; Johansen, J.L. Bio-sensing technologies in aquaculture: How remote monitoring can bring us closer to our farm animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200218. [Google Scholar] [CrossRef] [PubMed]


| Category | Technique | Advantages | Disadvantages |
|---|---|---|---|
| Chemical Treatments | Traditional chemical drugs | Effective and widely available. | Resistance development, environmental toxicity. |
| Plant-Based Treatments | Herbal extracts | Eco-friendly and less likely to cause resistance. | Complex composition with potential side effects; inconsistent quality; narrow spectrum of efficacy; short-term therapeutic effects. |
| Biological Techniques | Probiotics | Eco-friendly; can be incorporated into feed for long-term prevention and treatment; enhances host immunity | Strain-specific effects; limited efficacy against certain parasites; requires prolonged use for effectiveness; sensitive to environmental conditions during storage and application |
| Immunostimulants | Enhances innate immunity, suitable for young fish. | Dose-dependent effects; requires careful time control | |
| Vaccination | Eco-friendly and with few side effects | Difficult administration methods; limited duration of protection; challenges in commercial scalability; high complexity in development | |
| Advanced Molecular Techniques | RNA Interference (RNAi) | Low impact on the environment and organisms | Limited duration of effectiveness; highly specific to parasite species and developmental stages; significant challenges in designing and delivering exogenous RNA |
| CRISPR/Cas9 Gene Editing | Highly precise gene editing; permanent and heritable resistance | Ecological risks from escape; limited public acceptance; strict management of commercialization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Bhassu, S.; Rajamanikam, A. Charting the Future: Advanced Technologies for Sustainable Parasite Control in Aquaculture. Int. J. Mol. Sci. 2025, 26, 10738. https://doi.org/10.3390/ijms262110738
Yang J, Bhassu S, Rajamanikam A. Charting the Future: Advanced Technologies for Sustainable Parasite Control in Aquaculture. International Journal of Molecular Sciences. 2025; 26(21):10738. https://doi.org/10.3390/ijms262110738
Chicago/Turabian StyleYang, Jiao, Subha Bhassu, and Arutchelvan Rajamanikam. 2025. "Charting the Future: Advanced Technologies for Sustainable Parasite Control in Aquaculture" International Journal of Molecular Sciences 26, no. 21: 10738. https://doi.org/10.3390/ijms262110738
APA StyleYang, J., Bhassu, S., & Rajamanikam, A. (2025). Charting the Future: Advanced Technologies for Sustainable Parasite Control in Aquaculture. International Journal of Molecular Sciences, 26(21), 10738. https://doi.org/10.3390/ijms262110738

