Special Issue “Ion Conductance and Ion Regulation in Human Health and Disease”
Conflicts of Interest
List of Contributions
- Petkova-Kirova, P.; Murciano, N.; Iacono, G.; Jansen, J.; Simionato, G.; Qiao, M.; Zwaan, C.V. der; Rotordam, M.G.; John, T.; Hertz, L.; et al. The Gárdos Channel and Piezo1 Revisited: Comparison between Reticulocytes and Mature Red Blood Cells. Int. J. Mol. Sci. 2024, 25, 1416. https://doi.org/10.3390/ijms25031416.
- Segura, É.; Zhao, J.; Broszczak, M.; Audet, F.; Sauvé, R.; Parent, L. Investigating the Impact of Electrostatic Interactions on Calmodulin Binding and Ca2+-Dependent Activation of the Calcium-Gated Potassium SK4 Channel. Int. J. Mol. Sci. 2024, 25, 4255. https://doi.org/10.3390/ijms25084255.
- Jusztus, V.; Medyouni, G.; Bagosi, A.; Lampé, R.; Panyi, G.; Matolay, O.; Maka, E.; Krasznai, Z.T.; Vörös, O.; Hajdu, P. Activity of Potassium Channels in CD8+ T Lymphocytes: Diagnostic and Prognostic Biomarker in Ovarian Cancer? Int. J. Mol. Sci. 2024, 25, 1949. https://doi.org/10.3390/ijms25041949.
- Gaburjakova, J.; Domsicova, M.; Poturnayova, A.; Gaburjakova, M. Flecainide Specifically Targets the Monovalent Countercurrent Through the Cardiac Ryanodine Receptor, While a Dominant Opposing Ca2+/Ba2+ Current Is Present. Int. J. Mol. Sci. 2024, 26, 203. https://doi.org/10.3390/ijms26010203.
- Saez-Matia, A.; Ibarluzea, M.G.; M-Alicante, S.; Muguruza-Montero, A.; Nuñez, E.; Ramis, R.; Ballesteros, O.R.; Lasa-Goicuria, D.; Fons, C.; Gallego, M.; et al. MLe-KCNQ2: An Artificial Intelligence Model for the Prognosis of Missense KCNQ2 Gene Variants. Int. J. Mol. Sci. 2024, 25, 2910. https://doi.org/10.3390/ijms25052910.
- Ousingsawat, J.; Schreiber, R.; Kunzelmann, K. Functional Interdependence of Anoctamins May Influence Conclusions from Overexpression Studies. Int. J. Mol. Sci. 2024, 25, 9998. https://doi.org/10.3390/ijms25189998.
References
- Kaestner, L. Calcium Signalling. Approaches and Findings in the Heart and Blood; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-34616-3. [Google Scholar]
- Berridge, M.J. Elementary and Global Aspects of Calcium Signalling. J. Exp. Biol. 1997, 200, 315–319. [Google Scholar] [CrossRef]
- Ingale, S.; Rathored, J.; Shende, S.; Wankhade, S. The Role of Calcium Homeostasis in Modulating the Immune Response in Cancer and Infectious Diseases. Multidiscip. Rev. 2024, 8, 2025034. [Google Scholar] [CrossRef]
- Kostyuk, P.G. Calcium Ionic Channels in Electrically Excitable Membrane. Neuroscience 1980, 5, 945–959. [Google Scholar] [CrossRef]
- Resendez, E.; Ting, J.; Kim, K.S.; Wooden, S.K.; Lee, A.S. Calcium Ionophore A23187 as a Regulator of Gene Expression in Mammalian Cells. J. Cell Biol. 1986, 103, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Ghanshani, S.; Coleman, M.; Gustavsson, P.; Wu, A.C.; Gargus, J.J.; Gutman, G.A.; Dahl, N.; Mohrenweiser, H.; Chandy, K.G. Human Calcium-Activated Potassium Channel Gene KCNN4 Maps to Chromosome 19q13.2 in the Region Deleted in Diamond-Blackfan Anemia. Genomics 1998, 51, 160–161. [Google Scholar] [CrossRef]
- Gardos, G. The Function of Calcium in the Potassium Permeability of Human Erythrocytes. Biochim. Biophys. Acta 1958, 30, 653–654. [Google Scholar] [CrossRef]
- Bernhardt, I.; Kaestner, L. Historical View and Some Unsolved Problems in Red Blood Cell Membrane Research. Front. Biosci.-Landmark 2025, 30, 25331. [Google Scholar] [CrossRef]
- Hoffman, J.F.; Joiner, W.; Nehrke, K.; Potapova, O.; Foye, K.; Wickrema, A. The hSK4 (KCNN4) Isoform Is the Ca2+-Activated K+ Channel (Gardos Channel) in Human Red Blood Cells. Proc. Natl. Acad. Sci. USA 2003, 100, 7366–7371. [Google Scholar] [CrossRef] [PubMed]
- Ohya, S.; Kimura, S.; Kitsukawa, M.; Muraki, K.; Watanabe, M.; Imaizumi, Y. SK4 Encodes Intermediate Conductance Ca2+-Activated K+ Channels in Mouse Urinary Bladder Smooth Muscle Cells. Jpn. J. Pharmacol. 2000, 84, 97–100. [Google Scholar] [CrossRef]
- Joiner, W.J.; Khanna, R.; Schlichter, L.C.; Kaczmarek, L.K. Calmodulin Regulates Assembly and Trafficking of SK4/IK1 Ca2+-Activated K+ Channels. J. Biol. Chem. 2001, 276, 37980–37985. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.D.; Gutman, G.A.; Aldrich, R.; Chandy, K.G.; Grissmer, S.; Wulff, H. International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. Pharmacol. Rev. 2005, 57, 463–472. [Google Scholar] [CrossRef]
- Bernhardt, I.; Wesseling, M.C.; Nguyen, D.B.; Kaestner, L. Red Blood Cells Actively Contribute to Blood Coagulation and Thrombus Formation. In Erythrocyte; Tombak, A., Ed.; IntechOpen: London, UK, 2019; ISBN 9781789842098. [Google Scholar]
- Faucherre, A.; Kissa, K.; Nargeot, J.; Mangoni, M.E.; Jopling, C. Piezo1 Plays a Role in Erythrocyte Volume Homeostasis. Haematologica 2013, 99, 70–75. [Google Scholar] [CrossRef]
- Danielczok, J.G.; Terriac, E.; Hertz, L.; Petkova-Kirova, P.; Lautenschläger, F.; Laschke, M.W.; Kaestner, L. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-Mediated Adaptations. Front. Physiol. 2017, 8, 979. [Google Scholar] [CrossRef]
- Cahalan, S.M.; Lukacs, V.; Ranade, S.S.; Chien, S.; Bandell, M.; Patapoutian, A. Piezo1 Links Mechanical Forces to Red Blood Cell Volume. eLife 2015, 4, e07370. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, L.; Egée, S.; Connes, P.; Bogdanova, A.Y.; Simmonds, M.J. Splenic Filtration of Red Blood Cells: Physics, Chemistry, and Biology Need to Go Hand in Hand. Proc. Natl. Acad. Sci. USA 2025, 122, e2405086121. [Google Scholar] [CrossRef]
- Grygorczyk, R.; Schwarz, W.; Passow, H. Ca2+-Activated K+ Channels in Human Red Cells. Comparison of Single-Channel Currents with Ion Fluxes. Biophys. J. 1984, 45, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Petkova-Kirova, P.; Hertz, L.; Danielczok, J.; Huisjes, R.; Makhro, A.; Bogdanova, A.; Mañú-Pereira, M.D.M.; Corrons, J.-L.V.; van Wijk, R.; Kaestner, L. Red Blood Cell Membrane Conductance in Hereditary Haemolytic Anaemias. Front. Physiol. 2019, 10, 386. [Google Scholar] [CrossRef]
- Picard, V.; Guitton, C.; Thuret, I.; Rose, C.; Bendelac, L.; Ghazal, K.; Aguilar-Martinez, P.; Badens, C.; Barro, C.; Bénéteau, C.; et al. Clinical and Biological Features in PIEZO1-Hereditary Xerocytosis and Gardos Channelopathy: A Retrospective Series of 126 Patients. Haematologica 2019, 104, 1554–1564. [Google Scholar] [CrossRef]
- Wang, J.; Hertz, L.; Ruppenthal, S.; Nemer, W.E.; Connes, P.; Goede, J.S.; Bogdanova, A.; Birnbaumer, L.; Kaestner, L. Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients. Cells 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Hatem, A.; Esperti, S.; Murciano, N.; Qiao, M.; Rotordam, M.G.; Becker, N.; Nader, E.; Maurer, F.; Pérès, L.; Bouyer, G.; et al. Adverse Effects of Delta-9-tetrahydrocannabinol on Sickle Red Blood Cells. Am. J. Hematol. 2023, 98, E383–E386. [Google Scholar] [CrossRef]
- McManus, O.B. Calcium-Activated Potassium Channels: Regulation by Calcium. J. Bioenerg. Biomembr. 1991, 23, 537–560. [Google Scholar] [CrossRef]
- Xia, X.-M.; Fakler, B.; Rivard, A.; Wayman, G.; Johnson-Pais, T.; Keen, J.E.; Ishii, T.; Hirschberg, B.; Bond, C.T.; Lutsenko, S.; et al. Mechanism of Calcium Gating in Small-Conductance Calcium-Activated Potassium Channels. Nature 1998, 395, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Conforti, L. The Ion Channel Network in T Lymphocytes, a Target for Immunotherapy. Clin. Immunol. 2011, 142, 105–106. [Google Scholar] [CrossRef]
- Feske, S.; Wulff, H.; Skolnik, E.Y. Ion Channels in Innate and Adaptive Immunity. Annu. Rev. Immunol. 2015, 33, 291–353. [Google Scholar] [CrossRef]
- Li, G.; Bethune, M.T.; Wong, S.; Joglekar, A.V.; Leonard, M.T.; Wang, J.K.; Kim, J.T.; Cheng, D.; Peng, S.; Zaretsky, J.M.; et al. T Cell Antigen Discovery via Trogocytosis. Nat. Methods 2018, 16, 183–190. [Google Scholar] [CrossRef]
- van der Werf, C.; Wilde, A.A.M. Catecholaminergic Polymorphic Ventricular Tachycardia. Circ. Arrhythmia Electrophysiol. 2025, 8, 523–525. [Google Scholar] [CrossRef]
- Bers, D.M. Calcium and Cardiac Rhythms: Physiological and Pathophysiological. Circ. Res. 2002, 90, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Somani, P. Antiarrhythmic Effects of Flecainide. Clin. Pharmacol. Ther. 1980, 27, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, J.; Capucci, A.; Mabo, P. Safety of Flecainide. Drug Saf. 2012, 35, 273–289. [Google Scholar] [CrossRef]
- Abreo, T.J.; Thompson, E.C.; Madabushi, A.; Park, K.L.; Soh, H.; Varghese, N.; Vanoye, C.G.; Springer, K.; Johnson, J.; Sims, S.; et al. Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy. eLife 2025, 13, RP91204. [Google Scholar] [CrossRef]
- McInnes, G.; Sharo, A.G.; Koleske, M.L.; Brown, J.E.H.; Norstad, M.; Adhikari, A.N.; Wang, S.; Brenner, S.E.; Halpern, J.; Koenig, B.A.; et al. Opportunities and Challenges for the Computational Interpretation of Rare Variation in Clinically Important Genes. Am. J. Hum. Genet. 2021, 108, 535–548. [Google Scholar] [CrossRef]
- Suzuki, J.; Umeda, M.; Sims, P.J.; Nagata, S. Calcium-Dependent Phospholipid Scrambling by TMEM16F. Nature 2010, 468, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, A.; David, T.; Palmer, D.; Jin, T.; Tien, J.; Huang, F.; Cheng, T.; Coughlin, S.R.; Jan, Y.N.; et al. TMEM16F Forms a Ca2+-Activated Cation Channel Required for Lipid Scrambling in Platelets during Blood Coagulation. Cell 2012, 151, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Dalemans, W.; Barbry, P.; Champigny, G.; Jallat, S.; Jallat, S.; Dott, K.; Dreyer, D.; Crystal, R.G.; Pavirani, A.; Lecocq, J.-P.; et al. Altered Chloride Ion Channel Kinetics Associated with the ΔF508 Cystic Fibrosis Mutation. Nature 1991, 354, 526–528. [Google Scholar] [CrossRef]
- Pedemonte, N.; Galietta, L.J.V. Structure and Function of TMEM16 Proteins (Anoctamins). Physiol. Rev. 2014, 94, 419–459. [Google Scholar] [CrossRef]
- Chen, A.; Yang, C.; Wang, J. Multiple Roles of ANO6 in Tumors, Molecular Mechanism and Its Potential Therapeutic Value. Biochem. Biophys. Rep. 2025, 44, 102230. [Google Scholar] [CrossRef]
- Brüggemann, A.; George, M.; Klau, M.; Beckler, M.; Steindl, J.; Behrends, J.C.; Fertig, N. High Quality Ion Channel Analysis on a Chip with the NPC Technology. Assay Drug Dev. Technol. 2003, 1, 665–673. [Google Scholar] [CrossRef]
- Slavov, N. Unlocking the Potential of Single-Cell Omics. J. Proteome Res. 2025, 24, 1481. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Kawai, Y. Clinical Variant Databases and Machine Learning Prediction Supporting Genomic Medicine. Methods Mol. Biol. 2026, 2963, 147–158. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaestner, L. Special Issue “Ion Conductance and Ion Regulation in Human Health and Disease”. Int. J. Mol. Sci. 2025, 26, 10650. https://doi.org/10.3390/ijms262110650
Kaestner L. Special Issue “Ion Conductance and Ion Regulation in Human Health and Disease”. International Journal of Molecular Sciences. 2025; 26(21):10650. https://doi.org/10.3390/ijms262110650
Chicago/Turabian StyleKaestner, Lars. 2025. "Special Issue “Ion Conductance and Ion Regulation in Human Health and Disease”" International Journal of Molecular Sciences 26, no. 21: 10650. https://doi.org/10.3390/ijms262110650
APA StyleKaestner, L. (2025). Special Issue “Ion Conductance and Ion Regulation in Human Health and Disease”. International Journal of Molecular Sciences, 26(21), 10650. https://doi.org/10.3390/ijms262110650
