Strong Association Between MiRNA Gene Variants and Type 2 Diabetes Mellitus in a Caucasian Population
Abstract
1. Introduction
2. Results
2.1. Study Population Characteristics
2.2. Genetic Analysis
2.2.1. Associations Between miRNA Gene Variants and T2D Risk—Primary Analysis
2.2.2. Dominant Genetic Model Analysis of SNP Associations with T2D—Secondary Analysis
2.3. Target Gene and Pathway Analysis of Identified miRNA Variants
3. Discussion
4. Materials and Methods
4.1. Ethical Considerations
4.2. Study Population
4.3. Clinical and Biochemical Measurements
4.4. DNA Extraction and Genotyping
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. Diagnosis and classification of diabetes: Standards of care in diabetes—2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Valencia-Sánchez, M.A.; Liu, J.; Hannon, G.J.; Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006, 20, 515–524. [Google Scholar] [CrossRef]
- Ghanbari, M.; Franco, O.H.; de Looper, H.W.; Hofman, A.; Erkeland, S.J.; Dehghan, A. Genetic Variations in MicroRNA-Binding Sites Affect MicroRNA-Mediated Regulation of Several Genes Associated with Cardio-metabolic Phenotypes. Circ. Cardiovasc. Genet. 2015, 8, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M.A.; Liang, H.; Li, W.H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl. Acad. Sci. USA 2007, 104, 3300–3305. [Google Scholar] [CrossRef]
- Ghanbari, M.; Erkeland, S.J.; Xu, L.; Colijn, J.M.; Franco, O.H.; Dehghan, A.; Klaver, C.C.W.; Meester-Smoor, M.A. Genetic variants in microRNAs and their binding sites within gene 3’UTRs associate with susceptibility to age-related macular degeneration. Hum. Mutat. 2017, 38, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Landrier, J.F.; Derghal, A.; Mounien, L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells 2019, 8, 859. [Google Scholar] [CrossRef]
- Kim, H.; Bae, Y.-U.; Lee, H.; Kim, H.; Jeon, J.S.; Noh, H.; Han, D.C.; Byun, D.W.; Kim, S.H.; Park, H.K.; et al. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Res. Care 2020, 8, e001403. [Google Scholar] [CrossRef]
- Pinzón, N.; Li, B.; Martinez, L.; Sergeeva, A.; Presumey, J.; Apparailly, F.; Seitz, H. microRNA target prediction programs predict many false positives. Genome Res. 2017, 27, 234–245. [Google Scholar] [CrossRef]
- Riffo-Campos, Á.L.; Riquelme, I.; Brebi-Mieville, P. Tools for sequence-based miRNA target prediction. Int. J. Mol. Sci. 2016, 17, 1987. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, A.E.; Dupuis, J.; Logue, M.W.; Myers, R.H.; Lunetta, K.L. Correction for multiple testing in a gene region. Eur. J. Hum. Genet. 2014, 22, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Du, H.; Wei, S.; Feng, L.; Li, J.; Yao, F.; Zhang, M.; Hatch, G.M.; Chen, L. Adipocyte-Derived Exosomal MiR-27a Induces Insulin Resistance in Skeletal Muscle Through Repression of PPARγ. Theranostics 2018, 8, 2171–2188. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Jiao, J.Q.; Li, Q.; Long, B.; Wang, K.; Liu, J.P.; Li, Y.R.; Li, P.F. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 2011, 17, 71–78. [Google Scholar] [CrossRef]
- Nigi, L.; Grieco, G.E.; Ventriglia, G.; Brusco, N.; Mancarella, F.; Formichi, C.; Dotta, F.; Sebastiani, G. MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int. J. Mol. Sci. 2018, 19, 3705. [Google Scholar] [CrossRef]
- Hadj-Moussa, H.; Chiasson, S.; Cheng, H.; Eaton, L.; Storey, K.B.; Pamenter, M.E. MicroRNA-mediated inhibition of AMPK coordinates tissue-specific downregulation of skeletal muscle metabolism in hypoxic naked mole-rats. J. Exp. Biol. 2021, 224, jeb242968. [Google Scholar] [CrossRef]
- Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef]
- Balasubramanyam, M.; Aravind, S.; Gokulakrishnan, K.; Prabu, P.; Sathishkumar, C.; Ranjani, H.; Mohan, V. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol. Cell. Biochem. 2011, 351, 197–205. [Google Scholar] [CrossRef]
- Yang, X.; Ren, Y.; Li, X.; Xia, L.; Wan, J. MiR-146a Reduces Inflammation in Experimental Pancreatitis via the TRAF6-NF-κB Signaling Pathway in Mice. Immun. Inflamm. Dis. 2025, 13, e70163. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Luo, Q.; Wu, M.; Chen, Y.; Shi, X. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des. Dev. Ther. 2018, 12, 171–177. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Liu, Y.; Zhu, D.; Yu, J.; Li, G.; Sun, Z.; Wang, W.; Jiang, H.; Hong, Z. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging 2019, 11, 7510–7524. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Jia, Z.; Cui, Q.; Zhang, C.; Wang, W.; Chen, P.; Ma, K.; Zhou, C. MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and Cyclin D1. PLoS ONE 2013, 8, e74504. [Google Scholar] [CrossRef]
- Latini, A.; Borgiani, P.; De Benedittis, G.; D’AMato, C.; Greco, C.; Lauro, D.; Novelli, G.; Spallone, V.; Ciccacci, C. Mitochondrial DNA copy number in peripheral blood is reduced in type 2 diabetes patients with polyneuropathy and associated with a MIR499A gene polymorphism. DNA Cell Biol. 2020, 39, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, B.; Jiang, Q.; Zhang, J.; Xin, S.; Xu, K. The association of two common polymorphisms in miRNAs with diabetes mellitus: A meta-analysis. Medicine 2019, 98, e17414. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Li, X.; Shi, L.; Tao, W.; Shi, L.; Yang, M.; Wang, X.; Yang, Y.; Yao, Y. Association study of polymorphisms in miRNAs with T2DM in Chinese population. Int. J. Med. Sci. 2015, 12, 875–880. [Google Scholar] [CrossRef]
- Khan, M.S.; Rahman, B.; Haq, T.U.; Jalil, F.; Khan, B.M.; Maodaa, S.N.; Al-Farraj, S.A.; El-Serehy, H.A.; Shah, A.A. Deciphering the variants located in the MIR196A2, MIR146A, and MIR423 with type-2 diabetes mellitus in Pakistani population. Genes 2021, 12, 664. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, Z.; Nie, J.; Wang, H.; Yu, B.; Wen, Z.; Sun, Y.; Shi, X.; Jin, L.; Wang, D.W. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. Sci. China Life Sci. 2020, 63, 1347–1362, Erratum in Sci. China Life Sci. 2022, 65, 1056. [Google Scholar] [CrossRef]
- Azarova, I.; Klyosova, E.; Polonikov, A. The link between type 2 diabetes mellitus and the polymorphisms of glutathione-metabolizing genes suggests a new hypothesis explaining disease initiation and progression. Life 2021, 11, 886. [Google Scholar] [CrossRef]
- van Rooij, E.; Quiat, D.; Johnson, B.A.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Kelm, R.J., Jr.; Olson, E.N. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 2009, 17, 662–673. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, H.; Xu, F.; Liu, C.; Wang, Y.; Tang, W.; Chen, L. Relationship of microRNA locus with type 2 diabetes mellitus: A case-control study. Endocr. Connect. 2021, 10, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Vaishya, S.; Sarwade, R.D.; Seshadri, V. MicroRNA, proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications. Front. Endocrinol. 2018, 9, 180. [Google Scholar] [CrossRef]
- Elfaki, I.; Mir, R.; Mir, M.M.; AbuDuhier, F.M.; Babakr, A.T.; Barnawi, J. Potential impact of microRNA gene polymorphisms in the pathogenesis of diabetes and atherosclerotic cardiovascular disease. J. Pers. Med. 2019, 9, 51. [Google Scholar] [CrossRef]
- Karolina, D.S.; Armugam, A.; Tavintharan, S.; Wong, M.T.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PloS ONE 2011, 6, e22839, Erratum in PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Kim, M.; Zhang, X. The Profiling and Role of miRNAs in Diabetes Mellitus. J. Diabetes Clin. Res. 2019, 1, 5–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]


| Patient Characteristics | Group A–Diabetes (N = 716) | Group B–Control (N = 569) | Group A vs. Group B (p-Value) |
|---|---|---|---|
| Age (years) | 68.93 (±9.53) | 73.46 (±7.25) | 0.001 |
| Gender (M/F) | 48%:52% | 38%:62% | 0.001 |
| Body weight (kg) | 84.94 (±16.85) | 79.00 (±17.00) | 0.001 |
| BMI (kg/m2) | 31.57 (±5.43) | 29.82 (±5.32) | 0.001 |
| Waist circumference (cm) | 104.62 (±15.031) | 102.02 (±11.88) | 0.001 |
| Hb1Ac (%) | 7.29 (±1.27) | 5.34 (±0.56) | 0.001 |
| Fasting glucose (mg/dL) | 153.15 (±53.71) | 100.04 (±13.51) | 0.001 |
| Diabetes duration (years) | 14.39 (±9.29) | - | - |
| Gene | Chr | Start (hg19) | End (hg19) | GeneCard Gene Name |
|---|---|---|---|---|
| MIR124a | 8 | 9757574 | 9762876 | MIR124-1 |
| MIR146a | 5 | 159895275 | 159914433 | MIR146a |
| MIR27a | 19 | 13947254 | 13947331 | MIR27a |
| MIR34a | 1 | 9211727 | 9211836 | MIR34a |
| MIRLET7A2 | 11 | 122017229 | 122017301 | MIRLET7A2 |
| MIR128a | 2 | 136422967 | 136423048 | MIR128-1 |
| MIR196a2 | 12 | 54385522 | 54385631 | MIR196a2 |
| MIR499 | 20 | 33578179 | 33578300 | MIR499A |
| MIR4513 | 15 | 75081013 | 75081098 | MIR4513 |
| MIR149 | 2 | 241395418 | 241395506 | MIR149 |
| Gene | Chromosome | SNP | Position | Recessive Allele | Dominant Allele | pperm | MAF | OR | Lower 95% CI | Upper 95% CI |
|---|---|---|---|---|---|---|---|---|---|---|
| MIR27a | 19 | rs1531212 | 13951830 | T | C | 0.02033 | 0.147 | 1.375 | 1.049 | 1.802 |
| MYH7B | 20 | rs6120777 | 33560172 | A | G | 0.04054 | 0.217 | 1.27 | 1.011 | 1.596 |
| MYH7B | 20 | rs2425012 | 33581955 | A | G | 0.01587 | 0.441 | 0.7945 | 0.6602 | 0.956 |
| upstream of MIR146a | 5 | rs883517 | 159904729 | G | A | 0.02675 | 0.123 | 0.7281 | 0.5541 | 0.9567 |
| upstream of MIR146a | 5 | rs2961920 | 159911506 | C | A | 0.04202 | 0.260 | 0.8057 | 0.6548 | 0.9915 |
| Gene | Chromosome | SNP | Position | Recessive Allele | Dominant Allele | pperm | MAF | OR | Lower 95% CI | Upper 95% CI |
|---|---|---|---|---|---|---|---|---|---|---|
| MYH7B | 20 | rs3746435 | 33587198 | C | G | 0.025 | 0.2589 | 1.239 | 1.001 | 1.535 |
| MIR499a | 20 | rs3746444 | 33578251 | C | T | 0.046 | 0.26 | 1.235 | 0.9974 | 1.528 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manthou, E.; Tsekmekidou, X.; Tsetsos, F.; Koufakis, T.; Grammatiki, M.; Rakintzi, P.; Melidou, E.; Karaliolios, G.; Paschou, P.; Papanas, N.; et al. Strong Association Between MiRNA Gene Variants and Type 2 Diabetes Mellitus in a Caucasian Population. Int. J. Mol. Sci. 2025, 26, 10447. https://doi.org/10.3390/ijms262110447
Manthou E, Tsekmekidou X, Tsetsos F, Koufakis T, Grammatiki M, Rakintzi P, Melidou E, Karaliolios G, Paschou P, Papanas N, et al. Strong Association Between MiRNA Gene Variants and Type 2 Diabetes Mellitus in a Caucasian Population. International Journal of Molecular Sciences. 2025; 26(21):10447. https://doi.org/10.3390/ijms262110447
Chicago/Turabian StyleManthou, Eleni, Xanthippi Tsekmekidou, Fotis Tsetsos, Theocharis Koufakis, Maria Grammatiki, Pantelitsa Rakintzi, Eirini Melidou, Georgios Karaliolios, Peristera Paschou, Nikolaos Papanas, and et al. 2025. "Strong Association Between MiRNA Gene Variants and Type 2 Diabetes Mellitus in a Caucasian Population" International Journal of Molecular Sciences 26, no. 21: 10447. https://doi.org/10.3390/ijms262110447
APA StyleManthou, E., Tsekmekidou, X., Tsetsos, F., Koufakis, T., Grammatiki, M., Rakintzi, P., Melidou, E., Karaliolios, G., Paschou, P., Papanas, N., & Kotsa, K. (2025). Strong Association Between MiRNA Gene Variants and Type 2 Diabetes Mellitus in a Caucasian Population. International Journal of Molecular Sciences, 26(21), 10447. https://doi.org/10.3390/ijms262110447

