Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in Inflammation and Disease: Mechanisms, Therapeutic Potential, and Future Directions
Abstract
1. Introduction
2. TREM-1 Signaling in Inflammation
3. TREM-1 Activators and Their Role in Inflammatory Responses
3.1. LPS Modulates TREM-1 Activation
3.2. Peptidoglycan Recognition Protein 1 (PGLYRP1)
3.3. High Mobility Group Box 1 (HMGB1)
3.4. Actin
3.5. Heat Shock Protein 70 (Hsp70)
3.6. Cold-Inducible RNA-Binding Protein (eCIRP)
3.7. CD177
4. TREM-1 Regulation in Inflammatory Disorders
4.1. TREM-1 Regulation in Sepsis and Neonatal Sepsis
4.2. TREM-1 Regulation in Cardiovascular Diseases (CVDs)
4.3. TREM-1 Regulation in Neurological Disorders
4.4. TREM-1 Regulation in Rheumatoid Arthritis
4.5. TREM-1 Regulation in Periodontitis
4.6. TREM-1 in Hepatic and Renal Ischemic Injury
4.7. TREM-1 Regulation in Hepatic Fibrosis
4.8. TREM-1 Regulation in Chronic Obstructive Pulmonary Disease (COPD)
4.9. TREM-1 Regulation in Inflammatory Bowel Disease (IBD)
4.10. TREM-1-TLR-NLR Network Synergy Regulation
5. TREM-1 Modulation: A Potential Avenue for Inflammatory Disease Therapy
5.1. Genetic Ablation of TREM-1
| Gene | Key Findings | Ref. |
|---|---|---|
| Trem-1−/− | TREM-1 plays a crucial role in bacterial translocation and systemic inflammation. Trem-1−/− mice infected with Leishmania major or influenza virus exhibited reduced lesion sizes, lower neutrophilic infiltration, and decreased morbidity, while maintaining effective pathogen control comparable to wild-type (WT)controls. | [97,98] |
| Trem1−/− mice reduced hepatocellular tumorigenesis induced by diethylnitrosamine. It attenuated Kupffer cell activation by downregulating IL-6, IL-1β, TNF, CCL2, and CXCL10, and inhibited liver injury by modulating key inflammatory pathways (p38, ERK1/2, JNK, MAPK, and NF-κB). | [83] | |
| TREM-1 has been shown to play a role in viral hepatitis immunopathology, mostly through neutrophil activity. Trem1−/− mice cleared viral hepatitis faster than wild-type mice and had less liver inflammation and damage. Trem1−/− mice infected with Lymphocytic Choriomeningitis Virus (LCMV) produced less CCL2 and TNF-α in their livers compared to wild-type mice.TREM-1 has been implicated in the immunopathology of viral hepatitis, primarily through the activity of neutrophils. Trem1−/− mice cleared viral hepatitis more quickly than wild-type mice and exhibited reduced liver inflammation and damage. Furthermore, Trem1−/− mice infected with LCMV showed lower hepatic levels of CCL2 and TNF-α compared to wild-type mice. | [99] | |
| In Leishmania major, influenza virus, and Legionella pneumophila infection models of colitis, Trem1−/− animals displayed reduced morbidity and immune-mediated pathology without impairing microbial clearance. | [98] | |
| Trem-1 KO mice were found to be more vulnerable to oral infection with Klebsiella pneumoniae due to translocation in the small intestine. Mice infected with Klebsiella pneumoniae liver abscess (KPLA) exhibited higher mortality rates. This highlights the critical role of TREM-1 signaling in defending the host against bacterial infections and supporting effective mucosal immunity in the small intestine. Overall, Trem-1-KO mice displayed increased bacterial dissemination, liver and systemic inflammation, and higher mortality. | [97] | |
| TREM-1 plays a pivotal role in inflammation-driven intestinal carcinogenesis. In the wild-type Trem1+/+ mouse model treated with azoxymethane (AOM) and dextran-sodium sulfate (DSS), TREM-1 was present in tumors but absent from the surrounding tumor-free mucosa. This suggests that TREM-1 mediates the recruitment of neutrophils into colon cancers and colitis-associated malignancies in the AOM/DSS model. The lack of TREM-1 signaling in Trem1−/− mice significantly reduces the development of intestinal tumors. | [100] | |
| TREM-1, an important regulator of Kupffer cell activation, triggers persistent liver inflammatory responses, activates hepatic stellate cells, and promotes liver fibrosis. Trem1−/− mice mitigated hepatic inflammation, fibrosis, and Kupffer cell activation. Restoring Trem1-sufficient Kupffer cells reversed these effects. | [101] | |
| TREM-1 regulates neutrophil migration and reactive oxygen species (ROS) generation via NOX2. TREM-1 phosphorylates protein kinase B (AKT), a signaling enzyme that regulates cell migration and survival. Trem-1−/− mice neutrophils displayed defective chemotaxis and reduced AKT phosphorylation. | [102] | |
| In the angiotensin II-induced abdominal aortic aneurysm (AAA) mouse model, AngII enhances TREM-1 production via AngII receptors, which affects monocyte mobilization from the spleen and infiltration into the aortic wall. Consequently, TREM-1 activation promotes monocyte penetration into the aorta and triggers a proinflammatory response, exacerbating AAA severity. Trem1−/− (Apoe−/−Trem1−/−) mice exhibited reduced AAA progression and severity by decreasing aortic inflammation and lowering the expression of Il1b, Tnfa, Mmp2, and Mmp9 mRNA, along with reducing macrophage content. | [103] | |
| Activation of the TREM-1 receptor intensifies the inflammatory response to hepatic ischemia/reperfusion (I/R), as indicated by increased blood levels of organ damage and inflammatory markers. In a hepatic I/R model, Trem-1−/− mice exhibited lower levels of tissue injury markers, inflammatory mediators, and neutrophil infiltration compared to wild-type mice. Additionally, Trem-1−/− mice demonstrated improved survival, suggesting that TREM-1 suppression could have significant therapeutic potential for hepatic I/R. The protective effects in Trem-1−/− mice were evident through reductions in injury markers, cytokines/chemokines, neutrophil infiltration, apoptosis, and overall tissue damage. | [49] | |
| Trem-1−/− mice tumor models exhibited TREM-1’s therapeutic potential in cancer. Trem-1−/− mice showed slower growth of melanoma (B16F10) and fibrosarcoma (MCA205) tumors. More single-cell RNA-Seq and functional experiments of Trem-1−/− tumor infiltrates indicated that myeloid-derived suppressor cells (MDSCs) have a lower immunosuppressive potential and higher PD-1 expression on CD8+ T cells. | [104] | |
| Endo Trem-1−/− | TREM-1 modulates vascular inflammation and endothelial cell (EC) activation, influencing inflammatory cell mobilization. Trem1−/− mice exhibited improved vasoreactivity, protection from septic shock, and increased survival. | [105] |
| Trem-1 KO CRISPR | TREM-1 plays a crucial role in intracerebral hemorrhage (ICH)-induced brain damage, leading to significant behavioral impairment and mortality. In mice, Trem-1 knockdown using CRISPR improved neurobehavioral outcomes compared to ICH+ control CRISPR mice. Trem-1 knockdown mice exhibited reduced TREM-1 expression in microglia after ICH, along with decreased IL-1β levels and an increase in anti-inflammatory factors such as M2 (Arg-I). | [106] |
| Trem-1−/−.lpr | Trem1−/− mice with lupus-prone backgrounds exhibited elevated serum BAFF, anti-dsDNA antibody levels, expanded lymphocyte populations, and increased renal immune complex deposition, leading to severe lupus symptoms and higher mortality. | [107] |
| Tremligand1 (Treml1−/−) | Treml1−/− mice exhibited increased plasma cytokine levels and mortality compared to WT mice. Platelet aggregation was impaired, leading to excessive bleeding and localized inflammatory lesions. These mice were more susceptible to polymicrobial infections, highlighting the role of TLT-1 in leukocyte activation. | [16,96,108] |
| Trem1/3−/− | In a Trem-1/3−/− mouse model of Pseudomonal pneumonia, TREM-1 facilitates neutrophil migration across airway epithelial cells in the lungs, thereby intensifying inflammation. Exposure to Pseudomonas aeruginosa led to increased mortality, accompanied by higher local and systemic cytokine production. Despite exhibiting normal bacterial killing, phagocytosis, and chemotaxis, these neutrophils demonstrated reduced infiltration into the airways. While they successfully migrated through endothelial monolayers, they were unable to traverse airway epithelial barriers formed at the air-liquid interface.In a Trem-1/3−/− mouse model of Pneumococcal pneumonia, exposure to S. pneumoniae resulted in increased mortality and enhanced bacterial growth at the infection site. The infection triggered a rapid infiltration of TREM-1-positive neutrophils into the bronchoalveolar region, while macrophages, which inherently express high levels of TREM-1, remained unaffected. Trem-1/3−/− mice exhibited a significantly reduced innate immune response in the airways upon S. pneumoniae challenge, characterized by delayed neutrophil recruitment and reduced phagocytic activity of alveolar macrophages.In a mouse model of Chlamydia trachomatis genital infection, neutrophils contribute to tissue damage in the female reproductive tract, specifically the uterus and oviduct, as part of the adaptive immune response. Consistent with previous findings, TREM-1/3 facilitates transepithelial neutrophil migration in the uterus and uterine glands. However, Trem-1/3−/− mice did not show a significant reduction in chlamydial burden or genital tract infection compared to control mice. Notably, Trem-1/3−/− animals exhibited significantly less hydrometra in the uterine horns, fewer uterine glands infiltrated by polymorphonuclear cells, and elevated levels of granulocyte colony-stimulating factor (G-CSF). Additionally, these mice displayed reduced degradation of the luminal epithelium. | [109,110,111] |
| Trem-1−/− Apoe−/− | TREM-1 aggravates atherosclerosis. In the Apoe−/− animal model under dyslipidemic conditions, TREM-1 expression is markedly elevated in circulating and lesion-infiltrating myeloid cells. Trem1−/− Apoe−/− animals subjected to dyslipidemia exhibited a 40% reduction in aortic atherosclerosis, along with decreased skewed monocytes and mitigated monocytosis. Nonclassical monocytes in these mice showed significantly lower Cx3cr1 expression compared to their Trem1+/+ Apoe−/− counterparts. Additionally, the thoracoabdominal aorta displayed a less inflammatory plaque profile, characterized by a substantial reduction in macrophage density and necrotic core size. | [55,57] |
5.2. Peptide/Protein Molecules as TREM-1 Modulators
| Inhibitor | Origin | Amino Acid Sequence | Physiological Effects | Ref. |
|---|---|---|---|---|
| hLR12 | hTLT-1 | LQEEDAGEYGCM | Attenuates myocardial inflammation, mitigates atherosclerosis progression, prevents vascular dysfunction and inflammation, modulates excessive inflammatory response in periodontal disease, and decreases TREM-1 dimerization on monocytes and neutrophils. It also promotes hepatocyte regeneration in TAA-induced ALF and reduces aortic inflammation in AAA. | [28,54,55,103,105,112,116] |
| mLR12 | mTLT-1 | LQEEDTGEYGCV | ||
| hLR17 | hTLT-1 | LQEEDAGEYGCMVDGAR | Prevents septicemia and improves survival rates. Functions as a TREM-1 inhibitory peptide derived from TLT-1. | [108,117] |
| mLR17 | mTLT-1 | LQEEDTGEYGCVVEGAA | ||
| hLP17 | hTREM-1 | LQVEDSGLYQCVIYQPP | Inhibits LPS-induced proinflammatory cascades and provides protective effects in sepsis models. | [11,118] |
| mLP17 | mTREM-1 | LQVTDSGLYRCVIYHPP | ||
| hGF9 | hTREM-1 | GFLSKSLVF | Reduces LPS-induced TNF-α, IL-1β, and IL-6 in J774 murine macrophages in vitro and inhibits TREM-1/DAP12 interaction at the transmembrane level. | [73,113] |
| mGF9 | mTREM-1 | GLLSKSLVF | ||
| TREM-1-Ig-Fc fusion protein | Lowers TNF-α and IL-1β serum levels, serves as a diagnostic and prognostic tool, and neutralizes TREM-1 while activating monocytes in sepsis patients. | [114,115] | ||
| CD177 | Anti-CD177 antibody inhibits trans-endothelial migration of neutrophils. CD177 modulates neutrophil migration via integrin and chemoreceptor regulation, downregulates membrane-bound proteinase-3 expression, and interacts with endothelial cells to regulate inflammation. | [42,68,119] | ||
5.3. Small Molecule TREM-1 Modulators
6. Applications of Targeting TREM-1 Signaling in Human Studies and Clinical Trials
7. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TREM-1 | Triggering Receptors Expressed on Myeloid Cells-1 |
| DAP12 | DNAX activation protein 12 |
| ITAM | Immunoreceptor tyrosine-based activation motif |
| SH2 | Src homology 2 |
| ZAP70 | Zeta-chain-associated protein kinase 70 |
| SYK | Spleen Tyrosine Kinase |
| PI3K | Phosphoinositide 3-kinase |
| ERK | Extracellular signal-regulated kinase |
| PRRs | Pathogen recognition receptors |
| DAMPs | Damage-associated molecular patterns |
| PAMPs | Pathogen-associated molecular patterns |
| IRAK-4 | IL-4 receptor-associated kinase-4 |
| NFκB | Kappa-light-chain-enhancer of activated B cells |
| LPS | lipopolysaccharide |
| CRE | cAMP response element |
| CREB | CRE-binding protein |
| PKA | Protein kinase A |
| AP-1 | Activator protein-1 |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| PGE2 | Prostaglandin E2 |
| NLR | Nucleotide-binding oligomerization domain(NOD)-like receptors |
| PMNs | Polymorphonuclear neutrophils |
| PGLYRP1 | Peptidoglycan Recognition Protein 1 |
| HMGB1 | High Mobility Group Box 1 |
| Hsp70 | Heat Shock Protein 70 |
| IFN-γ | Interferon-gamma |
| TNF-α | Tumor necrosis factor-alpha |
| CIRP | Cold-Inducible RNA-Binding Protein |
| IL | Interleukin |
| BALF | Bronchoalveolar lavage fluid |
| CVDs | Cardiovascular diseases |
| CAD | Coronary artery disease |
| AMI | Atherosclerotic myocardial infarction |
| SAH | Subarachnoid hemorrhage |
| CSF | Cerebrospinal fluid |
| BBB | Blood–brain barrier |
| Aβ | Amyloid-beta |
| RA | Rheumatoid arthritis |
| M-CSF or CSF-1 | Macrophage colony-stimulating factor |
| CIA | Collagen-induced arthritis |
| ROS | Reactive oxygen species |
| TOMM40 | Translocase of the outer mitochondrial membrane 40 |
| RANK | Receptor activator of NFκB |
| OPG | Osteoprotegerin |
| APDC | Atherosclerosis, periodontitis, diabetes, and cancer |
| HCC | Hepatocellular carcinoma |
| HSCs | Hepatic stellate cells |
| TGF-β1 | transforming growth factor-beta 1 |
| SMA | smooth muscle actin |
| NAFLD | Nonalcoholic fatty liver disease |
| TLT-1 | Triggering receptor expressed on myeloid cells-like transcript 1 |
| AAA | Abdominal aortic aneurysm |
| SCHOOL peptide | Signaling Chain HOmoOLigomerizationpeptide |
| BTK | Bruton’s tyrosine kinase |
| BMDMs | Bone marrow-derived macrophages |
| DAB | Diacetylbenzene |
| PDX | Patient-derived xenograft |
| VAP | Ventilator-associated pneumonia |
References
- Bouchon, A.; Dietrich, J.; Colonna, M. Cutting Edge: Inflammatory Responses Can Be Triggered by TREM-1, a Novel Receptor Expressed on Neutrophils and Monocytes. J. Immunol. 2000, 164, 4991–4995. [Google Scholar] [CrossRef] [PubMed]
- Gingras, M.C.; Lapillonne, H.; Margolin, J.F. TREM-1, MDL-1, and DAP12 expression is associated with a mature stage of myeloid development. Mol. Immunol. 2002, 38, 817–824. [Google Scholar] [CrossRef]
- Arts, R.J.; Joosten, L.A.; Dinarello, C.A.; Kullberg, B.J.; van der Meer, J.W.; Netea, M.G. TREM-1 interaction with the LPS/TLR4 receptor complex. Eur. Cytokine Netw. 2011, 22, 11–14. [Google Scholar] [CrossRef]
- Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 2003, 3, 445–453. [Google Scholar] [CrossRef]
- Bouchon, A.; Facchetti, F.; Weigand, M.A.; Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 2001, 410, 1103–1107. [Google Scholar] [CrossRef]
- Buckland, K.F.; Ramaprakash, H.; Murray, L.A.; Carpenter, K.J.; Choi, E.S.; Kunkel, S.L.; Lukacs, N.W.; Xing, Z.; Aoki, N.; Hartl, D.; et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) modulates immune responses to Aspergillus fumigatus during fungal asthma in mice. Immunol. Investig. 2011, 40, 692–722. [Google Scholar] [CrossRef]
- Ichou, L.; Carbonell, N.; Rautou, P.E.; Laurans, L.; Bourcier, S.; Pichereau, C.; Baudel, J.L.; Nousbaum, J.B.; Renou, C.; Anty, R.; et al. Ascitic fluid TREM-1 for the diagnosis of spontaneous bacterial peritonitis. Gut 2016, 65, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Kouassi, K.T.; Gunasekar, P.; Agrawal, D.K.; Jadhav, G.P. TREM-1; Is It a Pivotal Target for Cardiovascular Diseases? J. Cardiovasc. Dev. Dis. 2018, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Johnson, E.M.; Lam, R.K.; Wang, Q.; Bo Ye, H.; Wilson, E.N.; Minhas, P.S.; Liu, L.; Swarovski, M.S.; Tran, S.; et al. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat. Immunol. 2019, 20, 1023–1034. [Google Scholar] [CrossRef]
- Rao, S.; Huang, J.; Shen, Z.; Xiang, C.; Zhang, M.; Lu, X. Inhibition of TREM-1 attenuates inflammation and lipid accumulation in diet-induced nonalcoholic fatty liver disease. J. Cell. Biochem. 2019, 120, 11867–11877. [Google Scholar] [CrossRef]
- Feng, C.W.; Chen, N.F.; Sung, C.S.; Kuo, H.M.; Yang, S.N.; Chen, C.L.; Hung, H.C.; Chen, B.H.; Wen, Z.H.; Chen, W.F. Therapeutic Effect of Modulating TREM-1 via Anti-inflammation and Autophagy in Parkinson’s Disease. Front. Neurosci. 2019, 13, 769. [Google Scholar] [CrossRef]
- Gomez-Pina, V.; Soares-Schanoski, A.; Rodriguez-Rojas, A.; Del Fresno, C.; Garcia, F.; Vallejo-Cremades, M.T.; Fernandez-Ruiz, I.; Arnalich, F.; Fuentes-Prior, P.; Lopez-Collazo, E. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. J. Immunol. 2007, 179, 4065–4073. [Google Scholar] [CrossRef]
- Colonna, M. The biology of TREM receptors. Nat. Rev. Immunol. 2023, 23, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiang, X.; Li, Y.; Bu, G.; Chen, X.-F. TREM2 and sTREM2 in Alzheimer’s disease: From mechanisms to therapies. Mol. Neurodegener. 2025, 20, 43. [Google Scholar] [CrossRef]
- Huang, W.; Huang, J.; Huang, N.; Luo, Y. The role of TREM2 in Alzheimer’s disease: From the perspective of Tau. Front. Cell Dev. Biol. 2023, 11, 1280257. [Google Scholar] [CrossRef]
- Washington, A.V.; Gibot, S.; Acevedo, I.; Gattis, J.; Quigley, L.; Feltz, R.; De La Mota, A.; Schubert, R.L.; Gomez-Rodriguez, J.; Cheng, J.; et al. TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J. Clin. Investig. 2009, 119, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.H.; Seaman, W.E.; Daws, M.R. Characterization of TREM-3, an activating receptor on mouse macrophages: Definition of a family of single Ig domain receptors on mouse chromosome 17. Eur. J. Immunol. 2002, 32, 59–66. [Google Scholar] [CrossRef]
- Tammaro, A.; Derive, M.; Gibot, S.; Leemans, J.C.; Florquin, S.; Dessing, M.C. TREM-1 and its potential ligands in non-infectious diseases: From biology to clinical perspectives. Pharmacol. Ther. 2017, 177, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Gibot, S.; Alauzet, C.; Massin, F.; Sennoune, N.; Faure, G.C.; Bene, M.C.; Lozniewski, A.; Bollaert, P.E.; Levy, B. Modulation of the triggering receptor expressed on myeloid cells-1 pathway during pneumonia in rats. J. Infect. Dis. 2006, 194, 975–983. [Google Scholar] [CrossRef]
- Park, W.B.; Kim, S.; Shim, S.; Yoo, H.S. Identification of Dendritic Cell Maturation, TLR, and TREM1 Signaling Pathways in the Brucella canis Infected Canine Macrophage Cells, DH82, Through Transcriptomic Analysis. Front. Vet. Sci. 2021, 8, 619759. [Google Scholar] [CrossRef]
- Knapp, S.; Gibot, S.; de Vos, A.; Versteeg, H.H.; Colonna, M.; van der Poll, T. Cutting edge: Expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. J. Immunol. 2004, 173, 7131–7134. [Google Scholar] [CrossRef]
- Gibot, S. Clinical review: Role of triggering receptor expressed on myeloid cells-1 during sepsis. Crit. Care 2005, 9, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Ornatowska, M.; Azim, A.C.; Wang, X.; Christman, J.W.; Xiao, L.; Joo, M.; Sadikot, R.T. Functional genomics of silencing TREM-1 on TLR4 signaling in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L1377–L1384. [Google Scholar] [CrossRef] [PubMed]
- Tammaro, A.; Kers, J.; Emal, D.; Stroo, I.; Teske, G.J.D.; Butter, L.M.; Claessen, N.; Damman, J.; Derive, M.; Navis, G.; et al. Effect of TREM-1 blockade and single nucleotide variants in experimental renal injury and kidney transplantation. Sci. Rep. 2016, 6, 38275, Correction in Sci. Rep. 2017, 7, 44163. [Google Scholar] [CrossRef] [PubMed]
- Iurlaro, R.; Munoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J. 2016, 283, 2640–2652. [Google Scholar] [CrossRef]
- Keestra-Gounder, A.M.; Byndloss, M.X.; Seyffert, N.; Young, B.M.; Chavez-Arroyo, A.; Tsai, A.Y.; Cevallos, S.A.; Winter, M.G.; Pham, O.H.; Tiffany, C.R.; et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 2016, 532, 394–397. [Google Scholar] [CrossRef]
- Hosoda, H.; Tamura, H.; Kida, S.; Nagaoka, I. Transcriptional regulation of mouse TREM-1 gene in RAW264.7 macrophage-like cells. Life Sci. 2011, 89, 115–122. [Google Scholar] [CrossRef]
- Pan, P.; Liu, X.; Wu, L.; Li, X.; Wang, K.; Wang, X.; Zhou, X.; Long, Y.; Liu, D.; Xie, L.; et al. TREM-1 promoted apoptosis and inhibited autophagy in LPS-treated HK-2 cells through the NF-kappaB pathway. Int. J. Med. Sci. 2021, 18, 8–17. [Google Scholar] [CrossRef]
- Matteo, M.; Cicinelli, E.; Greco, P.; Massenzio, F.; Baldini, D.; Falagario, T.; Rosenberg, P.; Castellana, L.; Specchia, G.; Liso, A. Abnormal pattern of lymphocyte subpopulations in the endometrium of infertile women with chronic endometritis. Am. J. Reprod. Immunol. 2009, 61, 322–329. [Google Scholar] [CrossRef]
- Zhu, H.; Li, W.; Wang, Z.; Chen, J.; Ding, M.; Han, L. TREM-1 deficiency attenuates the inflammatory responses in LPS-induced murine endometritis. Microb. Biotechnol. 2019, 12, 1337–1345. [Google Scholar] [CrossRef]
- Read, C.B.; Kuijper, J.L.; Hjorth, S.A.; Heipel, M.D.; Tang, X.; Fleetwood, A.J.; Dantzler, J.L.; Grell, S.N.; Kastrup, J.; Wang, C.; et al. Cutting Edge: Identification of neutrophil PGLYRP1 as a ligand for TREM-1. J. Immunol. 2015, 194, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Rai, V.; Nooti, S.K.; Agrawal, D.K. Novel ligands and modulators of triggering receptor expressed on myeloid cells receptor family: 2015-2020 updates. Expert Opin. Ther. Pat. 2021, 31, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Antoine, D.J.; Andersson, U.; Tracey, K.J. The many faces of HMGB1: Molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J. Leukoc. Biol. 2013, 93, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, Y.; Huang, Y.; Deng, H. Pathophysiology of RAGE in inflammatory diseases. Front. Immunol. 2022, 13, 931473. [Google Scholar] [CrossRef]
- Siskind, S.; Brenner, M.; Wang, P. TREM-1 Modulation Strategies for Sepsis. Front. Immunol. 2022, 13, 907387. [Google Scholar] [CrossRef]
- Haselmayer, P.; Grosse-Hovest, L.; von Landenberg, P.; Schild, H.; Radsak, M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007, 110, 1029–1035. [Google Scholar] [CrossRef]
- Fu, L.; Han, L.; Xie, C.; Li, W.; Lin, L.; Pan, S.; Zhou, Y.; Li, Z.; Jin, M.; Zhang, A. Identification of Extracellular Actin As a Ligand for Triggering Receptor Expressed on Myeloid Cells-1 Signaling. Front. Immunol. 2017, 8, 917. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. [Google Scholar] [CrossRef]
- Sharapova, T.N.; Romanova, E.A.; Ivanova, O.K.; Yashin, D.V.; Sashchenko, L.P. Hsp70 Interacts with the TREM-1 Receptor Expressed on Monocytes and Thereby Stimulates Generation of Cytotoxic Lymphocytes Active against MHC-Negative Tumor Cells. Int. J. Mol. Sci. 2021, 22, 6889. [Google Scholar] [CrossRef]
- Qiang, X.; Yang, W.L.; Wu, R.; Zhou, M.; Jacob, A.; Dong, W.; Kuncewitch, M.; Ji, Y.; Yang, H.; Wang, H.; et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat. Med. 2013, 19, 1489–1495. [Google Scholar] [CrossRef]
- Denning, N.-L.; Aziz, M.; Diao, L.; Prince, J.M.; Wang, P. Targeting the eCIRP/TREM-1 interaction with a small molecule inhibitor improves cardiac dysfunction in neonatal sepsis. Mol. Med. 2020, 26, 121. [Google Scholar] [CrossRef]
- Bai, M.; Grieshaber-Bouyer, R.; Wang, J.; Schmider, A.B.; Wilson, Z.S.; Zeng, L.; Halyabar, O.; Godin, M.D.; Nguyen, H.N.; Levescot, A.; et al. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation. Blood 2017, 130, 2092–2100. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.H.; Che, X.; Kim, S.; Kim, D.H.; Ma, H.W.; Kim, J.H.; Kim, T.I.; Kim, W.H.; Kim, S.W.; Cheon, J.H. Triggering Receptor Expressed on Myeloid Cells-1 Agonist Regulates Intestinal Inflammation via Cd177(+) Neutrophils. Front. Immunol. 2021, 12, 650864. [Google Scholar] [CrossRef]
- Sachs, U.J.; Andrei-Selmer, C.L.; Maniar, A.; Weiss, T.; Paddock, C.; Orlova, V.V.; Choi, E.Y.; Newman, P.J.; Preissner, K.T.; Chavakis, T.; et al. The neutrophil-specific antigen CD177 is a counter-receptor for platelet endothelial cell adhesion molecule-1 (CD31). J. Biol. Chem. 2007, 282, 23603–23612. [Google Scholar] [CrossRef]
- Carrasco, K.; Boufenzer, A.; Jolly, L.; Le Cordier, H.; Wang, G.; Heck, A.J.; Cerwenka, A.; Vinolo, E.; Nazabal, A.; Kriznik, A.; et al. TREM-1 multimerization is essential for its activation on monocytes and neutrophils. Cell Mol. Immunol. 2019, 16, 460–472. [Google Scholar] [CrossRef]
- Theobald, V.; Schmitt, F.C.F.; Middel, C.S.; Gaissmaier, L.; Brenner, T.; Weigand, M.A. Triggering receptor expressed on myeloid cells-1 in sepsis, and current insights into clinical studies. Crit. Care 2024, 28, 17. [Google Scholar] [CrossRef]
- Yurkina, D.M.; Romanova, E.A.; Feoktistov, A.V.; Soshnikova, N.V.; Tvorogova, A.V.; Yashin, D.V.; Sashchenko, L.P. The Interaction of HMGB1 with the Proinflammatory TREM-1 Receptor Generates Cytotoxic Lymphocytes Active against HLA-Negative Tumor Cells. Int. J. Mol. Sci. 2024, 25, 627. [Google Scholar] [CrossRef] [PubMed]
- Bale, S.; Verma, P.; Yalavarthi, B.; Bajželj, M.; Hasan, S.A.; Silverman, J.N.; Broderick, K.; Shah, K.A.; Hamill, T.; Khanna, D.; et al. Inhibiting triggering receptor expressed on myeloid cells 1 signaling to ameliorate skin fibrosis. JCI Insight 2024, 9, e176319. [Google Scholar] [CrossRef]
- Borjas, T.; Jacob, A.; Yen, H.; Patel, V.; Coppa, G.F.; Aziz, M.; Wang, P. Inhibition of the Interaction of TREM-1 and eCIRP Attenuates Inflammation and Improves Survival in Hepatic Ischemia/Reperfusion. Shock 2022, 57, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Toro, J.-J.; Márquez-Coello, M.; García-Álvarez, J.-M.; Martín-Aspas, A.; Rivera-Fernández, R.; Sáez de Benito, A.; Girón-González, J.-A. Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients with severe sepsis and septic shock. PLoS ONE 2017, 12, e0175254. [Google Scholar] [CrossRef]
- Qian, L.; Weng, X.W.; Chen, W.; Sun, C.H.; Wu, J. TREM-1 as a potential therapeutic target in neonatal sepsis. Int. J. Clin. Exp. Med. 2014, 7, 1650–1658. [Google Scholar]
- Cohen, J. TREM-1 in sepsis. Lancet 2001, 358, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Bellos, I.; Fitrou, G.; Daskalakis, G.; Thomakos, N.; Papantoniou, N.; Pergialiotis, V. Soluble TREM-1 as a predictive factor of neonatal sepsis: A meta-analysis. Inflamm. Res. 2018, 67, 571–578. [Google Scholar] [CrossRef]
- Boufenzer, A.; Lemarie, J.; Simon, T.; Derive, M.; Bouazza, Y.; Tran, N.; Maskali, F.; Groubatch, F.; Bonnin, P.; Bastien, C.; et al. TREM-1 Mediates Inflammatory Injury and Cardiac Remodeling Following Myocardial Infarction. Circ. Res. 2015, 116, 1772–1782. [Google Scholar] [CrossRef]
- Joffre, J.; Potteaux, S.; Zeboudj, L.; Loyer, X.; Boufenzer, A.; Laurans, L.; Esposito, B.; Vandestienne, M.; de Jager, S.C.A.; Hénique, C.; et al. Genetic and Pharmacological Inhibition of TREM-1 Limits the Development of Experimental Atherosclerosis. J. Am. Coll. Cardiol. 2016, 68, 2776–2793. [Google Scholar] [CrossRef]
- Xue, J.-Y.; Chen, M.-T.; Jian, Y.-H.; Liang, L.-L.; Yang, X.-R.; Sun, S.-H.; Liu, P.; Liu, Q.-Y.; Jiang, Y.; Liu, M.-N. The role of the TREM receptor family in cardiovascular diseases: Functions, mechanisms, and therapeutic target. Life Sci. 2025, 369, 123555. [Google Scholar] [CrossRef]
- Zysset, D.; Weber, B.; Rihs, S.; Brasseit, J.; Freigang, S.; Riether, C.; Banz, Y.; Cerwenka, A.; Simillion, C.; Marques-Vidal, P.; et al. TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis. Nat. Commun. 2016, 7, 13151. [Google Scholar] [CrossRef]
- Yamada, H.; Kase, Y.; Okano, Y.; Kim, D.; Goto, M.; Takahashi, S.; Okano, H.; Toda, M. Subarachnoid hemorrhage triggers neuroinflammation of the entire cerebral cortex, leading to neuronal cell death. Inflamm. Regen. 2022, 42, 61. [Google Scholar] [CrossRef]
- Wu, X.; Zeng, H.; Xu, C.; Chen, H.; Fan, L.; Zhou, H.; Yu, Q.; Fu, X.; Peng, Y.; Yan, F.; et al. TREM1 Regulates Neuroinflammatory Injury by Modulate Proinflammatory Subtype Transition of Microglia and Formation of Neutrophil Extracellular Traps via Interaction with SYK in Experimental Subarachnoid Hemorrhage. Front. Immunol. 2021, 12, 766178. [Google Scholar] [CrossRef] [PubMed]
- Connolly, E.S.; Rabinstein, A.A.; Carhuapoma, J.R.; Derdeyn, C.P.; Dion, J.; Higashida, R.T.; Hoh, B.L.; Kirkness, C.J.; Naidech, A.M.; Ogilvy, C.S.; et al. Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage. Stroke 2012, 43, 1711–1737. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhou, Z.-m.; Zhang, L.-l.; Shu, H.-f.; Xia, J.-r.; Qin, X.; Hua, R.; Zhang, Y.-m. Infiltrating peripheral monocyte TREM-1 mediates dopaminergic neuron injury in substantia nigra of Parkinson’s disease model mice. Cell Death Dis. 2025, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Replogle, J.M.; Chan, G.; White, C.C.; Raj, T.; Winn, P.A.; Evans, D.A.; Sperling, R.A.; Chibnik, L.B.; Bradshaw, E.M.; Schneider, J.A.; et al. A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann. Neurol. 2015, 77, 469–477. [Google Scholar] [CrossRef]
- Wilson, E.N.; Wang, C.; Swarovski, M.S.; Zera, K.A.; Ennerfelt, H.E.; Wang, Q.; Chaney, A.; Gauba, E.; Ramos Benitez, J.A.; Le Guen, Y.; et al. TREM1 disrupts myeloid bioenergetics and cognitive function in aging and Alzheimer disease mouse models. Nat. Neurosci. 2024, 27, 873–885. [Google Scholar] [CrossRef]
- Heneka, M.T. TREM1 is the new kid on the block for the aging-associated innate immune response and Alzheimer’s disease. Nat. Immunol. 2024, 25, 938–940. [Google Scholar] [CrossRef]
- Deczkowska, A.; Keren-Shaul, H.; Weiner, A.; Colonna, M.; Schwartz, M.; Amit, I. Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell 2018, 173, 1073–1081. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.D.; Gao, Q.; Zhou, J.S.; Zhu, X.C.; Lu, H.; Shi, J.Q.; Tan, L.; Chen, Q.; Yu, J.T. TREM1 facilitates microglial phagocytosis of amyloid beta. Acta Neuropathol. 2016, 132, 667–683. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Sun, Y.; Wang, J.; Tang, Y.; Zhou, S.; Xu, Z.; Yuan, B.; Geng, X.; Chen, X. Trem1 mediates neuronal apoptosis via interaction with SYK after spinal cord ischemia-reperfusion injury. Am. J. Transl. Res. 2021, 13, 6117–6125. [Google Scholar]
- Deng, H.; Hu, N.; Wang, C.; Chen, M.; Zhao, M.H. Interaction between CD177 and platelet endothelial cell adhesion molecule-1 downregulates membrane-bound proteinase-3 (PR3) expression on neutrophils and attenuates neutrophil activation induced by PR3-ANCA. Arthritis Res. Ther. 2018, 20, 213. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.B.; Chen, N.C.; Chen, C.L.; Fu, M.H.; Pan, H.Y.; Hsu, C.Y.; Chen, S.D.; Chuang, Y.C. Serum Levels of Soluble Triggering Receptor Expressed on Myeloid Cells-1 Associated with the Severity and Outcome of Acute Ischemic Stroke. J. Clin. Med. 2020, 10, 61. [Google Scholar] [CrossRef]
- Zhang, C.; Kan, X.; Zhang, B.; Ni, H.; Shao, J. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases. Mol. Brain 2022, 15, 84. [Google Scholar] [CrossRef]
- Inanc, N.; Mumcu, G.; Can, M.; Yay, M.; Silbereisen, A.; Manoil, D.; Direskeneli, H.; Bostanci, N. Elevated serum TREM-1 is associated with periodontitis and disease activity in rheumatoid arthritis. Sci. Rep. 2021, 11, 2888. [Google Scholar] [CrossRef]
- Kuai, J.; Gregory, B.; Hill, A.; Pittman, D.D.; Feldman, J.L.; Brown, T.; Carito, B.; O’Toole, M.; Ramsey, R.; Adolfsson, O.; et al. TREM-1 expression is increased in the synovium of rheumatoid arthritis patients and induces the expression of pro-inflammatory cytokines. Rheumatology 2009, 48, 1352–1358. [Google Scholar] [CrossRef]
- Shen, Z.T.; Sigalov, A.B. Rationally designed ligand-independent peptide inhibitors of TREM-1 ameliorate collagen-induced arthritis. J. Cell Mol. Med. 2017, 21, 2524–2534. [Google Scholar] [CrossRef]
- Dai, Z.-Z.; Xu, J.; Zhang, Q.; Zhou, H.; Liu, X.-M.; Li, H. TREM1 interferes with macrophage mitophagy via the E2F1-mediated TOMM40 transcription axis in rheumatoid arthritis. Free Radic. Biol. Med. 2025, 228, 267–280. [Google Scholar] [CrossRef]
- Bostanci, N.; Abe, T.; Belibasakis, G.N.; Hajishengallis, G. TREM-1 Is Upregulated in Experimental Periodontitis, and Its Blockade Inhibits IL-17A and RANKL Expression and Suppresses Bone loss. J. Clin. Med. 2019, 8, 1579. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Weng, Y.; Feng, Y.; Liang, B.; Wang, H.; Li, L.; Wang, Z. Trem1 Induces Periodontal Inflammation via Regulating M1 Polarization. J. Dent. Res. 2022, 101, 437–447. [Google Scholar] [CrossRef]
- Bostanci, N.; Belibasakis, G.N. Doxycycline inhibits TREM-1 induction by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol. 2012, 66, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Willi, M.; Belibasakis, G.N.; Bostanci, N. Expression and regulation of triggering receptor expressed on myeloid cells 1 in periodontal diseases. Clin. Exp. Immunol. 2014, 178, 190–200. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Öztürk, V.; Emingil, G.; Bostanci, N. Soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in gingival crevicular fluid: Association with clinical and microbiologic parameters. J. Periodontol. 2014, 85, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.X.; Liu, Y.; Wang, J.; Xie, Y.; Li, R.Y.; Ma, Q.; Tu, Q.; Melhem, N.A.; Couldwell, S.; El-Araby, R.E.; et al. A novel lncRNA-mediated epigenetic regulatory mechanism in periodontitis. Int. J. Biol. Sci. 2023, 19, 5187–5203. [Google Scholar] [CrossRef]
- Fan, D.; He, X.; Bian, Y.; Guo, Q.; Zheng, K.; Zhao, Y.; Lu, C.; Liu, B.; Xu, X.; Zhang, G.; et al. Triptolide Modulates TREM-1 Signal Pathway to Inhibit the Inflammatory Response in Rheumatoid Arthritis. Int. J. Mol. Sci. 2016, 17, 498. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-T.; Jiang, W.-R.; Xu, L.; Zhou, M.-Y.; Huang, Y.-S. Effect of blockage of Trem1 on the M1 polarization of macrophages in the regulation dental pulp inflammation. Eur. J. Oral Sci. 2024, 132, e13018. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Salcedo, R.; Mivechi, N.F.; Trinchieri, G.; Horuzsko, A. The Pro-inflammatory Myeloid Cell Receptor TREM-1 Controls Kupffer Cell Activation and Development of Hepatocellular Carcinoma. Cancer Res. 2012, 72, 3977–3986. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Feng, J.; Tang, L. Function of TREM1 and TREM2 in Liver-Related Diseases. Cells 2020, 9, 2626. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Wang, Z.-C.; Wang, X.-Y.; Shi, J.-Y.; Yang, L.-X.; Ding, Z.-B.; Gao, Q.; Zhou, J.; Fan, J. TREM-1, an Inflammatory Modulator, is Expressed in Hepatocellular Carcinoma Cells and Significantly Promotes Tumor Progression. Ann. Surg. Oncol. 2015, 22, 3121–3129. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Q.; Yu, Q.; Xiao, J.; Zhao, H. TREM-1 aggravates chronic obstructive pulmonary disease development via activation NLRP3 inflammasome-mediated pyroptosis. Inflamm. Res. 2021, 70, 971–980. [Google Scholar] [CrossRef]
- Radsak, M.P.; Taube, C.; Haselmayer, P.; Tenzer, S.; Salih, H.R.; Wiewrodt, R.; Buhl, R.; Schild, H. Soluble triggering receptor expressed on myeloid cells 1 is released in patients with stable chronic obstructive pulmonary disease. Clin. Dev. Immunol. 2007, 2007, 52040. [Google Scholar] [CrossRef]
- Prins, M.M.; Verstockt, B.; Ferrante, M.; Vermeire, S.; Wildenberg, M.E.; Koelink, P.J. Monocyte TREM-1 Levels Associate with Anti-TNF Responsiveness in IBD Through Autophagy and Fcgamma-Receptor Signaling Pathways. Front. Immunol. 2021, 12, 627535. [Google Scholar] [CrossRef]
- Verstockt, B.; Verstockt, S.; Dehairs, J.; Ballet, V.; Blevi, H.; Wollants, W.J.; Breynaert, C.; Van Assche, G.; Vermeire, S.; Ferrante, M. Low TREM1 expression in whole blood predicts anti-TNF response in inflammatory bowel disease. EBioMedicine 2019, 40, 733–742. [Google Scholar] [CrossRef]
- Schenk, M.; Bouchon, A.; Seibold, F.; Mueller, C. TREM-1--expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J. Clin. Investig. 2007, 117, 3097–3106. [Google Scholar] [CrossRef]
- Kokten, T.; Gibot, S.; Lepage, P.; D’Alessio, S.; Hablot, J.; Ndiaye, N.C.; Busby-Venner, H.; Monot, C.; Garnier, B.; Moulin, D.; et al. TREM-1 Inhibition Restores Impaired Autophagy Activity and Reduces Colitis in Mice. J. Crohns Colitis 2018, 12, 230–244. [Google Scholar] [CrossRef]
- Haselmayer, P.; Daniel, M.; Tertilt, C.; Salih, H.R.; Stassen, M.; Schild, H.; Radsak, M.P. Signaling pathways of the TREM-1- and TLR4-mediated neutrophil oxidative burst. J. Innate Immun. 2009, 1, 582–591. [Google Scholar] [CrossRef]
- Campanholle, G.; Mittelsteadt, K.; Nakagawa, S.; Kobayashi, A.; Lin, S.-L.; Gharib, S.A.; Heinecke, J.W.; Hamerman, J.A.; Altemeier, W.A.; Duffield, J.S. TLR-2/TLR-4 TREM-1 Signaling Pathway Is Dispensable in Inflammatory Myeloid Cells during Sterile Kidney Injury. PLoS ONE 2013, 8, e68640. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Azam, T.; Ferwerda, G.; Girardin, S.E.; Kim, S.H.; Dinarello, C.A. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. J. Leukoc. Biol. 2006, 80, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
- Prufer, S.; Weber, M.; Sasca, D.; Teschner, D.; Wolfel, C.; Stein, P.; Stassen, M.; Schild, H.; Radsak, M.P. Distinct signaling cascades of TREM-1, TLR and NLR in neutrophils and monocytic cells. J. Innate Immun. 2014, 6, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Derive, M.; Bouazza, Y.; Massin, F.; Alauzet, C.; Levy, B.; Bollaert, P.E.; Gibot, S. Soluble TLT-1 is a naturally occurring TREM-1 inhibitor and protects mice from hyperresponsiveness and death during sepsis. Crit. Care 2010, 14, P43. [Google Scholar] [CrossRef]
- Lin, Y.T.; Tseng, K.Y.; Yeh, Y.C.; Yang, F.C.; Fung, C.P.; Chen, N.J. TREM-1 promotes survival during Klebsiella pneumoniae liver abscess in mice. Infect. Immun. 2014, 82, 1335–1342. [Google Scholar] [CrossRef]
- Weber, B.; Schuster, S.; Zysset, D.; Rihs, S.; Dickgreber, N.; Schürch, C.; Riether, C.; Siegrist, M.; Schneider, C.; Pawelski, H.; et al. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog. 2014, 10, e1003900. [Google Scholar] [CrossRef]
- Kozik, J.-H.; Trautmann, T.; Carambia, A.; Preti, M.; Lütgehetmann, M.; Krech, T.; Wiegard, C.; Heeren, J.; Herkel, J. Attenuated viral hepatitis in Trem1−/− mice is associated with reduced inflammatory activity of neutrophils. Sci. Rep. 2016, 6, 28556. [Google Scholar] [CrossRef]
- Saurer, L.; Zysset, D.; Rihs, S.; Mager, L.; Gusberti, M.; Simillion, C.; Lugli, A.; Zlobec, I.; Krebs, P.; Mueller, C. TREM-1 promotes intestinal tumorigenesis. Sci. Rep. 2017, 7, 14870. [Google Scholar] [CrossRef]
- Nguyen-Lefebvre, A.T.; Ajith, A.; Portik-Dobos, V.; Horuzsko, D.D.; Arbab, A.S.; Dzutsev, A.; Sadek, R.; Trinchieri, G.; Horuzsko, A. The innate immune receptor TREM-1 promotes liver injury and fibrosis. J. Clin. Investig. 2018, 128, 4870–4883. [Google Scholar] [CrossRef]
- Baruah, S.; Murthy, S.; Keck, K.; Galvan, I.; Prichard, A.; Allen, L.H.; Farrelly, M.; Klesney-Tait, J. TREM-1 regulates neutrophil chemotaxis by promoting NOX-dependent superoxide production. J. Leukoc. Biol. 2019, 105, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Vandestienne, M.; Zhang, Y.; Santos-Zas, I.; Al-Rifai, R.; Joffre, J.; Giraud, A.; Laurans, L.; Esposito, B.; Pinet, F.; Bruneval, P.; et al. TREM-1 orchestrates angiotensin II-induced monocyte trafficking and promotes experimental abdominal aortic aneurysm. J. Clin. Investig. 2021, 131, e142468. [Google Scholar] [CrossRef] [PubMed]
- Ajith, A.; Mamouni, K.; Horuzsko, D.D.; Musa, A.; Dzutsev, A.K.; Fang, J.R.; Chadli, A.; Zhu, X.; Lebedyeva, I.; Trinchieri, G.; et al. Targeting TREM1 augments antitumor T cell immunity by inhibiting myeloid-derived suppressor cells and restraining anti–PD-1 resistance. J. Clin. Investig. 2023, 133, e167951. [Google Scholar] [CrossRef]
- Jolly, L.; Carrasco, K.; Derive, M.; Lemarié, J.; Boufenzer, A.; Gibot, S. Targeted endothelial gene deletion of triggering receptor expressed on myeloid cells-1 protects mice during septic shock. Cardiovasc. Res. 2018, 114, 907–918. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, R.; Sherchan, P.; Ren, R.; He, W.; Fang, Y.; Huang, Y.; Shi, H.; Tang, L.; Yang, S.; et al. TREM (Triggering Receptor Expressed on Myeloid Cells)-1 Inhibition Attenuates Neuroinflammation via PKC (Protein Kinase C) δ/CARD9 (Caspase Recruitment Domain Family Member 9) Signaling Pathway After Intracerebral Hemorrhage in Mice. Stroke 2021, 52, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Tsai, C.Y.; Chiang, S.H.; Tang, S.J.; Chen, N.J.; Mak, T.W.; Sun, G.H.; Sun, K.H. Triggering receptor expressed on myeloid cells-1 (TREM-1) deficiency augments BAFF production to promote lupus progression. J. Autoimmun. 2017, 78, 92–100. [Google Scholar] [CrossRef]
- Derive, M.; Bouazza, Y.; Sennoun, N.; Marchionni, S.; Quigley, L.; Washington, V.; Massin, F.; Max, J.P.; Ford, J.; Alauzet, C.; et al. Soluble TREM-like transcript-1 regulates leukocyte activation and controls microbial sepsis. J. Immunol. 2012, 188, 5585–5592. [Google Scholar] [CrossRef]
- Klesney-Tait, J.; Keck, K.; Li, X.; Gilfillan, S.; Otero, K.; Baruah, S.; Meyerholz, D.K.; Varga, S.M.; Knudson, C.J.; Moninger, T.O.; et al. Transepithelial migration of neutrophils into the lung requires TREM-1. J. Clin. Investig. 2013, 123, 138–149. [Google Scholar] [CrossRef]
- McQueen, B.E.; Kollipara, A.; Gyorke, C.E.; Andrews, C.W., Jr.; Ezzell, A.; Darville, T.; Nagarajan, U.M. Reduced Uterine Tissue Damage during Chlamydia muridarum Infection in TREM-1,3-Deficient Mice. Infect. Immun. 2021, 89, e0007221. [Google Scholar] [CrossRef]
- Hommes, T.J.; Hoogendijk, A.J.; Dessing, M.C.; Van’t Veer, C.; Florquin, S.; Colonna, M.; de Vos, A.F.; van der Poll, T. Triggering receptor expressed on myeloid cells-1 (TREM-1) improves host defence in pneumococcal pneumonia. J. Pathol. 2014, 233, 357–367. [Google Scholar] [CrossRef]
- Dubar, M.; Carrasco, K.; Gibot, S.; Bisson, C. Effects of Porphyromonas gingivalis LPS and LR12 peptide on TREM-1 expression by monocytes. J. Clin. Periodontol. 2018, 45, 799–805. [Google Scholar] [CrossRef]
- Sigalov, A.B. A novel ligand-independent peptide inhibitor of TREM-1 suppresses tumor growth in human lung cancer xenografts and prolongs survival of mice with lipopolysaccharide-induced septic shock. Int. Immunopharmacol. 2014, 21, 208–219. [Google Scholar] [CrossRef]
- Wang, F.; Liu, S.; Wu, S.; Zhu, Q.; Ou, G.; Liu, C.; Wang, Y.; Liao, Y.; Sun, Z. Blocking TREM-1 signaling prolongs survival of mice with Pseudomonas aeruginosa induced sepsis. Cell. Immunol. 2012, 272, 251–258. [Google Scholar] [CrossRef]
- Wong-Baeza, I.; González-Roldán, N.; Ferat-Osorio, E.; Esquivel-Callejas, N.; Aduna-Vicente, R.; Arriaga-Pizano, L.; Astudillo-de la Vega, H.; Villasis-Keever, M.A.; Torres-González, R.; Estrada-García, I.; et al. Triggering receptor expressed on myeloid cells (TREM-1) is regulated post-transcriptionally and its ligand is present in the sera of some septic patients. Clin. Exp. Immunol. 2006, 145, 448–455. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Liu, H.; Liu, H.; Jiang, H. LR12 Promotes Liver Repair by Improving the Resolution of Inflammation and Liver Regeneration in Mice with Thioacetamide- (TAA-) Induced Acute Liver Failure. Mediat. Inflamm. 2021, 2021, 2327721. [Google Scholar] [CrossRef]
- Gibot, S.; Boufenzer, A.; Ait-Oufella, H.; Derive, M. Inhibiting Peptides Derived from Triggering Receptor Expressed on Myeloid Cells-1 (Trem-1) Trem-like Transcript 1 (tlt-1) and Uses Thereof. WO2014037565, 13 March 2014. [Google Scholar]
- Gibot, S.; Kolopp-Sarda, M.N.; Bene, M.C.; Bollaert, P.E.; Lozniewski, A.; Mory, F.; Levy, B.; Faure, G.C. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J. Exp. Med. 2004, 200, 1419–1426. [Google Scholar] [CrossRef]
- Pliyev, B.K.; Menshikov, M. Comparative evaluation of the role of the adhesion molecule CD177 in neutrophil interactions with platelets and endothelium. Eur. J. Haematol. 2012, 89, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.E.; La, D.T.; Yang, H.T.; Massin, F.; Gibot, S.; Faure, G.; Stohl, W. Elevated synovial expression of triggering receptor expressed on myeloid cells 1 in patients with septic arthritis or rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Akahoshi, T.; Aoki, N.; Toyomoto, M.; Miyasaka, N.; Kohsaka, H. Intervention of an inflammation amplifier, triggering receptor expressed on myeloid cells 1, for treatment of autoimmune arthritis. Arthritis Rheum. 2009, 60, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Kamei, K.; Yasuda, T.; Ueda, T.; Qiang, F.; Takeyama, Y.; Shiozaki, H. Role of triggering receptor expressed on myeloid cells-1 in experimental severe acute pancreatitis. J. Hepatobiliary Pancreat. Sci. 2010, 17, 305–312. [Google Scholar] [CrossRef]
- Gibot, S.; Massin, F.; Alauzet, C.; Montemont, C.; Lozniewski, A.; Bollaert, P.E.; Levy, B. Effects of the TREM-1 pathway modulation during mesenteric ischemia-reperfusion in rats. Crit. Care Med. 2008, 36, 504–510. [Google Scholar] [CrossRef]
- Syed, M.A.; Joo, M.; Abbas, Z.; Rodger, D.; Christman, J.W.; Mehta, D.; Sadikot, R.T. Expression of TREM-1 is inhibited by PGD2 and PGJ2 in macrophages. Exp. Cell Res. 2010, 316, 3140–3149. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, Y.; Qiu, Q.; Xiao, Y.; Huang, M.; Shi, M.; Liang, L.; Yang, X.; Xu, H. Triptolide inhibits the migration and invasion of rheumatoid fibroblast-like synoviocytes by blocking the activation of the JNK MAPK pathway. Int. Immunopharmacol. 2016, 41, 8–16. [Google Scholar] [CrossRef]
- Stadler, N.; Hasibeder, A.; Aranda Lopez, P.; Desuki, A.; Kriege, O.; Weber, A.N.R.; Michel, C.; Teschner, D.; Hess, G.; Theobald, M.; et al. Ibrutinib Abrogates TREM-1 Mediated Neutrophil Activation. Blood 2016, 128, 3691. [Google Scholar] [CrossRef]
- Stadler, N.; Hasibeder, A.; Lopez, P.A.; Teschner, D.; Desuki, A.; Kriege, O.; Weber, A.N.R.; Schulz, C.; Michel, C.; Heβ, G.; et al. The Bruton tyrosine kinase inhibitor ibrutinib abrogates triggering receptor on myeloid cells 1-mediated neutrophil activation. Haematologica 2017, 102, e191–e194. [Google Scholar] [CrossRef]
- Hasibeder, A.; Stadler, N.; Aranda Lopez, P.; Desuki, A.; Kriege, O.; Weber, A.N.R.; Michel, C.; Teschner, D.; Hess, G.; Theobald, M.; et al. Idelalisib Impairs TREM-1 and TLR Mediated Neutrophil Activation. Blood 2016, 128, 2510. [Google Scholar] [CrossRef]
- Alflen, A.; Stadler, N.; Aranda Lopez, P.; Teschner, D.; Hess, G.; Theobald, M.; Radsak, M.P. Idelalisib Impairs TREM-1 Mediated Neutrophil Inflammatory Responses. Blood 2017, 130 (Suppl. 1), 3569. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ling, S.; Jia, X.; Lin, B.; Huang, X.; Zhong, J.; Li, W.; Lin, X.; Sun, Y.; Yuan, J. Tacrolimus (FK506) suppresses TREM-1 expression at an early but not at a late stage in a murine model of fungal keratitis. PLoS ONE 2014, 9, e114386. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhong, J.; Peng, L.; Wang, B.; Li, S.; Huang, H.; Deng, Y.; Zhang, H.; Yang, R.; Wang, C.; et al. Tacrolimus downregulates inflammation by regulating pro-/anti-inflammatory responses in LPS-induced keratitis. Mol. Med. Rep. 2017, 16, 5855–5862. [Google Scholar] [CrossRef]
- Yuan, Z.; Syed, M.A.; Panchal, D.; Rogers, D.; Joo, M.; Sadikot, R.T. Curcumin mediated epigenetic modulation inhibits TREM-1 expression in response to lipopolysaccharide. Int. J. Biochem. Cell Biol. 2012, 44, 2032–2043. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Jo, W.H.; Hoang, N.H.M.; Kim, M.S. Curcumin-Attenuated TREM-1/DAP12/NLRP3/Caspase-1/IL1B, TLR4/NF-κB Pathways, and Tau Hyperphosphorylation Induced by 1,2-Diacetyl Benzene: An in Vitro and in Silico Study. Neurotox. Res. 2022, 40, 1272–1291. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Syed, M.; Panchal, D.; Rogers, D.; Joo, M.; Sadikot, R.T. Curcumin Inhibits Lps Induced TREM-1 Expression by Attenuating Acetylation Of Histone 3 and 4 in the P65 Binding Region of the TREM-1 Promoter. In B101. Pathogenesis of Acute Lung Injury, Proceedings of the American Thoracic Society 2012 International Conference, San Francisco, CA, USA, 18–23 May 2012; American Thoracic Society International Conference Abstracts; American Thoracic Society: New York, NY, USA, 2012; p. A3703. [Google Scholar]
- Hasriadi; Dasuni Wasana, P.W.; Vajragupta, O.; Rojsitthisak, P.; Towiwat, P. Mechanistic Insight into the Effects of Curcumin on Neuroinflammation-Driven Chronic Pain. Pharmaceuticals 2021, 14, 777. [Google Scholar] [CrossRef] [PubMed]
- Bostanci, N.; Akgül, B.; Tsakanika, V.; Allaker, R.P.; Hughes, F.J.; McKay, I.J. Effects of low-dose doxycycline on cytokine secretion in human monocytes stimulated with Aggregatibacter actinomycetemcomitans. Cytokine 2011, 56, 656–661. [Google Scholar] [CrossRef]
- Fan, R.; Cheng, Z.; Huang, Z.; Yang, Y.; Sun, N.; Hu, B.; Hou, P.; Liu, B.; Huang, C.; Liu, S. TREM-1, TREM-2 and their association with disease severity in patients with COVID-19. Ann. Med. 2023, 55, 2269558. [Google Scholar] [CrossRef] [PubMed]
- François, B.; Lambden, S.; Garaud, J.-J.; Derive, M.; Grouin, J.-M.; Asfar, P.; Darreau, C.; Mira, J.-P.; Quenot, J.-P.; Lemarié, J.; et al. Evaluation of the efficacy and safety of TREM-1 inhibition with nangibotide in patients with COVID-19 receiving respiratory support: The ESSENTIAL randomised, double-blind trial. eClinicalMedicine 2023, 60, 102013. [Google Scholar] [CrossRef]
- da Silva-Neto, P.V.; de Carvalho, J.C.S.; Pimentel, V.E.; Pérez, M.M.; Toro, D.M.; Fraga-Silva, T.F.C.; Fuzo, C.A.; Oliveira, C.N.S.; Rodrigues, L.C.; Argolo, J.G.M.; et al. sTREM-1 Predicts Disease Severity and Mortality in COVID-19 Patients: Involvement of Peripheral Blood Leukocytes and MMP-8 Activity. Viruses 2021, 13, 2521. [Google Scholar] [CrossRef]
- Kerget, F.; Kerget, B.; İba Yılmaz, S.; Kızıltunç, A. Evaluation of the relationship between TREM-1/TREM-2 ratio and clinical course in COVID-19 pneumonia. Int. J. Clin. Pract. 2021, 75, e14697. [Google Scholar] [CrossRef]
- François, B.; Lambden, S.; Fivez, T.; Gibot, S.; Derive, M.; Grouin, J.M.; Salcedo-Magguilli, M.; Lemarié, J.; De Schryver, N.; Jalkanen, V.; et al. Prospective evaluation of the efficacy, safety, and optimal biomarker enrichment strategy for nangibotide, a TREM-1 inhibitor, in patients with septic shock (ASTONISH): A double-blind, randomised, controlled, phase 2b trial. Lancet Respir. Med. 2023, 11, 894–904. [Google Scholar] [CrossRef]
- Koehler, M.F.; Zobel, K.; Beresini, M.H.; Caris, L.D.; Combs, D.; Paasch, B.D.; Lazarus, R.A. Albumin affinity tags increase peptide half-life in vivo. Bioorg. Med. Chem. Lett. 2002, 12, 2883–2886. [Google Scholar] [CrossRef]
- Pollaro, L.; Raghunathan, S.; Morales-Sanfrutos, J.; Angelini, A.; Kontos, S.; Heinis, C. Bicyclic peptides conjugated to an albumin-binding tag diffuse efficiently into solid tumors. Mol. Cancer Ther. 2015, 14, 151–161. [Google Scholar] [CrossRef]
- Bumbaca, B.; Li, Z.; Shah, D.K. Pharmacokinetics of protein and peptide conjugates. Drug Metab. Pharmacokinet. 2019, 34, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.L.; Hangasky, J.A.; Ashley, G.W.; Santi, D.V. Long-Acting, Longer-Acting, and Ultralong-Acting Antiobesity Peptides. J. Med. Chem. 2025, 68, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Lucana, M.C.; Arruga, Y.; Petrachi, E.; Roig, A.; Lucchi, R.; Oller-Salvia, B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- Abdulbagi, M.; Wang, L.; Siddig, O.; Di, B.; Li, B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021, 11, 1716. [Google Scholar] [CrossRef]








| Ligand | Evidence for Interaction with TREM-1 | Biological Response via TREM-1 | Remarks | Ref. |
|---|---|---|---|---|
| LPS | LPS is not a direct ligand but acts upstream to induce TREM-1 expression; TREM-1 amplifies LPS responses. | Its stimulation provides TREM-1 upregulation, clustering (multimerization), enhanced Ca2+ flux, ROS, cytokine production. | The contribution of TREM-1 is considered an amplifier rather than the primary receptor. | [5,45,46] |
| PGLYRP1 (Tag7) | Available in 3 forms: 17, N15 and N9. Identified as a ligand capable of binding sTREM-1 and activating TREM-1 in reporter assays/cell culture. | Induces phosphorylation of SYK, release of IL-6, sTREM-1, and amplifies inflammation. | Binding affinity for TREM-1; 3 peptides 17 Kd = 1.3 nM, N15 Kd = 7.4 nM and N9 Kd = 9.7 nM. The activation requires peptidoglycan crosslinking. | [31] |
| HMGB1 | Shown via cross-linking/immunoprecipitation to bind TREM-1 | Necrotic lysates with HMGB1 stimulates TREM-1 dependent IL-1β, IL-6, TNF, IFN, and via TREM-1 signaling | Binding affinity for TREM-1 Kd = 35.4 µM. Often acts in concert with other co-activators (nucleic acids, DNA, other DAMPs) to fully engage inflammatory receptors. | [47,48] |
| Actin | Recombinant actin (or actin from necrotic/platelet) binds the TREM-1 extracellular domain and enhances inflammatory responses; effect absent in TREM-1 knockout mice. | Co-injection of actin in mice enhances inflammatory responses in wild-type but not in TREM-1–/– mice; synergizes with LPS. | The physiological relevance of extracellular actin as a TREM-1 ligand under sterile injury or infection is still under investigation. | [37] |
| HSP70 | HSP70 has been shown to bind TREM-1 (or sTREM-1) and induce cytokine mRNAs in monocytes (e.g., TNFα, IFNγ). | Activation increases TNF-α, IFN-γ mRNA in monocytes, IL-2 secretion by PBMCs; stimulates maturation/ activation of cytotoxic lymphocytes in co-culture assays. | Binding affinity of HSP70 N7 peptide for TREM-1 Kd = 1.6 nM. The strength and conditions (e.g., necrotic lysate, co-factors) affect activation. | [39] |
| eCIRP | Demonstrated as a bona fide ligand: via surface plasmon resonance, FRET, macrophage binding. Blocking TREM-1 (or TREM-1 knockouts) reduces eCIRP-induced inflammation. | eCIRP binding to TREM-1 triggers DAP12 → Syk → downstream signaling; in vivo, blocking using peptide M3 or LP17 reduces systemic inflammation and tissue injury in sepsis/ALI models. | Binding affinity for TREM-1 Kd = 117 nM. Because eCIRP is a more recently characterized ligand, more studies are needed to establish its relative importance among TREM-1 ligands. | [40,41,49] |
| CD177 | CD177 is described as an endogenous TREM-1 ligand | TREM-1 activation increases NETs and IL-22 in CD177+ neutrophils, contributing to bacterial clearance and epithelial barrier protection. | Direct molecular binding interface (CD177-TREM-1) is not well characterized; much of the evidence is indirect or inferred. | [43] |
| Disease | Primary Trigger | Activation Priority | TREM-1 Role |
|---|---|---|---|
| Sepsis | LPS | TLR4 → TREM-1 → NLRP3 | Amplifier of TLR4 |
| Neuro inflammation | DAMPs | TLR4 → TREM-1 and NLRP3 (parallel) | Synergistic inflammation |
| RA | Endogenous ligands | TLR4 → TREM-1 → NLRP3 | Joint inflammation amplifier |
| Hepatic/ Renal IRI | DAMPs | TLR4 + TREM-1 → NLRP3 (cooperative) | Sterile injury amplifier |
| Liver fibrosis | Chronic inflammation | TLR4/NLRP3 → TREM-1 | Late-stage tumor promoter |
| COPD | Cigarette smoke | TREM-1 ↑ → TLR4 → NLRP3 | Early driver & amplifier |
| IBD | Microbial/ DAMPs | TLR4/NOD2 → TREM-1 → NLRP3 | Amplifier, severity marker |
| NCT (Number) | Status | Condition/Study Type | Intervention or Measure | Location(s) |
|---|---|---|---|---|
| NCT02873949 | Completed | Periodontitis (Observational biomarker study) | Crevicular and saliva samples; etiologic treatment | Central Hospital, Nancy, France |
| NCT01490424 | Completed | Sepsis (Genetic association study) | Analysis of Trem-1 gene polymorphisms | Chinese PLA General Hospital, Beijing, China |
| NCT04948840 | Not Yet Recruiting | Radiation-induced mammary fibrosis (Observational biomarker study) | Assessment of TREM-1 expression and activation | National Taiwan University Hospital, Taipei, Taiwan |
| NCT04544891 | Not Yet Recruiting | COVID-19 (Observational biomarker study) | Blood sampling for TREM-1 pathway activation | CHRU Limoges & Central Hospital Nancy, France |
| NCT05020496 | Not Yet Recruiting | UV-induced immune suppression (Mechanistic study) | Diphenyl cyclopropenone (DPCP) challenge | University of Alabama at Birmingham, USA |
| NCT00645619 | Withdrawn | Viral and bacterial pneumonia (Diagnostic biomarker study) | TREM-1 protein assay | Children’s Medical Center, Dallas, Texas, USA |
| NCT01903668 | Withdrawn | Sepsis (Ligand identification study) | Endogenous TREM-1 ligand analysis | Centre Hospitalier Universitaire Dijon, France |
| NCT00976157 | Completed | Ventilator-associated pneumonia (Observational biomarker study) | Serial sTREM-1 measurement in BAL fluid | Mackay Memorial Hospital, Taipei, Taiwan |
| NCT01193413 | Completed | Severe acute pancreatitis (Observational biomarker study) | Measurement of sTREM-1 in FNA fluid | Changhai Hospital, China |
| NCT01410578 | Completed | Sepsis/Bacteremia (Diagnostic biomarker study) | Measurement of sTREM-1, PCT, CRP | Chinese PLA General Hospital, Beijing, China |
| NCT03158948 | Completed | Septic shock (Interventional, TREM-1 blockade) | Drug: Motrem (anti-TREM-1 mAb) compared with placebo | Multicenter (Belgium, France, The Netherlands, Spain) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trivedi, N.; Bhosale, J.D.; Pant, A.; Suryawanshi, S.P.; Tiwari, P.; Abel, P.W.; Jadhav, G.P. Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in Inflammation and Disease: Mechanisms, Therapeutic Potential, and Future Directions. Int. J. Mol. Sci. 2025, 26, 10386. https://doi.org/10.3390/ijms262110386
Trivedi N, Bhosale JD, Pant A, Suryawanshi SP, Tiwari P, Abel PW, Jadhav GP. Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in Inflammation and Disease: Mechanisms, Therapeutic Potential, and Future Directions. International Journal of Molecular Sciences. 2025; 26(21):10386. https://doi.org/10.3390/ijms262110386
Chicago/Turabian StyleTrivedi, Neerja, Jitendra D. Bhosale, Amit Pant, Sonali P. Suryawanshi, Prerna Tiwari, Peter W. Abel, and Gopal P. Jadhav. 2025. "Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in Inflammation and Disease: Mechanisms, Therapeutic Potential, and Future Directions" International Journal of Molecular Sciences 26, no. 21: 10386. https://doi.org/10.3390/ijms262110386
APA StyleTrivedi, N., Bhosale, J. D., Pant, A., Suryawanshi, S. P., Tiwari, P., Abel, P. W., & Jadhav, G. P. (2025). Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) in Inflammation and Disease: Mechanisms, Therapeutic Potential, and Future Directions. International Journal of Molecular Sciences, 26(21), 10386. https://doi.org/10.3390/ijms262110386

