Oxidized Hyaluronic Acid-Based Sponges: A Promising Biomaterial for Oral Mucosa Lesion Application
Abstract
1. Introduction
2. Results and Discussion
2.1. Composition by FTIR Spectroscopy
2.2. Composition by Raman Spectroscopy
2.3. Thermal Behaviour by TGA
2.4. Morphology by SEM
2.5. Compressive Mechanical Properties
2.6. Evaluation of Cell Viability
3. Materials and Methods
3.1. Materials Selection
3.2. Methods
3.2.1. Preparation of Uncrosslinked Chitosan Sponges
3.2.2. Preparation of Chitosan and Oxidized Hyaluronic Acid (OHA) Sponges in 1:1 and 1:2 Ratios
3.2.3. Preparation of PEGDE-Crosslinked Chitosan/Oxidized Hyaluronic Acid (OHA) Sponges
3.3. Composition and Structural Characterization of Crosslinked Sponges
3.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.3.2. Raman Spectroscopy
3.3.3. Thermogravimetric Analysis (TGA)
3.3.4. Scanning Electron Microscopy (SEM)
3.3.5. Mechanical Analysis
3.3.6. Biocompatibility Studies
Cell Viability and Proliferation Studies
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fakhri, E.; Eslami, H.; Maroufi, P.; Pakdel, F.; Taghizadeh, S.; Ganbarov, K.; Yousefi, M.; Tanomand, A.; Yousefi, B.; Mahmoudi, S.; et al. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol. 2020, 162, 956–974. [Google Scholar] [CrossRef]
- Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K143124 (accessed on 21 September 2025).
- Lin, Z.; Chen, H.; Li, S.; Li, X.; Wang, J.; Xu, S. Electrospun Food Polysaccharides Loaded with Bioactive Compounds: Fabrication, Release, and Applications. Polymers 2023, 15, 2318. [Google Scholar] [CrossRef]
- Zając, A.; Hanuza, J.; Wandas, M.; Dymińska, L. Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 114–120. [Google Scholar] [CrossRef]
- Wells, C.M.; Coleman, E.C.; Yeasmin, R.; Harrison, Z.L.; Kurakula, M.; Baker, D.L.; Bumgardner, J.D.; Fujiwara, T.; Jennings, J.A. Synthesis and Characterization of 2-Decenoic Acid Modified Chitosan for Infection Prevention and Tissue Engineering. Mar. Drugs 2021, 19, 556. [Google Scholar] [CrossRef]
- Yang, X.; Yang, K.; Wu, S.; Chen, X.; Yu, F.; Li, J.; Ma, M.; Zhu, Z. Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze–thawing. Radiat. Phys. Chem. 2010, 79, 606–611. [Google Scholar] [CrossRef]
- Tripodo, G.; Trapani, A.; Rosato, A.; Di Franco, C.; Tamma, R.; Trapani, G.; Ribatti, D.; Mandracchia, D. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr. Polym. 2018, 198, 124–130. [Google Scholar] [CrossRef]
- Benahmed, A.G.; Noor, S.; Menzel, A. Oral Aphthous: Pathophysiology, Clinical Aspects and Medical Treatment. Arch. Razi Inst. 2021, 76, 1155–1163. [Google Scholar] [CrossRef]
- Fitzpatrick, S.G.; Cohen, D.M.; Clark, A.N. Ulcerated Lesions of the Oral Mucosa: Clinical and Histologic Review. Head Neck Pathol. 2019, 13, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bernal, J.; Conejero, C.; Conejero, R. Recurrent Aphthous Stomatitis. Aftosis oral recidivante. Actas Dermo-Sifiliográficas 2020, 111, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Gao, S.; Song, X.; Huang, L.; Dong, H.; Liu, J.; Chen, F.; Yu, S. Preparation and characterization of chitosan membranes. RSC Adv. 2018, 8, 28433–28439. [Google Scholar] [CrossRef]
- Vitamia, C.; Iftinan, G.N.; Latarissa, I.R.; Wilar, G.; Cahyanto, A.; Elamin, K.M.; Wathoni, N. Natural and Synthetic Drugs Approached for the Treatment of Recurrent Aphthous Stomatitis Over the Last Decade. Drug Des. Devel. Ther. 2024, 18, 1297–1312. [Google Scholar] [CrossRef]
- Yarnpakdee, S.; Kaewprachu, P.; Jaisan, C.; Senphan, T.; Nagarajan, M.; Wangtueai, S. Extraction and Physico-Chemical Characterization of Chitosan from Mantis Shrimp (Oratosquilla nepa) Shell and the Development of Bio-Composite Film with Agarose. Polymers 2022, 14, 3983. [Google Scholar] [CrossRef]
- Islam, N.; Hoque, M.; Taharat, S.F. Recent advances in extraction of chitin and chitosan. World J. Microbiol. Biotechnol. 2022, 39, 28. [Google Scholar] [CrossRef]
- Frigaard, J.; Jensen, J.L.; Galtung, H.K.; Hiorth, M. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front. Pharmacol. 2022, 13, 880377. [Google Scholar] [CrossRef] [PubMed]
- Luján, M.; Ayala, C.; Castillo, E.; Pinedo, C.; González, I.; Durand, C. Dressing based on Vaccinium corymbosum L. and chitosan with high skin regenerative capacity. Sci. Agropecu. 2018, 9, 223–229. [Google Scholar] [CrossRef]
- López-Ruiz, E.; Jiménez, G.; de Cienfuegos, L.Á.; Antic, C.; Sabata, R.; A Marchal, J.; Gálvez-Martín, P. Advances of hyaluronic acid in stem cell therapy and tissue engineering, including current clinical trials. Eur. Cell Mater. 2019, 37, 186–213. [Google Scholar] [CrossRef]
- Gamboa, C.D.C.; Chuc, M.G.; Aguilar, F.J.; Cauich, J.V.; Vargas, R.F.; Aguilar, D.A.; Herrera-Atoche, J.R.; Pacheco, N. Zinc oxide and copper chitosan composite films with antimicrobial activity. Polymers 2021, 13, 3861. [Google Scholar] [CrossRef]
- Mahesh, K.; Meenakshi, I.; Raghavendra, K.N.; Karthikeya, P.; Raghunath, N. Biomaterials and Their Applications in Dentistry—A Literature Review. J. Evol. Med. Dent. Sci. 2021, 10, 1940–1947. [Google Scholar]
- Zhang, C.; Hui, D.; Du, C.; Sun, H.; Peng, W.; Pu, X.; Li, Z.; Sun, J.; Zhou, C. Preparation and application of chitosan biomaterials in dentistry. Int. J. Biol. Macromol. 2021, 167, 1198–1210. [Google Scholar] [CrossRef]
- Szulc, M.; Lewandowska, K. Biomaterials Based on Chitosan and Its Derivatives and Their Potential in Tissue Engineering and Other Biomedical Applications—A Review. Molecules 2022, 28, 247. [Google Scholar] [CrossRef]
- Kmiec, M.; Pighinelli, L.; Tedesco, M.F.; Silva, M.M.; Reis, V. Chitosan-Properties and Applications in Dentistry. Adv. Tissue Eng. Regen. Med. Open Access 2017, 2, 205–211. [Google Scholar] [CrossRef]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid-Based wound dressings: A review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef]
- Marinho, A.; Nunes, C.; Reis, S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 1518. [Google Scholar] [CrossRef]
- Valachová, K.; Šoltés, L.L. Versatile Use of Chitosan and Hyaluronan in Medicine. Molecules 2021, 26, 1195. [Google Scholar] [CrossRef]
- Sodhi, H.; Panitch, A. Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules 2020, 11, 29. [Google Scholar] [CrossRef]
- Shao, Y.; Zhou, H. Clinical evaluation of an oral mucoadhesive film containing chitosan for the treatment of recurrent aphthous stomatitis: A randomized, double-blind study. J. Dermatol. Treat. 2020, 31, 739–743. [Google Scholar] [CrossRef]
- Taokaew, S.; Kaewkong, W.; Kriangkrai, W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels. 2023, 9, 277. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, Y.; Wang, H.; Li, Q.; Tang, K. In situ forming hydrogel recombination with tissue adhesion and antibacterial property for tissue adhesive. J. Biomater. Appl. 2022, 37, 12–22. [Google Scholar] [CrossRef]
- Hozumi, T.; Kageyama, T.; Ohta, S.; Fukuda, J.; Ito, T. Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff’s Base Formation. Biomacromolecules 2018, 19, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Xu, T.; Chen, W.; Qin, H.; Chi, B.; Ye, Z. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery. Carbohydr. Polym. 2018, 179, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, L.; Xu, W.; Fan, L.; Nie, M. Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr. Polym. 2018, 199, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Pandit, A.H.; Mazumdar, N.; Ahmad, S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int. J. Biol. Macromol. 2019, 137, 853–869. [Google Scholar] [CrossRef]
- Liu, C.; Liu, D.; Wang, Y.; Li, Y.; Li, T.; Zhou, Z.; Yang, Z.; Wang, J.; Zhang, Q. Glycol chitosan/oxidized hyaluronic acid hydrogels functionalized with cartilage extracellular matrix particles and incorporating BMSCs for cartilage repair. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 1), 721–732. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Han, J.H.; Kwon, H.C.; Lim, S.J.; Han, S.G.; Jung, H.S.; Lee, K.H.; Kang, J.H.; Han, S.G. Toxicity Assessment of a Single Dose of Poly(ethylene glycol) Diglycidyl Ether (PEGDE) Administered Subcutaneously in Mice. Toxics 2021, 9, 354. [Google Scholar] [CrossRef]
- Zerbinati, N.; Esposito, C.; Cipolla, G.; Calligaro, A.; Monticelli, D.; Martina, V.; Golubovic, M.; Binic, I.; Sigova, J.; Gallo, A.L.; et al. Chemical and mechanical characterization of hyaluronic acid hydrogel cross-linked with polyethylen glycol and its use in dermatology. Dermatol. Ther. 2020, 33, e13747. [Google Scholar] [CrossRef] [PubMed]
- Kono, H.; Nakamura, T.; Hashimoto, H.; Shimizu, Y. Characterization, molecular dynamics, and encapsulation ability of β-cyclodextrin polymers crosslinked by polyethylene glycol. Carbohydr. Polym. 2015, 128, 11–23. [Google Scholar] [CrossRef]
- Mosaad, R.M.; Alhalafi, M.H.; Emam, E.M.; Ibrahim, M.A.; Ibrahim, H. Enhancement of Antimicrobial and Dyeing Properties of Cellulosic Fabrics via Chitosan Nanoparticles. Polymers 2022, 14, 4211. [Google Scholar] [CrossRef]
- Bwatanglang, I.B.; Mohammad, F.; Yusof, N.A.; Abdullah, J.; Hussein, M.Z.; Alitheen, N.B.; Abu, N. Folic acid targeted Mn:ZnS quantum dots for theranostic applications of cancer cell imaging and therapy. Int. J. Nanomed. 2016, 11, 413–428. [Google Scholar] [CrossRef]
- Rehman, H.U.; Cord-Landwehr, S.; Shapaval, V.; Dzurendova, S.; Kohler, A.; Moerschbacher, B.M.; Zimmermann, B. High-throughput vibrational spectroscopy methods for determination of degree of acetylation for chitin and chitosan. Carbohydr. Polym. 2023, 302, 120428. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, W.; Zhang, Z.; Zhang, D.; Guo, Z.; Ren, P.; Liu, F. Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers 2023, 15, 4015. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, N.; Chi, Y.; Peng, Q.; Dai, G.; Qian, L.; Xu, K.; Zhong, W.; Yue, W. Injectable and Self-Healing Hydrogel Based on Chitosan-Tannic Acid and Oxidized Hyaluronic Acid for Wound Healing. ACS Biomater. Sci. Eng. 2022, 8, 3754–3764. [Google Scholar] [CrossRef] [PubMed]
- Ossama, M.; Lamie, C.; Tarek, M.; Wagdy, H.A.; Attia, D.A.; Elmazar, M.M. Management of recurrent aphthous ulcers exploiting polymer-based Muco-adhesive sponges: In-vitro and in-vivo evaluation. Drug Deliv. 2021, 28, 87–99. [Google Scholar] [CrossRef]
- Maiz-Fernández, S.; Pérez-Álvarez, L.; Silván, U.; Vilas-Vilela, J.L.; Lanceros-Méndez, S. Dynamic and Self-Healable Chitosan/Hyaluronic Acid-Based In Situ-Forming Hydrogels. Gels 2022, 8, 477. [Google Scholar] [CrossRef]
- Aguilar-Pérez, F.J.; Vargas-Coronado, R.F.; Cervantes-Uc, J.M.; Cauich-Rodríguez, J.V.; Rosales-Ibañez, R.; Rodríguez-Ortiz, J.A.; Torres-Hernández, Y. Titanium—Castor oil based polyurethane composite foams for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 2019, 30, 1415–1432. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, L.V.; Tran, N.M.; Nguyen, D.T.; Nguyen, T.N.-T.; Tran, H.A.; Dang, N.N.-T.; Vo, T.V.; Nguyen, T.-H. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109670. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chen, H.; Xu, C.; Yu, D.; Xu, H.; Hu, Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv. 2020, 10, 7206–7213. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi, S.; Karkhaneh, A. A self-crosslinking tri-component hydrogel based on functionalized polysaccharides and gelatin for tissue engineering applications. Mater. Lett. 2016, 164, 468–471. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Wang, G.; Shi, J.; Zhu, J.; Yan, J.; Wang, J.; Wu, J. Promoting diabetic oral mucosa wound healing with a light-responsive hydrogel adaptive to the microenvironment. Heliyon 2024, 10, e38599. [Google Scholar] [CrossRef]
- Weng, L.; Pan, H.; Chen, W. Self-crosslinkable hydrogels composed of partially oxidized hyaluronan and gelatin: In vitro and in vivo responses. J. Biomed. Mater. Res. A 2008, 85, 352–365. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, H.; Kim, S.W.; Lee, J.W.; Lee, K.Y. Injectable hydrogels prepared from partially oxidized hyaluronate and glycol chitosan for chondrocyte encapsulation. Carbohydr. Polym. 2017, 157, 1281–1287. [Google Scholar] [CrossRef]
- Weng, H.; Jia, W.; Li, M.; Chen, Z. New injectable chitosan-hyaluronic acid based hydrogels for hemostasis and wound healing. Carbohydr. Polym. 2022, 294, 119767. [Google Scholar] [CrossRef]
- ISO 10993-5:1999; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 1999.
- Samiraninezhad, N.; Asadi, K.; Rezazadeh, H.; Gholami, A. Using chitosan, hyaluronic acid, alginate, and gelatin-based smart biological hydrogels for drug delivery in oral mucosal lesions: A review. Int. J. Biol. Macromol. 2023, 252, 126573. [Google Scholar] [CrossRef]
- Bao, Z.; Yu, A.; Shi, H.; Hu, Y.; Jin, B.; Lin, D.; Dai, M.; Lei, L.; Li, X.; Wang, Y. Glycol chitosan/oxidized hyaluronic acid hydrogel film for topical ocular delivery of dexamethasone and levofloxacin. Int. J. Biol. Macromol. 2021, 167, 659–666. [Google Scholar] [CrossRef]
- Zerbinati, N.; Lotti, T.; Monticelli, D.; Rauso, R.; González-Isaza, P.; D’Este, E.; Calligaro, A.; Sommatis, S.; Maccario, C.; Mocchi, R.; et al. In Vitro Evaluation of the Biosafety of Hyaluronic Acid PEG Cross-Linked with Micromolecules of Calcium Hydroxyapatite in Low Concentration. Open Access Maced. J. Med. Sci. 2018, 6, 15–19. [Google Scholar] [CrossRef]
- Larrañeta, E.; Henry, M.; Irwin, N.J.; Trotter, J.; Perminova, A.A.; Donnelly, R.F. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr. Polym. 2018, 181, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Shar, A.S.; Wang, N.; Chen, T.; Zhao, X.; Weng, Y. Development of PLA/Lignin Bio-Composites Compatibilized by Ethylene Glycol Diglycidyl Ether and Poly (ethylene glycol) Diglycidyl Ether. Polymers 2023, 15, 4049. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.S.; Abueva, C.; Padalhin, A.; Park, S.Y.; Yoo, S.H.; Seo, H.H.; Chung, P.-S.; Woo, S.H. Oral ulcer treatment using human tonsil-derived mesenchymal stem cells encapsulated in trimethyl chitosan hydrogel: An animal model study. Stem Cell Res. Ther. 2024, 15, 103. [Google Scholar] [CrossRef]
- Rahmani, F.; Moghadamnia, A.A.; Kazemi, S.; Shirzad, A.; Motallebnejad, M. Effect of 0.5% Chitosan mouthwash on recurrent aphthous stomatitis: A randomized double-blind crossover clinical trial. Electron. Physician 2018, 10, 6912–6919. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.F.; Silva, N.M.; da Cruz, M.; Marques, J.; da Mata, A.D. Hyaluronic acid-based gels for oral application: Comparison of in vitro effects on gingival cells and bacteria. J. Oral Biol. Craniofacial Res. 2024, 14, 238–244. [Google Scholar] [CrossRef]
- Parra-Moreno, F.J.; Egido-Moreno, S.; Schemel-Suárez, M.; González-Navarro, B.; Estrugo-Devesa, A.; López-López, J. Treatment of recurrent aphtous stomatitis: A systematic review. Med. Oral Patol. Oral Cir. Bucal. 2023, 28, e87–e98. [Google Scholar] [CrossRef]








| Sponges | Td (°C) | T (°C) at 50% of Weight Loss | % Residual Mass at 600 °C |
|---|---|---|---|
| CHT | 308 | 315 | 6 |
| CHT-OHA 1:1 | 278 | 302 | 2 |
| CHT-OHA 1:2 | 275 | 304 | 22 |
| CHT-OHA 1:1-PEGDE | 257 | 305 | 11 |
| CHT-OHA 1:2-PEGDE | 278 | 300 | 0 |
| Scaffolds | Young’s Modulus (E) kPa | Compressive Stress (σ 10%) kPa |
|---|---|---|
| CHT | 11.2 ± 1.5 | 1.5 ± 0.3 |
| CHT-OHA 1:1 | 5.9 ± 1.1 | 0.9 ± 0.1 |
| CHT-OHA 1:2 | 11.1± 3.8 | 1.3 ± 0.3 |
| CHT-OHA 1:1-PEGDE | 7.7 ± 2.9 | 1.5 ± 0.2 |
| CHT-OHA 1:2-PEGDE | 17.2 ± 7.0 | 2.0 ± 0.6 |
| Sample ID | Composition | Cell Viability (%) | Statistical Significance (vs. Control) | Interpretation |
|---|---|---|---|---|
| CHT-OHA 1:2 | Chitosan + Oxidized Hyaluronic Acid (1:2) | 120 ± 6 | n.s. | Highest proliferation; non-cytotoxic |
| CHT-OHA-PEGDE 1:1 | Chitosan + OHA + PEGDE (1:1) | 96 ± 7 | n.s. | Slight reduction; non-cytotoxic |
| CHT (Pure) | Chitosan | 118 ± 15 | n.s. | High cell viability; supports fibroblast growth |
| CHT-OHA-PEGDE 1:2 | Chitosan + OHA + PEGDE (1:2) | 74 ± 9 | p < 0.05 | Slightly lower viability; within ISO 10993-5 range |
| CHT-OHA 1:1 | Chitosan + Oxidized Hyaluronic Acid (1:1) | 95 ± 8 | n.s. | Good compatibility; non-cytotoxic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Trejo, C.A.; Chuc-Gamboa, M.G.; Cauich-Rodríguez, J.V.; Vargas-Coronado, R.F.; Escobar-García, D.M.; Pozos-Guillen, A.; Aguilar-Pérez, F.J.; Pinzón-Te, A.L.; Zumbardo-Bacelis, G.A. Oxidized Hyaluronic Acid-Based Sponges: A Promising Biomaterial for Oral Mucosa Lesion Application. Int. J. Mol. Sci. 2025, 26, 10383. https://doi.org/10.3390/ijms262110383
Muñoz-Trejo CA, Chuc-Gamboa MG, Cauich-Rodríguez JV, Vargas-Coronado RF, Escobar-García DM, Pozos-Guillen A, Aguilar-Pérez FJ, Pinzón-Te AL, Zumbardo-Bacelis GA. Oxidized Hyaluronic Acid-Based Sponges: A Promising Biomaterial for Oral Mucosa Lesion Application. International Journal of Molecular Sciences. 2025; 26(21):10383. https://doi.org/10.3390/ijms262110383
Chicago/Turabian StyleMuñoz-Trejo, Clara Alicia, Martha Gabriela Chuc-Gamboa, Juan V. Cauich-Rodríguez, Rossana Faride Vargas-Coronado, Diana María Escobar-García, Amaury Pozos-Guillen, Fernando Javier Aguilar-Pérez, Alicia Leonor Pinzón-Te, and Gualberto Antonio Zumbardo-Bacelis. 2025. "Oxidized Hyaluronic Acid-Based Sponges: A Promising Biomaterial for Oral Mucosa Lesion Application" International Journal of Molecular Sciences 26, no. 21: 10383. https://doi.org/10.3390/ijms262110383
APA StyleMuñoz-Trejo, C. A., Chuc-Gamboa, M. G., Cauich-Rodríguez, J. V., Vargas-Coronado, R. F., Escobar-García, D. M., Pozos-Guillen, A., Aguilar-Pérez, F. J., Pinzón-Te, A. L., & Zumbardo-Bacelis, G. A. (2025). Oxidized Hyaluronic Acid-Based Sponges: A Promising Biomaterial for Oral Mucosa Lesion Application. International Journal of Molecular Sciences, 26(21), 10383. https://doi.org/10.3390/ijms262110383

