Polyoxometalates in Electrochemical Energy Storage: Recent Advances and Perspectives
Abstract
1. Introduction
2. Overview of the Properties for POMs

3. Overview of POM-Based Functionalized Materials
3.1. POMs/Nanocarbon Composites
3.2. POMOF Composites
3.3. Molecular- and Atomic-Level Self-Assembly of POMs

4. POM-Based Materials for Energy Storage Device
4.1. Solar Cell
4.1.1. Photosensitizers or Electron Acceptors
4.1.2. Electrolytes or Additives
4.1.3. Interfacial/Electron Transport Layers
4.1.4. Photoanode Modifiers
4.2. Supercapacitor
4.2.1. Electrode Active Material
4.2.2. Synergistic Component in Composite Electrodes
4.2.3. Electrolyte Functional Additive/Hydrogel Electrode
4.3. Rechargeable Batteries
4.3.1. Lithium-Ion/Sodium-Ion Batteries

4.3.2. Lithium–Sulfur Batteries
4.3.3. Aqueous Zinc-Ion Batteries
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Luo, B.; Chen, P.; Searles, D.J.; Wang, D.; Wang, L. Sulfur-based redox chemistry for electrochemical energy storage. Coord. Chem. Rev. 2020, 422, 213445. [Google Scholar] [CrossRef]
- Lamiel, C.; Hussain, I.; Rabiee, H.; Ogunsakin, O.R.; Zhang, K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord. Chem. Rev. 2023, 480, 215030. [Google Scholar] [CrossRef]
- Haspert, L.C.; Gillette, E.; Lee, S.B.; Rubloff, G.W. Perspective: Hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage. Energy Environ. Sci. 2013, 6, 2578–2590. [Google Scholar] [CrossRef]
- Feng, C.; Xiong, G.; Chen, C.; Lin, Y.; Wang, Z.; Lu, Y.; Liu, F.; Li, X.; Liu, Y.; Zhang, R.; et al. Highly dispersed Pt/Co3O4 catalyst constructed by vacancy defect inductive effect for enhanced catalytic propane total oxidation. Chin. J. Catal. 2025, 75, 21–33. [Google Scholar] [CrossRef]
- Bandas, C.; Orha, C.; Nicolaescu, M.; Morariu Popescu, M.I.; Lazau, C. 2D and 3D nanostructured metal oxide composites as promising materials for electrochemical energy storage techniques: Synthesis methods and properties. Int. J. Mol. Sci. 2024, 25, 12521. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Xing, G.; Tang, Y. Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci. 2021, 14, 3323–3351. [Google Scholar] [CrossRef]
- He, G.; Chen, Q.; Moutis, P.; Kar, S.; Whitacre, J.F. An intertemporal decision framework for electrochemical energy storage management. Nat. Energy 2018, 3, 404–412. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Zeng, F.; Si, C.; Zhang, D.; Xu, W.; Shi, J. Advances in polyoxometalates as electron mediators for photocatalytic dye degradation. Int. J. Mol. Sci. 2023, 24, 15244. [Google Scholar] [CrossRef]
- Hampson, E.; Cameron, J.M.; Amin, S.; Kyo, J.; Watts, J.A.; Oshio, H.; Newton, G.N. Asymmetric hybrid polyoxometalates: A platform for multifunctional redox-active nanomaterials. Angew. Chem. Int. Ed. 2019, 58, 18281–18285. [Google Scholar] [CrossRef] [PubMed]
- Sadakane, M.; Steckhan, E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem. Rev. 1998, 98, 219–237. [Google Scholar] [CrossRef]
- Miras, H.N.; Yan, J.; Long, D.-L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430. [Google Scholar] [CrossRef]
- Cronin, L.; Müller, A. From serendipity to design of polyoxometalates at the nanoscale, aesthetic beauty and applications. Chem. Soc. Rev. 2012, 41, 7333–7334. [Google Scholar] [CrossRef]
- Dubal, D.P.; Rueda-Garcia, D.; Marchante, C.; Benages, R.; Gomez-Romero, P. Hybrid graphene-polyoxometalates nanofluids as liquid electrodes for dual energy storage in novel flow cells. Chem. Rec. 2018, 18, 1076–1084. [Google Scholar] [CrossRef]
- Dey, C. Preyssler-type polyoxometalates, smallest pom with internal cavity: Synthesis, structure and function. Coord. Chem. Rev. 2024, 510, 215847. [Google Scholar] [CrossRef]
- Lee, G.Y.; Kim, I.; Lim, J.; Yang, M.Y.; Choi, D.S.; Gu, Y.; Oh, Y.; Kang, S.H.; Nam, Y.S.; Kim, S.O. Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation. J. Mater. Chem. A 2017, 5, 1941–1947. [Google Scholar] [CrossRef]
- Cameron, J.M.; Guillemot, G.; Galambos, T.; Amin, S.S.; Hampson, E.; Mall Haidaraly, K.; Newton, G.N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328. [Google Scholar] [CrossRef]
- Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-F.; Tsunashima, R. Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev. 2012, 41, 7384–7402. [Google Scholar] [CrossRef]
- Shen, M.; Xu, S.; Wang, X.; Zhang, Y.; Feng, Y.; Xing, F.; Yang, Y.; Gao, Q. Modification and functionalization of separators for high performance lithium-sulfur batteries. Int. J. Mol. Sci. 2024, 25, 11446. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yan, L.-K.; Guan, W.; Su, Z.-M. How do transition-metal-substituted poms modify the photoanode of dye-sensitized solar cells? A dft study. Inorg. Chem. Front. 2019, 6, 969–974. [Google Scholar] [CrossRef]
- Han, X.; Yu, J.; Chen, Y.; Qu, H.; Ruan, Z.; Lin, M.; Hou, J.; Liao, Q. Polydopamine-polyoxometalate composites in neutral ph enable high-efficiency and ultra-stable organic solar cells via mutual doping mechanism. Adv. Mater. 2025, e12965. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Guo, D.; Liu, J.; Song, X.; Liu, Q.; Chen, R.; Wang, J. In-situ calcination of polyoxometallate-based metal organic framework/reduced graphene oxide composites towards supercapacitor electrode with enhanced performance. J. Electroanal. Chem. 2019, 836, 112–117. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Y.; Han, Y.; Li, C. High-capacity molecular scale conversion anode enabled by hybridizing cluster-type framework of high loading with amino-functionalized graphene. ACS Nano 2016, 10, 5304–5313. [Google Scholar] [CrossRef]
- Kume, K.; Kawasaki, N.; Wang, H.; Yamada, T.; Yoshikawa, H.; Awaga, K. Enhanced capacitor effects in polyoxometalate/graphene nanohybrid materials: A synergetic approach to high performance energy storage. J. Mater. Chem. A 2014, 2, 3801–3807. [Google Scholar] [CrossRef]
- Chen, J.-J.; Symes, M.D.; Fan, S.-C.; Zheng, M.-S.; Miras, H.N.; Dong, Q.-F.; Cronin, L. High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 4649–4654. [Google Scholar] [CrossRef]
- Ni, L.; Yang, G.; Liu, Y.; Wu, Z.; Ma, Z.; Shen, C.; Lv, Z.; Wang, Q.; Gong, X.; Xie, J.; et al. Self-assembled polyoxometalate nanodots as bidirectional cluster catalysts for polysulfide/sulfide redox conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 12222–12236. [Google Scholar] [CrossRef]
- Ye, J.C.; Chen, J.J.; Yuan, R.M.; Deng, D.R.; Zheng, M.S.; Cronin, L.; Dong, Q.F. Strategies to explore and develop reversible redox reactions of li-s in electrode architectures using silver-polyoxometalate clusters. J. Am. Chem. Soc. 2018, 140, 3134–3138. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Chen, S.; Zhang, B.; Wang, J.; Wang, H.; Tian, B.; Chen, M.; Fan, X.; Huang, Y.; et al. “Electron/ion sponge”-like v-based polyoxometalate: Toward high-performance cathode for rechargeable sodium ion batteries. ACS Nano 2017, 11, 6911–6920. [Google Scholar] [CrossRef]
- Hartung, S.; Bucher, N.; Chen, H.-Y.; Al-Oweini, R.; Sreejith, S.; Borah, P.; Yanli, Z.; Kortz, U.; Stimming, U.; Hoster, H.E.; et al. Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. J. Power Sources 2015, 288, 270–277. [Google Scholar] [CrossRef]
- Phogat, P.; Dey, S.; Wan, M. Comprehensive review of sodium-ion batteries: Principles, materials, performance, challenges, and future perspectives. Mater. Sci. Eng. B-Adv. 2025, 312, 117870. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Vinu, A.; Kim, D.-H.; Gomez-Romero, P. Asymmetric supercapacitors based on reduced graphene oxide with different polyoxometalates as positive and negative electrodes. ChemSusChem 2017, 10, 2742–2750. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Choi, B.G.; Jung, S.C.; Han, Y.-K.; Huh, Y.S.; Lee, S.B. Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors. Adv. Funct. Mater. 2014, 24, 7301–7309. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, E.; Nitta, N.; Magasinski, A.; Berdichevsky, G.; Yushin, G. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes. J. Power Sources 2016, 326, 569–574. [Google Scholar] [CrossRef]
- Horn, M.R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P.; et al. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energy Environ. Sci. 2021, 14, 1652–1700. [Google Scholar] [CrossRef]
- Huang, B.; Yang, D.; Han, B. Application of polyoxometalate derivatives in rechargeable batteries. J. Mater. Chem. A 2020, 8, 4593–4628. [Google Scholar] [CrossRef]
- Yeon, J.S.; Kim, W.I.; Kim, H.J.; Jang, G.; Park, J.M.; Park, J.H.; Li, Y.; Park, H.S. Accordion-like polyoxometalate hybrid architectures for capacity-dense and flexible zn-ion battery cathodes. Energy Storage Mater. 2023, 63, 102944. [Google Scholar] [CrossRef]
- Weinstock, I.A.; Schreiber, R.E.; Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 2018, 118, 2680–2717. [Google Scholar] [CrossRef]
- Zhuang, Q.; Sun, Z.; Lin, C.-G.; Qi, B.; Song, Y.-F. Latest progress in asymmetrically functionalized anderson-type polyoxometalates. Inorg. Chem. Front. 2023, 10, 1695–1711. [Google Scholar] [CrossRef]
- Pakulski, D.; Gorczyński, A.; Brykczyńska, D.; Montes-García, V.; Czepa, W.; Janica, I.; Bielejewski, M.; Kubicki, M.; Patroniak, V.; Samorì, P.; et al. New anderson-based polyoxometalate covalent organic frameworks as electrodes for energy storage boosted through keto-enol tautomerization. Angew. Chem. Int. Ed. 2023, 62, e202305239. [Google Scholar] [CrossRef] [PubMed]
- Mihara, A.; Kojima, T.; Suda, Y.; Maezawa, K.; Sumi, T.; Mizoe, N.; Watanabe, A.; Iwamatsu, H.; Oda, Y.; Okamura, Y.; et al. Photoluminescent layered crystal consisting of anderson-type polyoxometalate and surfactant toward a potential inorganic–organic hybrid laser. Int. J. Mol. Sci. 2024, 25, 345. [Google Scholar] [CrossRef]
- Ma, X.; Bhattacharya, S.; Taffa, D.H.; Nisar, T.; Wark, M.; Wagner, V.; Kortz, U. Discrete arsonate-grafted inverted-Keggin 12-molybdate ion [Mo12O32(OH)2(4-N3C2H2-C6H4AsO3)4]2− and formation of a copper(ii)-mediated metal-organic framework. Inorg. Chem. 2023, 62, 1813–1819. [Google Scholar] [CrossRef]
- Friedl, J.; Al-Oweini, R.; Herpich, M.; Keita, B.; Kortz, U.; Stimming, U. Electrochemical studies of tri-manganese substituted Keggin polyoxoanions. Electrochim. Acta 2014, 141, 357–366. [Google Scholar] [CrossRef]
- Gumerova, N.I.; Roller, A.; Giester, G.; Krzystek, J.; Cano, J.; Rompel, A. Incorporation of criii into a keggin polyoxometalate as a chemical strategy to stabilize a labile {CriiiO4} tetrahedral conformation and promote unattended single-ion magnet properties. J. Am. Chem. Soc. 2020, 142, 3336–3339. [Google Scholar] [CrossRef]
- Cong, B.-W.; Su, Z.-H.; Zhao, Z.-F.; Wang, B. A novel 3D POMOFs based on Wells-Dawson arsenomolybdates with excellent photocatalytic and lithium-ion batteries performance. CrystEngComm 2017, 19, 7154–7161. [Google Scholar] [CrossRef]
- Bassil, B.S.; Ibrahim, M.; Al-Oweini, R.; Asano, M.; Wang, Z.; van Tol, J.; Dalal, N.S.; Choi, K.-Y.; Ngo Biboum, R.; Keita, B.; et al. A planar {Mn19(OH)12}26+ unit incorporated in a 60-tungsto-6-silicate polyanion. Angew. Chem. Int. Ed. 2011, 50, 5961–5964. [Google Scholar] [CrossRef]
- Wang, H.; Hamanaka, S.; Nishimoto, Y.; Irle, S.; Yokoyama, T.; Yoshikawa, H.; Awaga, K. In operando x-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: Polyoxometalates as electron sponges. J. Am. Chem. Soc. 2012, 134, 4918–4924. [Google Scholar] [CrossRef]
- Gautam, J.; Kannan, K.; Meshesha, M.M.; Dahal, B.; Subedi, S.; Ni, L.; Wei, Y.; Yang, B.L. Heterostructure of polyoxometalate/zinc-iron-oxide nanoplates as an outstanding bifunctional electrocatalyst for the hydrogen and oxygen evolution reaction. J. Colloid Interface Sci. 2022, 618, 419–430. [Google Scholar] [CrossRef]
- Pratt, H.D.; Hudak, N.S.; Fang, X.; Anderson, T.M. A polyoxometalate flow battery. J. Power Sources 2013, 236, 259–264. [Google Scholar] [CrossRef]
- Takahashi, K.; Okuhara, T.; Misono, M. Phase transition-like phenomenon observed for “pseudo-liquid phase” of heteropoly acid catalysts. Chem. Lett. 1985, 14, 841–842. [Google Scholar] [CrossRef]
- García-López, E.I.; Marcì, G.; Pomilla, F.R.; Kirpsza, A.; Micek-Ilnicka, A.; Palmisano, L. Supported H3PW12O40 for 2-propanol (photo-assisted) catalytic dehydration in gas-solid regime: The role of the support and of the pseudo-liquid phase in the (photo)activity. Appl. Catal. B 2016, 189, 252–265. [Google Scholar] [CrossRef]
- Kawasaki, N.; Wang, H.; Nakanishi, R.; Hamanaka, S.; Kitaura, R.; Shinohara, H.; Yokoyama, T.; Yoshikawa, H.; Awaga, K. Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: Applications in molecular cluster batteries. Angew. Chem. Int. Ed. 2011, 50, 3471–3474. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Hu, J.; Ji, Y.; Streb, C.; Song, Y.-F. Pyrene-anderson-modified cnts as anode materials for lithium-ion batteries. Chem.-Eur. J. 2015, 21, 18799–18804. [Google Scholar] [CrossRef]
- Hu, J.; Ji, Y.; Chen, W.; Streb, C.; Song, Y. “Wiring” redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy. Energy Environ. Sci. 2016, 9, 1095–1101. [Google Scholar] [CrossRef]
- Jordan, J.W.; Lowe, G.A.; McSweeney, R.L.; Stoppiello, C.T.; Lodge, R.W.; Skowron, S.T.; Biskupek, J.; Rance, G.A.; Kaiser, U.; Walsh, D.A.; et al. Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv. Mater. 2019, 31, 1904182. [Google Scholar] [CrossRef]
- Shen, F.-C.; Wang, Y.-R.; Li, S.-L.; Liu, J.; Dong, L.-Z.; Wei, T.; Cui, Y.-C.; Wu, X.L.; Xu, Y.; Lan, Y.-Q. Self-assembly of polyoxometalate/reduced graphene oxide composites induced by ionic liquids as a high-rate cathode for batteries: “Killing two birds with one stone”. J. Mater. Chem. A 2018, 6, 1743–1750. [Google Scholar] [CrossRef]
- Velusamy, D.B.; El-Demellawi, J.K.; El-Zohry, A.M.; Giugni, A.; Lopatin, S.; Hedhili, M.N.; Mansour, A.E.; Fabrizio, E.D.; Mohammed, O.F.; Alshareef, H.N. Mxenes for plasmonic photodetection. Adv. Mater. 2019, 31, 1807658. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, T.; Alhajji, E.; Tian, Z.; Shi, Z.; Zhang, Y.-Z.; Alshareef, H.N. Mxenes for sulfur-based batteries. Adv. Energy Mater. 2023, 13, 2202860. [Google Scholar] [CrossRef]
- Chao, H.; Qin, H.; Zhang, M.; Huang, Y.; Cao, L.; Guo, H.; Wang, K.; Teng, X.; Cheng, J.; Lu, Y.; et al. Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on mxene nanosheets. Adv. Funct. Mater. 2021, 31, 2007636. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, D.; Xiao, T.; Tian, Y.; Jiang, Z. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 2015, 260, 117–125. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, H.; Liu, L.-M.; Zong, R.; Cao, H.; Zhang, Z.; Wang, X.; Luo, J.; Zhu, J. Space-confined creation of nanoframes in situ on reduced graphene oxide. Small 2015, 11, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, T.; Zhang, H.; Luo, Y.; Zhang, H.; Zhang, J.; Yan, J.; Li, X. Principle of progressively and strongly immobilizing polysulfides on polyoxovanadate clusters for excellent Li–S batteries application. Nano Energy 2020, 71, 104596. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, J.; Yang, Y.; Wang, J.; Hu, B.; Wang, W.; Cao, W.; Gai, S.; Xia, D.; Lin, K.; et al. Multifunctional nanostructured host-guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 2022, 97, 107184. [Google Scholar] [CrossRef]
- Lan, Y.-Q.; Huang, Q.; Wei, T.; Zhang, M.; Dong, L.-Z.; Zhang, A.M.; Li, S.-L.; Liu, W.; Liu, J. A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing performance in lithium ion battery. J. Mater. Chem. A 2017, 5, 8477–8483. [Google Scholar]
- Yang, X.; Sha, J.; Li, W.; Tan, Z.; Hou, L.; Jiang, J. Ternary cross-vanadium tetra-capped POMOFs@PPy/rGO nanocomposites with hybrid battery-supercapacitor behavior for enhancing lithium battery storage. ACS Sustain. Chem. Eng. 2020, 8, 4667–4675. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [PubMed]
- Packwood, D.M.; Han, P.; Hitosugi, T. Chemical and entropic control on the molecular self-assembly process. Nat. Commun. 2017, 8, 14463. [Google Scholar] [CrossRef]
- Feng, H.-T.; Lam, J.W.Y.; Tang, B.Z. Self-assembly of aiegens. Coord. Chem. Rev. 2020, 406, 213142. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Bai, C.; Niu, S.; Wei, W. Spatially guided assembly of polyoxometalate superlattices and their derivatives as high-power sodium-ion battery anodes. ACS Nano 2022, 16, 21431–21442. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Yang, H.; Wan, Y.; Fang, H.; Bao, W.; Wang, W.; Wang, N.; Lu, Y. A review on polyoxometalates-based materials in addressing challenges faced by electrochemical energy storage systems. Chem. Eng. J. 2024, 483, 149143. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Shi, W.; Hu, H.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433–440. [Google Scholar] [CrossRef]
- Liu, H.-K.; Ren, L.-J.; Wu, H.; Ma, Y.-L.; Richter, S.; Godehardt, M.; Kübel, C.; Wang, W. Unraveling the self-assembly of heterocluster janus dumbbells into hybrid cubosomes with internal double-diamond structure. J. Am. Chem. Soc. 2019, 141, 831–839. [Google Scholar] [CrossRef]
- Yang, H.; Shang, L.; Zhang, Q.; Shi, R.; Waterhouse, G.I.N.; Gu, L.; Zhang, T. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Wang, H. Electrocatalysis over graphene-defect-coordinated transition-metal single-atom catalysts. Chem 2018, 4, 194–195. [Google Scholar] [CrossRef]
- Liu, J. Catalysis by supported single metal atoms. ACS Catal. 2016, 7, 34–59. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, W.; Kong, W.; Chen, L.; Lu, X.; Cai, H.; Yuan, Y.; Zhao, L.; Jiang, Y.; Li, H.; et al. Atomically interfacial engineering on molybdenum nitride quantum dots decorated n-doped graphene for high-rate and stable alkaline hydrogen production. Adv. Sci. 2022, 9, 2204949. [Google Scholar] [CrossRef]
- Lei, J.; Fan, X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R.; Zheng, M.; Dong, Q.; Chen, J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient li-s batteries. Nat. Commun. 2022, 13, 202. [Google Scholar] [CrossRef]
- Liu, R.; Streb, C. Polyoxometalate-single atom catalysts (POM-SACs) in energy research and catalysis. Adv. Energy Mater. 2021, 11, 2101120. [Google Scholar] [CrossRef]
- He, S.; Liu, Q.; Wang, X. Polyoxometalate-based materials: Quasihomogeneous single-atom catalysts with atomicprecision structures. J. Mater. Chem. A 2022, 10, 5758. [Google Scholar] [CrossRef]
- Yu, F.-Y.; Lang, Z.-L.; Zhou, Y.-J.; Feng, K.; Tan, H.-Q.; Zhong, J.; Lee, S.-T.; Kang, Z.-H.; Li, Y.-G. Revealing hydrogen evolution performance of single-atom platinum electrocatalyst with polyoxometalate molecular models. ACS Energy Lett. 2021, 6, 4055–4062. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Reese, M.O. Building perovskite solar cells that last. Science 2022, 377, 265–266. [Google Scholar] [CrossRef]
- Zhang, T.; Gregoriou, V.G.; Gasparini, N.; Chochos, C.L. Porous organic polymers in solar cells. Chem. Soc. Rev. 2022, 51, 4465–4483. [Google Scholar] [CrossRef]
- Zhu, T.; Shen, L.; Xun, S.; Sarmiento, J.S.; Yang, Y.; Zheng, L.; Li, H.; Wang, H.; Bredas, J.-L.; Gong, X. High-performance ternary perovskite-organic solar cells. Adv. Mater. 2022, 34, 2109348. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.-L.; Wang, X.-L.; Li, Y.-G.; Su, Z.-M.; Wang, E.-B. Polyoxometalates in dye-sensitized solar cells. Chem. Soc. Rev. 2019, 48, 260–284. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.; Byeon, J.; Jang, J.; Ahn, N.; Choi, M. Pulsatile therapy for perovskite solar cells. Joule 2022, 6, 1087–1102. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, R. Disorder control enhances ultrathin solar cells. Nat. Photonics 2022, 16, 176–177. [Google Scholar] [CrossRef]
- Fan, B.; Gao, H.; Li, Y.; Wang, Y.; Zhao, C.; Lin, F.R.; Jen, A.K.Y. Integration of polyoxometalate clusters with self-assembled monolayer for efficient and robust organic solar cells. Joule 2024, 8, 1443–1456. [Google Scholar] [CrossRef]
- Huang, X.; Bi, L.; Yao, Z.; Fu, Q.; Fan, B.; Wu, S.; Su, Z.; Feng, Q.; Wang, J.; Hong, Y.; et al. Polyoxometalate reinforced perovskite phase for high-performance perovskite photovoltaics. Adv. Mater. 2024, 36, 2410564. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhu, H.; Zhao, W.; Liu, C.; Zhu, L.; Ye, Q.; Jia, N.; Wang, H.; Zhang, X.; Huang, W.; et al. Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24%. Adv. Mater. 2021, 33, 2101590. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, M.; Li, F.; Li, Y.; Chen, W. Multimetal-based nitrogen doped carbon nanotubes bifunctional electrocatalysts for triiodide reduction and water-splitting synthesized from polyoxometalate-intercalated layered double hydroxide pyrolysis strategy. Appl. Catal. B 2021, 280, 119421. [Google Scholar] [CrossRef]
- Cruz, H.; Pinto, A.L.; Lima, J.C.; Branco, L.C.; Gago, S. Application of polyoxometalate-ionic liquids (pom-ILs) in dye-sensitized solar cells (DSSCs). Mater. Lett. X 2020, 6, 100033. [Google Scholar] [CrossRef]
- Bakker Tijmen, M.A.; Mathew, S.; Reek, J.N.H. Lindqvist polyoxometalates as electrolytes in p-type dye sensitized solar cells. Sustain. Energy Fuels 2019, 3, 96–100. [Google Scholar] [CrossRef]
- El Moll, H.; Black, F.A.; Wood, C.J.; Al-Yasari, A.; Reddy Marri, A.; Sazanovich, I.V.; Gibson, E.A.; Fielden, J. Increasing p-type dye sensitised solar cell photovoltages using polyoxometalates. Phys. Chem. Chem. Phys. 2017, 19, 18831–18835. [Google Scholar] [CrossRef]
- Wang, S.-M.; Liu, L.; Chen, W.-L.; Su, Z.-M.; Wang, E.-B.; Li, C. Polyoxometalate/TiO2 interfacial layer with the function of accelerating electron transfer and retarding recombination for dye-sensitized solar cells. Ind. Eng. Chem. Res. 2014, 53, 150–156. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, T.; Dong, Y.-N.; Zhang, H.; Wu, D.; Chen, W. Ferroelectric polyoxometalate-modified nano semiconductor TiO2 for increasing electron lifetime and inhibiting electron recombination in dye-sensitized solar cells. Inorg. Chem. Front. 2020, 7, 3072–3080. [Google Scholar] [CrossRef]
- Wang, P.; Xu, S.-Y.; Guo, S.; Zhang, L.-Y.; Lu, T.-B.; Zhang, Z.-M. Polyoxometalate electron-sponge-mediated photooxidative hydroxylation of arylboronic acids. Angew. Chem. Int. Ed. 2025, 64, e202514184. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sang, X.-J.; Li, J.-S.; Shan, C.-H.; Chen, W.-L.; Su, Z.-M.; Wang, E.-B. The photovoltaic performance of dye-sensitized solar cells enhanced by using Dawson-type heteropolyacid and heteropoly blue-TiO2 composite films as photoanode. Inorg. Chem. Commun. 2014, 47, 138–143. [Google Scholar] [CrossRef]
- He, L.; Chen, L.; Zhao, Y.; Chen, W.; Shan, C.; Su, Z.; Wang, E. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells. J. Power Sources 2016, 328, 1–7. [Google Scholar] [CrossRef]
- Dolbecq, A.; Dumas, E.; Mayer, C.R.; Mialane, P. Hybrid organic-inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 2010, 110, 6009–6048. [Google Scholar] [CrossRef]
- Wang, L.; Xu, L.; Mu, Z.; Wang, C.; Sun, Z. Synergistic enhancement of photovoltaic performance of tio2 photoanodes by incorporation of Dawson-type polyoxometalate and gold nanoparticles. J. Mater. Chem. 2012, 22, 23627–23632. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Q.; Wang, Y.; Li, F.; Xu, L. Constructing high-performance H3PW12O40/CoS2 counter electrodes for quantum dots sensitized solar cells by reducing the surface work function of CoS2. Dalton Trans. 2021, 50, 12879–12887. [Google Scholar] [CrossRef]
- Moloto, W.; Mbule, P.; Nxumalo, E.; Ntsendwana, B. Fabrication of metal organic framework/polyoxometalate-TiO2 based dsccs with enhanced electron lifetime and reduced recombination of charge carriers sensitized with cabbage/spinach cocktail natural dyes. Chem. Inorg. Mater. 2025, 5, 100087. [Google Scholar] [CrossRef]
- Girirajan, M.; Bojarajan, A.K.; Pulidindi, I.N.; Hui, K.N.; Sangaraju, S. An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors. Coord. Chem. Rev. 2024, 518, 216080. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Xu, S.; Cheng, T.; Wang, S.; Lai, W.; Huang, W. Porous organic polymers for high-performance supercapacitors. Chem. Soc. Rev. 2022, 51, 3181–3225. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Wu, T.; Chen, M.; Yang, L.; Yang, J.; Wang, Z.; Kornyshev, A.A.; Jiang, H.; Bi, S.; Feng, G. Conductive metal-organic frameworks for supercapacitors. Adv. Mater. 2022, 34, 2200999. [Google Scholar] [CrossRef]
- Liu, T.; Sutarsis, S.; Zhong, X.; Lin, W.; Chou, S.; Kirana, N.; Huang, P.; Lo, Y.; Chang, J.; Wu, P.; et al. An interfacial wetting water based hydrogel electrolyte for high-voltage flexible quasi solid-state supercapacitors. Energy Storage Mater. 2021, 38, 489–498. [Google Scholar] [CrossRef]
- Jayaraman, S.; Rawson, T.J.; Belyustina, M.A. Designing supercapacitor electrolyte via ion counting. Energy Environ. Sci. 2022, 15, 2948–2957. [Google Scholar] [CrossRef]
- Pameté, E.; Köps, L.; Kreth, F.A.; Pohlmann, S.; Varzi, A.; Brousse, T.; Balducci, A.; Presser, V. The many deaths of supercapacitors: Degradation, aging, and performance fading. Adv. Energy Mater. 2023, 13, 2301008. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, M.; Sohn, W.B.; Kang, J.; Kim, W.; Kang, J.G. Ultrahigh energy density and ultrafast response in symmetric microsupercapacitors with 3D bicontinuous pseudocapacitance. Adv. Energy Mater. 2024, 14, 2402322. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, H.; Huo, M.; Zhang, X.; Qin, K.; Wang, H.; Li, Q.; Zhao, X.; Xing, Z.; Chang, J.; et al. Interface storage mechanism in aqueous ammonium-ion supercapacitors with Keggin-type polyoxometalates-modified Ag-BTC. Adv. Mater. 2025, 37, 2415545. [Google Scholar] [CrossRef]
- Chen, X.; Paul, R.; Dai, L. Carbon-based supercapacitors for efficient energy storage. Nat. Sci. Rev. 2017, 4, 453–489. [Google Scholar] [CrossRef]
- Yang, S.; Wang, M.; Zhang, Y.; He, P.; Cong, W.; Wang, C.; Yang, Q.; Liu, X.; Wang, T.; Zhang, X.; et al. Single-molecule confinement induced intrinsic multi-electron redox-activity to enhance supercapacitor performance. Energy Environ. Mater. 2023, 6, e12396. [Google Scholar] [CrossRef]
- Guo, H.; Tian, L.; Liu, S.; Wang, Y.; Hou, J.; Zhu, T.; Liu, Y. The potent effects of polyoxometalates (poms) on controlling sulfide and methane production from sewers. Chem. Eng. J. 2023, 453, 139955. [Google Scholar] [CrossRef]
- Dong, Z.; Zeng, D.; Li, Z.; Chen, J.; Wang, Y.; Cao, X.; Yang, G.; Zhang, Z.; Liu, Y.; Yang, F. Polyoxometalate-encapsulated metal-organic frameworks for photocatalytic uranium isolation. Chem. Sci. 2024, 15, 19126–19135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.-W.; Wang, X.-Y.; Duan, Z.-P.; Hu, T.-Z.; Wang, H.-T.; Gong, S.-Q.; Shi, S.-Y.; Chu, X.-Y. Construction of Sb-capped Dawson-type pom derivatives for high-performance asymmetric supercapacitors. Electrochim. Acta 2023, 442, 141823. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, Y.; Banks, M.K.; Peng, C.; Xu, W.; Wu, R. Polyoxometalate-coupled mxene nanohybrid via poly(ionic liquid) linkers and its electrode for enhanced supercapacitive performance. Nanoscale 2018, 10, 20043–20052, Erratum in Nanoscale 2018, 10, 20053. [Google Scholar] [CrossRef]
- Hor, A.A.; Yadav, N.; Hashmi, S.A. Enhanced energy density quasi-solid-state supercapacitor based on an ionic liquid incorporated aqueous gel polymer electrolyte with a redox-additive trimethyl sulfoxonium iodide. J. Energy Storage 2023, 64, 107227. [Google Scholar] [CrossRef]
- Hibino, T.; Kobayashi, K.; Nagao, M.; Kawasaki, S. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte. Sci. Rep. 2015, 5, 7903. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Y.; Cui, M.; Cao, X.; Liu, W.; Wu, C.; Liu, X.; Zhang, T.; Huang, Y. Development of polyoxometalate-anchored 3D hybrid hydrogel for high-performance flexible pseudo-solid-state supercapacitor. Electrochim. Acta 2020, 329, 135181. [Google Scholar] [CrossRef]
- Chao, H.; Luo, X.; Yan, X.; Wang, S.; Zhang, J. Carbon nanofibers confined polyoxometalate derivatives as flexible self-supporting electrodes for robust sodium storage. J. Colloid Interface Sci. 2024, 654, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ren, H.; Tian, J.; Xu, J.; Hao, Y.; Peng, L.; Liu, Y.; Yang, W. Polyoxometalate/mof-derived MoSe2/(Ni, Co)Se2 for battery-type electrodes of high-performance supercapacitors. J. Alloys Compd. 2024, 1000, 175107. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, Y.; Liu, X.; Zhang, Y.; Jia, X.; Li, W.; Tang, H.; Dou, H.; Li, Y.; Zhao, Y. Facile preparation of carbon and nitrogen Co-doped NiMoO4·MoO2 heterostructures derived from polyoxometalates with ultrahigh energy density for zinc-ion capacitors. Dalton Trans. 2025, 54, 7522–7530. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Wu, N.; Peng, L.; Yang, F.; Pan, Z.; Liu, B.; Zhang, H.; Li, C.; Yang, W. A novel cds coated polyoxometalate/metal-organic framework composite for supercapacitors. J. Alloys Compd. 2022, 921, 165730. [Google Scholar] [CrossRef]
- Mu, C.; Du, Z.; Li, W. Taming of heteropoly acids into adhesive electrodes using amino acids for the development of flexible two-dimensional supercapacitors. Polyoxometalates 2024, 3, 9140062. [Google Scholar] [CrossRef]
- Seong, W.M.; Park, K.-Y.; Lee, M.H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978. [Google Scholar] [CrossRef]
- Cao, D.; Sha, Q.; Wang, J.; Li, J.; Ren, J.; Shen, T.; Bai, S.; He, L.; Song, Y.-F. Advanced anode materials for sodium-ion batteries: Confining polyoxometalates in flexible metal-organic frameworks by the “breathing effect”. ACS Appl. Mater. Interfaces 2022, 14, 22186–22196. [Google Scholar] [CrossRef]
- Tian, Z.; Zou, Y.; Liu, G.; Wang, Y.; Yin, J.; Ming, J.; Alshareef, H.N. Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 2022, 9, 2201207. [Google Scholar] [CrossRef]
- Guan, D.-H.; Wang, X.-X.; Song, L.-N.; Miao, C.-L.; Li, J.-Y.; Yuan, X.-Y.; Ma, X.-Y.; Xu, J.-J. Polyoxometalate Li3PW12O40 and Li3PM12O40 electrolytes for high-energy all-solid-state lithium batteries. Angew. Chem. Int. Ed. 2024, 63, e202317949. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, S.; Wei, C.; Chen, Y.; Li, J.; Wang, Y.; Fan, H.; Bai, G.; Li, H. Hybrid of sub-1 nm single-dispersed polyoxometalate and reduced graphene oxide as advanced anodes for durable sodium-ion batteries. J. Power Sources 2024, 616, 235122. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Li, Y.; Qiu, T.; Mu, X.; Ma, Y.; Zhao, Y.; Zhang, J.; Zhang, J.; Li, Y.; et al. 3D covalent polyoxovanadate-organic framework as an anode for high-performance lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2306598. [Google Scholar] [CrossRef]
- Hou, Y.; Cui, L.; Wang, Q.; Wang, M.; Li, G.; Yu, K. The ternary composite formed by intercalation of porous Keggin-type POM and lamellar MoS2 into accordion-like MXene for enhanced electrochemical properties of the LIBs. Chem. Eng. J. 2025, 507, 160503. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.; Zhou, C.; Chen, Y. Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework. J. Phys. Chem. C 2018, 122, 16649–16654. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Ma, L.; Liu, Y.; Hou, B.; Shang, N.; Zhang, S.; Song, J.; Chen, S.; Zhao, X. Surface crystal modification of Na3V2(PO4)3 to cast intermediate Na2V2(PO4)3 phase toward high-rate sodium storage. Adv. Sci. 2024, 11, 2306168. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, Y.; Li, X. Nanocarbon-enabled mitigation of sulfur expansion in lithium–sulfur batteries. Energy Storage Mater. 2024, 68, 103353. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, Q.; Pei, F.; Wang, Q.; Zhang, Y.; Du, L.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Fan, L.; et al. Interface engineering toward stable lithium-sulfur batteries. Energy Environ. Sci. 2024, 17, 1330–1367. [Google Scholar] [CrossRef]
- Seh, Z.W.; Sun, Y.; Zhang, Q.; Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634. [Google Scholar] [CrossRef] [PubMed]
- Bhargav, A.; He, J.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291. [Google Scholar] [CrossRef]
- Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 2013, 52, 13186–13200. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, G.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032. [Google Scholar] [CrossRef]
- Ma, L.; Hendrickson, K.E.; Wei, S.; Archer, L.A. Nanomaterials: Science and applications in the lithium-sulfur battery. Nano Today 2015, 10, 315–338. [Google Scholar] [CrossRef]
- Zhang, W.; Tu, Z.; Qian, J.; Choudhury, S.; Archer, L.A.; Lu, Y. Design principles of functional polymer separators for high-energy, metal-based batteries. Small 2018, 14, 1703001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ye, Y.; Wu, F.; Li, Y.; Li, L.; Chen, R. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 2019, 31, 1806532. [Google Scholar] [CrossRef] [PubMed]
- Hagen, M.; Dörfler, S.; Fanz, P.; Berger, T.; Speck, R.; Tübke, J.; Althues, H.; Hoffmann, M.J.; Scherr, C.; Kaskel, S. Development and costs calculation of lithium-sulfur cells with high sulfur load and binder free electrodes. J. Power Sources 2013, 224, 260–268. [Google Scholar] [CrossRef]
- Yao, W.; Liu, L.; Wu, X.; Qin, C.; Xie, H.; Su, Z. Polyoxometalates/active carbon thin separator for improving cycle performance of lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 35911–35918. [Google Scholar] [CrossRef]
- Yang, G.; Wu, Y.; Lv, Z.; Jiang, X.; Shi, J.; Zhang, Y.; Chen, M.; Ni, L.; Diao, G.; Wei, Y. Keggin-type polyoxometalate-based crown ether complex for lithium-sulfur batteries. Chem. Commun. 2023, 59, 788–791. [Google Scholar] [CrossRef]
- Wu, L.; Jin, Z.; Xie, X.; Lian, F.; Lu, J.; Wang, W. Lithium-reinforced polyoxometalate as effective catalytic interlayer for high-sulfur-loading and long-life lithium-sulfur batteries. Energy Storage Mater. 2025, 77, 104167. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Yang, Y.; Liang, S.; Lu, B.; Zhou, J. The phosphate cathodes for aqueous zinc-ion batteries. Inorg. Chem. Front. 2022, 9, 3986–3998. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Li, H.; Wang, Z.; Chen, T.; Wang, Y. Membranes constructing with excellent performances for aqueous zinc-ion battery: A review. Coord. Chem. Rev. 2025, 531, 216478. [Google Scholar] [CrossRef]
- Guo, A.; Wang, Z.; Chen, L.; Liu, W.; Zhang, K.; Cao, L.; Liang, B.; Luo, D. A comprehensive review of the mechanism and modification strategies of v2o5 cathodes for aqueous zinc-ion batteries. ACS Nano 2024, 18, 27261–27286. [Google Scholar] [CrossRef]
- Qiu, C.; Huang, H.; Yang, M.; Xue, L.; Zhu, X.; Zhao, Y.; Ni, M.; Chen, T.; Xia, H. Advancements in layered cathode materials for next-generation aqueous zinc-ion batteries: A comprehensive review. Energy Storage Mater. 2024, 72, 103736. [Google Scholar] [CrossRef]
- Yu, L.; Ma, W.; Miao, X.; Kong, Q.; An, X.; Zhang, J.; Xie, L.; Liu, Q.; Li, X.; Yao, W. Zinc storage mechanism and gas production analysis of chestnut-like V6O13·xH2O in aqueous zinc-ion batteries under different voltage windows. J. Energy Storage 2025, 120, 116512. [Google Scholar] [CrossRef]
- Chen, F.; Gao, Y.; Hao, Q.; Chen, X.; Sun, X.; Li, N. A 2.4 V aqueous zinc-ion battery enabled by the photoelectrochemical effect of a modified BiOI photocathode: Shattering the shackle of the electrochemical window of an aqueous electrolyte. ACS Nano 2024, 18, 6413–6423. [Google Scholar] [CrossRef]
- Yang, K.; Hu, Y.; Li, L.; Cui, L.; He, L.; Wang, S.; Zhao, J.; Song, Y.-F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851. [Google Scholar] [CrossRef]
- Yang, K.; Hu, Y.; Zhang, T.; Wang, B.; Qin, J.; Li, N.; Zhao, Z.; Zhao, J.; Chao, D. Triple-functional polyoxovanadate cluster in regulating cathode, anode, and electrolyte for tough aqueous zinc--ion battery. Adv. Energy Mater. 2022, 12, 2202671. [Google Scholar] [CrossRef]
- Wang, C.; Wan, Y.; Tang, Y.; Xu, Z.; Yang, H.; Wang, W.; Wu, M.; Lu, Y.; Hu, H. A high-throughput ion siphon neutralizing space charge layer towards high-rate ultrastable zinc anode chemistry. Nano Energy 2025, 146, 111513. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.-X.; Cai, P.-W.; Guo, Z.-W.; Lu, Z.-W.; Sun, C.; Li, X.-X.; Chen, J.-X.; Wen, Z.-H.; Zheng, S.-T. Polyoxotungstate featuring zinc-ion-triggered structural transformation as an efficient electrolyte additive for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2025, 64, e202420284. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Cui, L.; Yu, K.; Wang, M.; Lv, J.; Ge, S.; Zhou, B. 3D porous metal–organic skeleton based on polyoxometalate nanoclusters as an anode in a lithium-ion battery. ACS Appl. Nano Mater. 2024, 7, 1310–1318. [Google Scholar] [CrossRef]
- Yuan, G.; Ge, H.; Shi, W.; Liu, J.; Zhang, Y.; Wang, X. Hybrid sub-1 nm nanosheets of co-assembled mnzncuox and polyoxometalate clusters as anodes for Li-ion batteries. Angew. Chem. Int. Ed. 2023, 62, e202309934. [Google Scholar] [CrossRef]
- Sha, J.; Zhu, P.; Yang, X.; Li, X.; Li, X.; Yue, M.; Zhou, K. Polyoxometalates templated metal ag-carbene frameworks anodic material for lithium-ion batteries. Inorg. Chem. 2017, 56, 11998–12002. [Google Scholar] [CrossRef]
- Dong, H.; Cao, J.; Ding, Y.; Wei, S.; Guo, Z.; Zhang, L.; Zhou, X.; Liao, Y.; Zhang, Q.; Wu, Z.-S. Bifunctional polyoxometalate clusters-modified single-walled carbon nanotubes for high-energy–density micro-supercapacitors. Chem. Eng. J. 2024, 495, 153509. [Google Scholar] [CrossRef]
- Liu, W.; Yu, G.; Zhang, M.; Li, R.; Dong, L.; Zhao, H.; Chen, Y.; Xin, Z.; Li, S.; Lan, Y. Investigation of the enhanced lithium battery storage in a polyoxometalate model: From solid spheres to hollow balls. Small Methods 2018, 2, 1800154. [Google Scholar] [CrossRef]
- Wang, C.; Duan, X.; Jiang, Y.; Liu, Q.-Q.; Ma, J.-X.; Su, Z.-M.; Zang, H.-Y. Molecular design of electron-rich polyoxometalates based clusters enabling intelligent energy storage. Adv. Mater. 2025, 37, 2500114. [Google Scholar] [CrossRef] [PubMed]
- Pujari, S.; Desai, N.; Sudhakar, Y.N.; Waikard, M.R.; Sonkawade, R.G.; Nidhin, M.; Nazareth, R.A. Polyoxometalate/α-Fe2O3/polyaniline composite: Tailored approaches for high-performance supercapacitors. J. Alloys Compd. 2025, 1010, 177306. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, A.-M.; Wang, X.-X.; Huang, Q.; Zhu, X.; Wang, X.-L.; Dong, L.; Li, S.-L.; Lan, Y.-Q. Encapsulating the ionic liquids into POM-based mofs to improve their conductivity for superior lithium storage. J. Mater. Chem. A 2018, 6, 8735–8741. [Google Scholar] [CrossRef]





| Materials | Capacity (mAh g−1) | Current/Current Density/Rate | Capacity Retention | Power Density | Energy Density | Cycle Number | Ref. |
|---|---|---|---|---|---|---|---|
| Li3PW12O40 | 165.6 | 0.1 C | 91.5% | 200 | [128] | ||
| L-rGO/PPy@POM | 60 | 10 A·g−1 | 80.4% | 6.2 mW·cm−3 | 29.3 mWh·cm−3 | 22,000 | [36] |
| BAS-MOF-1 | 708.2 | 0.1 A·g−1 | 94% | 300 | [158] | ||
| MZC-PMA HSNSs | 592 | 1 A·g−1 | 100% | 700 | [159] | ||
| PMo12/PDA@rGO | 277.5 | 1 A·g−1 | 99.89% | 2000 | [129] | ||
| LNLPW | 1510.2 | 0.5 C | 40% | 379 Wh·kg−1 | 400 | [146] | |
| NVO | 814 | 0.1 C | 70.5% | 200 | [61] | ||
| POMs-D@CNFs | 170 | 3 A·g−1 | 100% | 16,000 W·kg−1 | 30.2 Wh·kg−1 | 8000 | [120] |
| POM-based Ag-MCFs | 770 | 0.1 A·g−1 | 61% | 100 | [160] | ||
| Li7[V15O36(CO3)] | 173 | 2 A·g−1 | 60% | 25.7 kW·kg−1 | 300 Wh·kg−1 | 100 | [25] |
| NAM-EDAG | 1000 | 0.1 A·g−1 | 100% | 100 | [23] | ||
| SWCNTs-OH-P-PMo12-400 | 10.2 mF·cm−2 | 1 mA·cm−2 | 99.3% | 7 μW·cm−2 | 0.71 μWh·cm−2 | 1000 | [161] |
| EMI-Mo72V30@rGO | 1150 | 0.1 A·g−1 | 100% | 100 | [162] | ||
| CuMo16 | 194.19 | 1 A·g−1 | 68.2% | 500 W·kg−1 | 97.1 Wh·kg−1 | 2500 | [163] |
| MoSe2/(Ni, Co)Se2 | 359.9 | 1 A·g−1 | 83.7% | 800.9 W·kg−1 | 40.3 W h·kg−1 | 10,000 | [121] |
| POM/Fe2O3/PANI | 528 F·g−1 | 0.2 A·g−1 | 91.62% | 7.14 kW kg−1 | 73.4 Wh·kg−1 | 100 | [164] |
| NiMoO4·MoO2/NC | 364.96 F·g−1 | 1 A·g−1 | 80% | 4140 W·kg−1 | 102 Wh·kg−1 | 10,000 | [122] |
| 6CDs@PMo12/Ni-MOF | 155.8 F·g−1 | 5 A·g−1 | 98.4% | 749.9 W·kg−1 | 39.22 Wh·kg−1 | 20,000 | [123] |
| POMs-ILs@MOFs | 600 | 1 A·g−1 | 99.98% | 400 | [165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, W.; Feng, C.; Wang, C.; Liu, D.; Fan, X.; Liang, P. Polyoxometalates in Electrochemical Energy Storage: Recent Advances and Perspectives. Int. J. Mol. Sci. 2025, 26, 10267. https://doi.org/10.3390/ijms262110267
Bao W, Feng C, Wang C, Liu D, Fan X, Liang P. Polyoxometalates in Electrochemical Energy Storage: Recent Advances and Perspectives. International Journal of Molecular Sciences. 2025; 26(21):10267. https://doi.org/10.3390/ijms262110267
Chicago/Turabian StyleBao, Wenjing, Chao Feng, Chongze Wang, Dandan Liu, Xing Fan, and Peng Liang. 2025. "Polyoxometalates in Electrochemical Energy Storage: Recent Advances and Perspectives" International Journal of Molecular Sciences 26, no. 21: 10267. https://doi.org/10.3390/ijms262110267
APA StyleBao, W., Feng, C., Wang, C., Liu, D., Fan, X., & Liang, P. (2025). Polyoxometalates in Electrochemical Energy Storage: Recent Advances and Perspectives. International Journal of Molecular Sciences, 26(21), 10267. https://doi.org/10.3390/ijms262110267

