Heterologous Biosynthesis of Crocin I in Solanum lycopersicum L.
Abstract
1. Introduction
2. Results
2.1. Multigene Vector Construction and Transient Expression Assays
2.2. Genetic Transformation and Molecular Identification
2.3. HPLC-MS/MS Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material, Chemicals and Strains
4.2. Multigene Expression Vector Construction
4.3. Transient Expression
4.4. S. lycopersicum Plants Transformation
4.5. PCR Detection of Transgenic
4.6. Quantitative Detection of Gene Expression
4.7. Analysis of Mogrosides by HPLC-MS/MS
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Chen, S.; Wang, Y.; Tian, Y.; Wang, X.; Xin, T.; Li, Z.; Hua, X.; Tan, S.; Sun, W.; et al. Crocus genome reveals the evolutionary origin of crocin biosynthesis. Acta Pharm. Sin. B 2024, 14, 1878–1891. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 11th ed.; Medical Science Press: Beijing, China, 2020; Volume 1, p. 135.
- Ghasemnejad-Berenji, M. Immunomodulatory and anti-inflammatory potential of crocin in COVID-19 treatment. J. Food Biochem. 2021, 45, e13718. [Google Scholar] [CrossRef]
- Akbari, G.; Mard, S.A.; Dianat, M.; Mansouri, E. The Hepatoprotective and MicroRNAs Downregulatory Effects of Crocin Following Hepatic Ischemia-Reperfusion Injury in Rats. Oxidative Med. Cell. Longev. 2017, 2017, 1702967. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.M.; Abdel-Latif, G.A.; Abbas, S.S.; El Magdoub, H.M.; Schaalan, M.F. Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 2020, 164, 107900. [Google Scholar] [CrossRef]
- Finley, J.W.; Gao, S. A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer’s Disease. J. Agric. Food Chem. 2017, 65, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Allahdad, Z.; Khammari, A.; Karami, L.; Ghasemi, A.; Sirotkin, V.A.; Haertlé, T.; Saboury, A. Binding studies of crocin to β-Lactoglobulin and its impacts on both components. Food Hydrocoll. 2020, 108, 106003. [Google Scholar] [CrossRef]
- Fan, H.; Fu, G.; Feng, S.; He, X.; Cai, W.; Wan, Y. Fabrication of casein-crocin nanocomplexes: Interaction mechanism, impact on stability and bioavailability of crocin. Food Hydrocoll. 2023, 136, 108279. [Google Scholar] [CrossRef]
- Barja, M.V.; Rodriguez-Concepcion, M. Plant geranylgeranyl diphosphate synthases: Every (gene) family has a story. aBIOTECH 2021, 2, 289–298. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- Xie, L.; Luo, Z.; Jia, X.; Mo, C.; Huang, X.; Suo, Y.; Cui, S.; Zang, Y.; Liao, J.; Ma, X. Synthesis of Crocin I and Crocin II by Multigene Stacking in Nicotiana benthamiana. Int. J. Mol. Sci. 2023, 24, 14139. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; López-Pozo, M.; Stewart, J.J.; Adams, W.W. Zeaxanthin and Lutein: Photoprotectors, Anti-Inflammatories, and Brain Food. Molecules 2020, 25, 3607. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Ruan, J.; Wu, R.; Zhao, M.; Zhao, T.; Qi, M.; Yau, S.S.Y.; Yao, G.; Zhang, H.; Hu, Y.; et al. A natural carotenoid crocin exerts antidepressant action by promoting adult hippocampal neurogenesis through Wnt/β-catenin signaling. J. Adv. Res. 2023, 43, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wang, Y.-L.; Chen, L.; Li, Q.-E.; Cheng, Y. Anti-depressant-like effects of rannasangpei and its active ingredient crocin-1 on chronic unpredictable mild stress mice. Front. Pharmacol. 2023, 14, 2023. [Google Scholar] [CrossRef]
- Xiao, Q.; Xiong, Z.; Yu, C.; Zhou, J.; Shen, Q.; Wang, L.; Xie, X.; Fu, Z. Antidepressant activity of crocin-I is associated with amelioration of neuroinflammation and attenuates oxidative damage induced by corticosterone in mice. Physiol. Behav. 2019, 212, 112699. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Y.; Zhang, X.; Liu, C.; Yin, J.; Kuang, L.; He, W.; Hua, D. Reactive oxygen species-responsive nanodrug of natural crocin-i with prolonged circulation for effective radioprotection. Colloids Surf. B Biointerfaces 2022, 213, 112441. [Google Scholar] [CrossRef]
- Xie, X.; Xiao, Q.; Xiong, Z.; Yu, C.; Zhou, J.; Fu, Z. Crocin-I ameliorates the disruption of lipid metabolism and dysbiosis of the gut microbiota induced by chronic corticosterone in mice. Food Funct. 2019, 10, 6779–6791. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, S.; Li, Q.; Tong, Y.; Wang, P. Purification of Crocin-I from Gardenia Yellow by Macroporous Resin Columns In-Series and Its Antidepressant-Like Effect. J. Chem. 2022, 2022, 7651553. [Google Scholar] [CrossRef]
- Hooshyari Ardakani, M.; Nosengo, C.; Felletti, S.; Catani, M.; Cavazzini, A.; De Luca, C.; Rezadoost, H. Enhancing the purification of crocin-I from saffron through the combination of multicolumn countercurrent chromatography and green solvents. Anal. Bioanal. Chem. 2024, 416, 2553–2564. [Google Scholar] [CrossRef]
- Zheng, X.; Mi, J.; Balakrishna, A.; Liew, K.X.; Ablazov, A.; Sougrat, R.; Al-Babili, S. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. Plant Biotechnol. J. 2022, 20, 2202–2216. [Google Scholar] [CrossRef]
- Martí, M.; Diretto, G.; Aragonés, V.; Frusciante, S.; Ahrazem, O.; Gómez-Gómez, L.; Daròs, J.-A. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Metab. Eng. 2020, 61, 238–250. [Google Scholar] [CrossRef]
- Ahrazem, O.; Zhu, C.; Huang, X.; Rubio-Moraga, A.; Capell, T.; Christou, P.; Gómez-Gómez, L. Metabolic Engineering of Crocin Biosynthesis in Nicotiana Species. Front. Plant Sci. 2022, 13, 861140. [Google Scholar] [CrossRef]
- Lobato-Gómez, M.; Drapal, M.; Fernández-Muñoz, R.; Presa, S.; Espinosa, A.; Fraser, P.D.; Gómez-Gómez, L.; Orzaez, D.; Granell, A. Maximizing saffron apocarotenoid production in varied tomato fruit carotenoid contexts. Plant J. 2024, 120, 966–983. [Google Scholar] [CrossRef]
- Busch, J.M.; Savage, G.P.; Searle, B.P. Sensory evaluation and physico-chemical measurements of tomatoes commonly consumed in New Zealand. Int. J. Consum. Stud. 2008, 32, 535–544. [Google Scholar] [CrossRef]
- Jürkenbeck, K.; Spiller, A.; Meyerding, S.G.H. Tomato attributes and consumer preferences–a consumer segmentation approach. Br. Food J. 2019, 122, 328–344. [Google Scholar] [CrossRef]
- Frusciante, S.; Demurtas, O.C.; Sulli, M.; Mini, P.; Aprea, G.; Diretto, G.; Karcher, D.; Bock, R.; Giuliano, G. Heterologous expression of Bixa orellana cleavage dioxygenase 4—3 drives crocin but not bixin biosynthesis. Plant Physiol. 2022, 188, 1469–1482. [Google Scholar] [CrossRef]
- Ahrazem, O.; Diretto, G.; Rambla, J.L.; Rubio-Moraga, Á.; Lobato-Gómez, M.; Frusciante, S.; Argandoña, J.; Presa, S.; Granell, A.; Gómez-Gómez, L. Engineering high levels of saffron apocarotenoids in tomato. Hortic. Res. 2022, 9, uhac074. [Google Scholar] [CrossRef]
- Dong, C.; Qu, G.; Guo, J.; Wei, F.; Gao, S.; Sun, Z.; Jin, L.; Sun, X.; Rochaix, J.-D.; Miao, Y.; et al. Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum. Sci. Bull. 2022, 67, 315–327. [Google Scholar] [CrossRef]
- Kim, J.; Smith, J.J.; Tian, L.; DellaPenna, D. The Evolution and Function of Carotenoid Hydroxylases in Arabidopsis. Plant Cell Physiol. 2009, 50, 463–479. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zhou, Z.; Sun, L.; Sun, J.; Shen, C.; Gao, R.; Song, J.; Pu, X. The Functional Characteristics and Soluble Expression of Saffron CsCCD2. Int. J. Mol. Sci. 2023, 24, 15090. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Zhang, M.; Yang, M.; Dai, S.; Meng, Q.; Lv, W.; Zhuang, K. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening. Plant Physiol. 2023, 192, 2067–2080. [Google Scholar] [CrossRef]
- Zhou, M.; Deng, L.; Guo, S.; Yuan, G.; Li, C.; Li, C. Alternative transcription and feedback regulation suggest that SlIDI1 is involved in tomato carotenoid synthesis in a complex way. Hortic. Res. 2022, 9, uhab045. [Google Scholar] [CrossRef]
Analytes | Molecular Weight | Q1 (m/z) | Q3 (m/z) | DP (V) | CE (V) |
---|---|---|---|---|---|
Crocin I | 976.7 | 999.3 | 675.0; 347.0 | 120 | 50 |
Crocin II | 814.8 | 837.3 | 675.0; 347.0 | 120 | 50 |
Crocin III | 652.7 | 675.3 | 347.0; 351.2 | 120 | 45 |
Crocin IV | 652.7 | 675.3 | 347.0; 351.2 | 120 | 35 |
Crocin V | 490.5 | 513.3 | 351.3 | 120 | 50 |
Crocetin | 328.4 | 327.1 | 239.1; 119.2 | −60 | −20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Liao, J.; Wang, C.; Jia, X.; Zang, Y.; Mo, C.; Ma, X.; Luo, Z. Heterologous Biosynthesis of Crocin I in Solanum lycopersicum L. Int. J. Mol. Sci. 2025, 26, 9984. https://doi.org/10.3390/ijms26209984
Xie L, Liao J, Wang C, Jia X, Zang Y, Mo C, Ma X, Luo Z. Heterologous Biosynthesis of Crocin I in Solanum lycopersicum L. International Journal of Molecular Sciences. 2025; 26(20):9984. https://doi.org/10.3390/ijms26209984
Chicago/Turabian StyleXie, Lei, Jingjing Liao, Chongnan Wang, Xunli Jia, Yimei Zang, Changming Mo, Xiaojun Ma, and Zuliang Luo. 2025. "Heterologous Biosynthesis of Crocin I in Solanum lycopersicum L." International Journal of Molecular Sciences 26, no. 20: 9984. https://doi.org/10.3390/ijms26209984
APA StyleXie, L., Liao, J., Wang, C., Jia, X., Zang, Y., Mo, C., Ma, X., & Luo, Z. (2025). Heterologous Biosynthesis of Crocin I in Solanum lycopersicum L. International Journal of Molecular Sciences, 26(20), 9984. https://doi.org/10.3390/ijms26209984