Peptide Mapping for Sequence Confirmation of Therapeutic Proteins and Recombinant Vaccine Antigens by High-Resolution Mass Spectrometry: Software Limitations, Pitfalls, and Lessons Learned
Abstract
1. Introduction
2. Results
2.1. Dipeptides with Similar or Identical Mass
2.2. The Post-Translational Modification: You Can(not) Have Too Many
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation
4.3. Sample Analysis
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
ASR | Average Structural Resolution |
DP | Drug Product |
DS | Drug Substance |
EMA | European Medicines Agency |
ETD | Electron Transfer Dissociation |
EThcD | Electron Transfer and Higher-Energy Collisional Dissociation |
FDA | Food and Drug Administration |
GxP | Good Practice (e.g., GLP, Good Laboratory Practice) |
HCD | Higher-Energy Collisional Dissociation |
LC | Liquid Chromatography |
MS | Mass Spectrometry |
NEM | N-Ethylmaleimide |
PMDA | Pharmaceuticals and Medical Devices Agency |
PSM | Peptide-Spectrum Match |
PTM | Post-Translational Modification |
QC | Quality Control |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
TCEP | Tris(2-carboxyethyl)phosphine |
UHPLC | Ultra-High-Performance Liquid Chromatography |
UV | Ultraviolet |
References
- Goeddel, D.V.; Kleid, D.G.; Bolivar, F. Expression in Escherichia Coli of Chemically Synthesized Genes for Human Insulin. Proc. Natl. Acad. Sci. USA 1979, 76, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, I.; Tornali, C.; Bragazzi, N.L.; Martini, M. The Discovery of Insulin: An Important Milestone in the History of Medicine. Front. Endocrinol. 2018, 9, 613. [Google Scholar] [CrossRef]
- Walsh, G.; Walsh, E. Biopharmaceutical Benchmarks 2022. Nat. Biotechnol. 2022, 40, 1722–1760. [Google Scholar] [CrossRef]
- Gherghescu, I.; Delgado-Charro, M.B. The Biosimilar Landscape: An Overview of Regulatory Approvals by the EMA and FDA. Pharmaceutics 2021, 13, 48. [Google Scholar] [CrossRef]
- Bromberg, Y.; Rost, B. Correlating Protein Function and Stability through the Analysis of Single Amino Acid Substitutions. BMC Bioinform. 2009, 10, S8. [Google Scholar] [CrossRef]
- Walsh, G.; Jefferis, R. Post-Translational Modifications in the Context of Therapeutic Proteins. Nat. Biotechnol. 2006, 24, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Malovichko, G.; Zhu, X. Single Amino Acid Substitution in the Vicinity of a Receptor-Binding Domain Changes Protein-Peptide Binding Affinity. ACS Omega 2017, 2, 5445–5452. [Google Scholar] [CrossRef]
- Ebrahimi, S.B.; Samanta, D. Engineering Protein-Based Therapeutics through Structural and Chemical Design. Nat. Commun. 2023, 14, 2411. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor-Vivas, C.; Hernández-Lemus, E.; Dorantes-Gilardi, R. Linking Protein Structural and Functional Change to Mutation Using Amino Acid Networks. PLoS ONE 2022, 17, e0261829. [Google Scholar] [CrossRef]
- Oyama, K.; Ueda, T. Relationship between Protein Conformational Stability and Its Immunogenicity When Administering Antigens to Mice Using Adjuvants-Analysis Employed the CH2 Domain in Human Antibodies. PLoS ONE 2024, 19, e0307320. [Google Scholar] [CrossRef]
- Ratanji, K.D.; Derrick, J.P.; Dearman, R.J.; Kimber, I. Immunogenicity of Therapeutic Proteins: Influence of Aggregation. J. Immunotoxicol. 2014, 11, 99–109. [Google Scholar] [CrossRef]
- Van Beers, M.M.C.; Bardor, M. Minimizing Immunogenicity of Biopharmaceuticals by Controlling Critical Quality Attributes of Proteins. Biotechnol. J. 2012, 7, 1473–1484. [Google Scholar] [CrossRef]
- Scheiblhofer, S.; Laimer, J.; Machado, Y.; Weiss, R.; Thalhamer, J. Influence of Protein Fold Stability on Immunogenicity and Its Implications for Vaccine Design. Expert Rev. Vaccines 2017, 16, 479–489. [Google Scholar] [CrossRef]
- Rosenberg, A.S. Effects of Protein Aggregates: An Immunologic Perspective. AAPS J. 2006, 8, E501–E507. [Google Scholar] [CrossRef]
- De Groot, A.S.; Scott, D.W. Immunogenicity of Protein Therapeutics. Trends Immunol. 2007, 28, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Moussa, E.M.; Panchal, J.P.; Moorthy, B.S.; Blum, J.S.; Joubert, M.K.; Narhi, L.O.; Topp, E.M. Immunogenicity of Therapeutic Protein Aggregates. J. Pharm. Sci. 2016, 105, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Diemer, H.; Ayoub, D.; Debaene, F.; Wagner-Rousset, E.; Carapito, C.; Van Dorsselaer, A.; Sanglier-Cianférani, S. Analytical Characterization of Biosimilar Antibodies and Fc-Fusion Proteins. TrAC Trends Anal. Chem. 2013, 48, 81–95. [Google Scholar] [CrossRef]
- Tsuruta, L.R.; Lopes dos Santos, M.; Moro, A.M. Biosimilars Advancements: Moving on to the Future. Biotechnol. Prog. 2015, 31, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Vikram; Deep, A.; Manita. Regulation and Challenges of Biosimilars in European Union. Appl. Clin. Res. Clin. Trials Regul. Aff. 2019, 6, 192–211. [Google Scholar] [CrossRef]
- Tsiftsoglou, A.S.; Ruiz, S.; Schneider, C.K. Development and Regulation of Biosimilars: Current Status and Future Challenges. BioDrugs 2013, 27, 203–211. [Google Scholar] [CrossRef]
- Pharmaceuticals and Medical Devices Agency (PMDA). Guideline for Ensuring Quality, Safety, and Efficacy of Biosimilars; PMDA: Tokyo, Japan, 2020. [Google Scholar]
- Committee for Medicinal Products for Human Use (CHMP). Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Quality Issues; (Revision 1); CHMP: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Food and Drug Administration. Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product; Food and Drug Administration: Silver Spring, MD, USA, 2015. [Google Scholar]
- Foltmann, B. Protein Sequencing: Past and Present. Biochem. Educ. 1981, 9, 2–7. [Google Scholar] [CrossRef]
- Gomes, A.V. On “A Method for the Determination of Amino Acid Sequence in Peptides” by P. Edman. Arch. Biochem. Biophys. 2022, 726, 109304. [Google Scholar] [CrossRef] [PubMed]
- Chelius, D.; Jing, K.; Lueras, A.; Rehder, D.S.; Dillon, T.M.; Vizel, A.; Rajan, R.S.; Li, T.; Treuheit, M.J.; Bondarenko, P.V. Formation of Pyroglutamic Acid from N-Terminal Glutamic Acid in Immunoglobulin Gamma Antibodies. Anal. Chem. 2006, 78, 2370–2376. [Google Scholar] [CrossRef]
- Dick, L.W.; Kim, C.; Qiu, D.; Cheng, K.C. Determination of the Origin of the N Termina Pyro-Glutamate Variation in Monoclonal Antibodies Using Model Peptides. Biotechnol. Bioeng. 2007, 97, 544–553. [Google Scholar] [CrossRef]
- Liu, Y.D.; Goetze, A.M.; Bass, R.B.; Flynn, G.C. N-Terminal Glutamate to Pyroglutamate Conversion in Vivo for Human IgG2 Antibodies. J. Biol. Chem. 2011, 286, 11211–11217. [Google Scholar] [CrossRef]
- Bandeira, N.; Pham, V.; Pevzner, P.; Arnott, D.; Lill, J.R. Automated de Novo Protein Sequencing of Monoclonal Antibodies. Nat. Biotechnol. 2008, 26, 1336–1338. [Google Scholar] [CrossRef]
- Vecchi, M.M.; Xiao, Y.; Wen, D. Identification and Sequencing of N-Terminal Peptides in Proteins by LC-Fluorescence-MS/MS: An Approach to Replacement of the Edman Degradation. Anal. Chem. 2019, 91, 13591–13600. [Google Scholar] [CrossRef]
- Lund, A.; Ren, D.; Rogers, R.S.; Rouse, J.C.; Yu, X.C.; Valliere-Douglass, J.F. Scientific Best Practices for Primary Sequence Confirmation and Sequence Variant Analysis in the Development of Therapeutic Proteins. J. Pharm. Sci. 2021, 110, 619–626. [Google Scholar] [CrossRef]
- Ma, B.; Johnson, R. De Novo Sequencing and Homology Searching. Mol. Cell. Proteom. 2012, 11, O111.014902. [Google Scholar] [CrossRef]
- Nakajima, C.; Kuyama, H.; Nakazawa, T.; Nishimura, O.; Tsunasawa, S. A Method for N-Terminal de Novo Sequencing of Nα-Blocked Proteins by Mass Spectrometry. Analyst 2011, 136, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.K.; Zhang, J.; Frabutt, D.; Mulcrone, P.L.; Li, L.; Zeng, L.; Herzog, R.W.; Xiao, W. Fast and High-Throughput LC-MS Characterization, and Peptide Mapping of Engineered AAV Capsids Using LC-MS/MS. Mol. Ther. Methods Clin. Dev. 2022, 27, 185–194. [Google Scholar] [CrossRef]
- Formolo, T.; Ly, M.; Levy, M.; Kilpatrick, L.; Lute, S.; Phinney, K.; Marzilli, L.; Brorson, K.; Boyne, M.; Davis, D.; et al. Determination of the NISTmAb Primary Structure. In ACS Symposium Series; Schiel, J.E., Davis, D.L., Borisov, O.V., Eds.; American Chemical Society: Washington, DC, USA, 2015; Volume 1201, pp. 1–62. ISBN 978-0-8412-3029-3. [Google Scholar]
- Mouchahoir, T.; Schiel, J.E. Development of an LC-MS/MS Peptide Mapping Protocol for the NISTmAb. Anal. Bioanal. Chem. 2018, 410, 2111–2126. [Google Scholar] [CrossRef] [PubMed]
- Cappadona, S.; Baker, P.R.; Cutillas, P.R.; Heck, A.J.R.; Van Breukelen, B. Current Challenges in Software Solutions for Mass Spectrometry-Based Quantitative Proteomics. Amino Acids 2012, 43, 1087–1108. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrell, J.S. Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Pevzner, P.A. MS-GF+ Makes Progress towards a Universal Database Search Tool for Proteomics. Nat. Commun. 2014, 5, 5277. [Google Scholar] [CrossRef]
- Keller, A.; Nesvizhskii, A.I.; Kolker, E.; Aebersold, R. Empirical Statistical Model to Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search. Anal. Chem. 2002, 74, 5383–5392. [Google Scholar] [CrossRef] [PubMed]
- Elias, J.E.; Gygi, S.P. Target-Decoy Search Strategy for Increased Confidence in Large-Scale Protein Identifications by Mass Spectrometry. Nat. Methods 2007, 4, 207–214. [Google Scholar] [CrossRef]
- Käll, L.; Canterbury, J.D.; Weston, J.; Noble, W.S.; MacCoss, M.J. Semi-Supervised Learning for Peptide Identification from Shotgun Proteomics Datasets. Nat. Methods 2007, 4, 923–925. [Google Scholar] [CrossRef]
- Shteynberg, D.D.; Deutsch, E.W.; Campbell, D.S.; Hoopmann, M.R.; Kusebauch, U.; Lee, D.; Mendoza, L.; Midha, M.K.; Sun, Z.; Whetton, A.D.; et al. PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline. J. Proteome Res. 2019, 18, 4262–4272. [Google Scholar] [CrossRef]
- Food and Drug Administration. 21 CFR Part 11—Electronic Records; Electronic Signatures; Food and Drug Administration: Silver Spring, MD, USA, 1997. [Google Scholar]
- Lalasa, P.; Vishal Gupta, N.; Raghunandan, H.V.; Prathusha, P.L.; Athkuri, K. A Review on Applications of GAMP -5 in Pharmaceutical Industries. Int. J. Drug Dev. Res. 2013, 5, 4–16. [Google Scholar]
- Bobalova, J.; Strouhalova, D.; Bobal, P. Common Post-Translational Modifications (PTMs) of Proteins: Analysis by Up-to-Date Analytical Techniques with an Emphasis on Barley. J. Agric. Food Chem. 2023, 71, 14825–14837. [Google Scholar] [CrossRef]
- Frese, C.K.; Altelaar, A.F.M.; Van Den Toorn, H.; Nolting, D.; Griep-Raming, J.; Heck, A.J.R.; Mohammed, S. Toward Full Peptide Sequence Coverage by Dual Fragmentation Combining Electron-Transfer and Higher-Energy Collision Dissociation Tandem Mass Spectrometry. Anal. Chem. 2012, 84, 9668–9673. [Google Scholar] [CrossRef]
- Mommen, G.P.M.; Frese, C.K.; Meiring, H.D.; Gaans-van Den Brink, J.; De Jong, A.P.J.M.; Van Els, C.A.C.M.; Heck, A.J.R. Expanding the Detectable HLA Peptide Repertoire Using Electron-Transfer/ Higher-Energy Collision Dissociation (EThcD). Proc. Natl. Acad. Sci. USA 2014, 111, 4507–4512. [Google Scholar] [CrossRef]
- Riley, N.M.; Coon, J.J. The Role of Electron Transfer Dissociation in Modern Proteomics. Anal. Chem. 2018, 90, 40–64. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, D.; Jabs, W.; Resemann, A.; Evers, W.; Evans, C.; Main, L.; Baessmann, C.; Wagner-Rousset, E.; Suckau, D.; Beck, A. Correct Primary Structure Assessment and Extensive Glyco-Profiling of Cetuximab by a Combination of Intact, Middle-up, Middle-down and Bottom-up ESI and MALDI Mass Spectrometry Techniques. MAbs 2013, 5, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Yefremova, Y.; Al-Majdoub, M.; Opuni, K.F.M.; Koy, C.; Cui, W.; Yan, Y.; Gross, M.L.; Glocker, M.O. “de-Novo” Amino Acid Sequence Elucidation of Protein Ge by Combined “Top-Down” and “Bottom-Up” Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2015, 26, 482–492. [Google Scholar] [CrossRef] [PubMed]
mAb Chain | Light | Heavy | ||
---|---|---|---|---|
Sequence no. | (1) | (2) | (3) | (4) |
Peptide sequence | DPGTTVIMSWFDPWGQGTLVTVSSASTK | DPSATVIMSWFDPWGQGTLVTVSSASTK | LEPEDFAVFYCQQYGSSPR | NKPEDFAVFYCQQYGSSPR |
Mass accuracy [ppm] | 9.61 | 9.61 | 6.95 | 2.19 |
Best ASR | 1.0 | 1.1 | 1.1 | 1.2 |
Confidence score [%] | 100 | 100 | 100 | 100 |
Retention time [min] | 31.33 | 31.33 | 26.46 | 26.46 |
m/z | 990.1609 | 990.1609 | 1181.0365 | 1181.0365 |
Experimental monoisotopic mass [Da] | 2967.4609 | 2967.4609 | 2360.0583 | 2360.0583 |
Calculated monoisotopic mass [Da] | 2967.4324 | 2967.4324 | 2360.0419 | 2360.0532 |
Dipeptide | Chemical Formula | Mass [Da] | Mass Difference [ppm] |
---|---|---|---|
GT | C6H12N2O4 | 176.0797 | 0.00 |
SA | C6H12N2O4 | 176.0797 | |
b2(LE) | C11H18N2O4H+ | 243.1340 | −0.55 |
b2(NK) | C10H18N4O3H+ | 243.1452 | −46.75 |
b2 observed | NA * | 243.1338 | - ** |
b3(LEP) | C16H25N3O5H+ | 340.1867 | −3.52 |
b3(NKP) | C15H25N5O4H+ | 340.1979 | −36.54 |
b3 observed | NA | 340.1855 | - |
b4(LEPE) | C21H32N4O8H+ | 469.2293 | −4.07 |
b4(NKPE) | C20H32N6O7H+ | 469.2405 | 19.87 |
b4 observed | NA | 469.2312 | - |
b5(LEPED) | C25H37N5O11H+ | 584.2562 | −12.44 |
b5(NKPED) | C24H37N7O10H+ | 584.2675 | −6.78 |
b5 observed | NA | 584.2602 | - |
Variant | A | B |
---|---|---|
Sequence no. | (5) | (6) |
Peptide sequence | VCEFQFCNDPFLDVYYHK | VCEFQFCNDPFLGVYYHK |
Modification(s) | D_succ, D_succ, (NEM, NEM) | Na+, (NEM, NEM) |
Mass accuracy [ppm] | −1.56 | −0.62 |
Best ASR | 1.4 | 1.1 |
Confidence score | 100 | 100 |
Retention time [min] | 27.23 | 27.23 |
m/z | 1241.0356 | 1241.0356 |
Experimental monoisotopic mass [Da] | 2480.0566 | 2480.0566 |
Calculated monoisotopic mass [Da] | 2480.0605 | 2480.0582 |
Variant | C | D |
---|---|---|
Sequence no. | (7) | (8) |
Peptide sequence | SYLTPVDSSSGWTAGAAAYYVGYLQPR | SYLTPGDSSSGWTAGAAAYYVGYLQPR |
Modification(s) | Deamidation (Q25) | Carbamylation (S1) |
Mass accuracy [ppm] | −7.98 | 0.75 |
Best ASR | 1.6 | 1.1 |
Confidence score | 100 | 100 |
Retention time [min] | 27.62 | 27.62 |
m/z | 1441.1763 | 1441.1763 |
Experimental monoisotopic mass [Da] | 2880.3376 | 2880.3376 |
Calculated monoisotopic mass [Da] | 2880.3606 | 2880.3355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrowolski, M.; Urbaniak, M.; Pietrucha, T. Peptide Mapping for Sequence Confirmation of Therapeutic Proteins and Recombinant Vaccine Antigens by High-Resolution Mass Spectrometry: Software Limitations, Pitfalls, and Lessons Learned. Int. J. Mol. Sci. 2025, 26, 9962. https://doi.org/10.3390/ijms26209962
Dobrowolski M, Urbaniak M, Pietrucha T. Peptide Mapping for Sequence Confirmation of Therapeutic Proteins and Recombinant Vaccine Antigens by High-Resolution Mass Spectrometry: Software Limitations, Pitfalls, and Lessons Learned. International Journal of Molecular Sciences. 2025; 26(20):9962. https://doi.org/10.3390/ijms26209962
Chicago/Turabian StyleDobrowolski, Mateusz, Małgorzata Urbaniak, and Tadeusz Pietrucha. 2025. "Peptide Mapping for Sequence Confirmation of Therapeutic Proteins and Recombinant Vaccine Antigens by High-Resolution Mass Spectrometry: Software Limitations, Pitfalls, and Lessons Learned" International Journal of Molecular Sciences 26, no. 20: 9962. https://doi.org/10.3390/ijms26209962
APA StyleDobrowolski, M., Urbaniak, M., & Pietrucha, T. (2025). Peptide Mapping for Sequence Confirmation of Therapeutic Proteins and Recombinant Vaccine Antigens by High-Resolution Mass Spectrometry: Software Limitations, Pitfalls, and Lessons Learned. International Journal of Molecular Sciences, 26(20), 9962. https://doi.org/10.3390/ijms26209962