Permeabilize, but Choose Wisely: Selective Antibiotic Potentiation Through Outer Membrane Disruption in Pseudomonas aeruginosa
Abstract
1. Introduction
2. Results
2.1. Potentiation of Antibiotics with OM Permeabilizers
2.2. Correlation Between Potentiation and Physicochemical Properties of Antibiotics
2.2.1. A Lipophilicity Window for OM-Mediated Potentiation
2.2.2. Size, Polarity and Polarizability: Useful Filters but No Fixed Rules
3. Discussion
4. Material and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
EDTA | Ethylene Diamine Tetra-acetic Acid |
LPS | Lipopolysaccharides |
MDR | Multi-Drug-Resistant |
MIC | Minimum Inhibitory Concentration |
MSA | Molecular Surface Area |
OM | Outer Membrane |
PSA | Polar Surface Area |
RND | Resistance–Nodulation–Division |
References
- Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- Perez, F.; Salata, R.A.; Bonomo, R.A. Current and Novel Antibiotics against Resistant Gram-Positive Bacteria. Infect. Drug Resist. 2008, 1, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Walesch, S.; Birkelbach, J.; Jézéquel, G.; Haeckl, F.P.J.; Hegemann, J.D.; Hesterkamp, T.; Hirsch, A.K.H.; Hammann, P.; Müller, R. Fighting Antibiotic Resistance-Strategies and (Pre)Clinical Developments to Find New Antibacterials. EMBO Rep. 2023, 24, e56033. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.R.M.; Halls, G.; Hu, Y. Novel Classes of Antibiotics or More of the Same? Br. J. Pharmacol. 2011, 163, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches to Bypass It. ACS Infect. Dis. 2015, 1, 512–522. [Google Scholar] [CrossRef]
- Krishnamoorthy, G.; Leus, I.V.; Weeks, J.W.; Wolloscheck, D.; Rybenkov, V.V.; Zgurskaya, H.I. Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria. mBio 2017, 8, e01172-17. [Google Scholar] [CrossRef]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Masi, M.; Winterhalter, M.; Pagès, J.-M. Outer Membrane Porins. Subcell. Biochem. 2019, 92, 79–123. [Google Scholar] [CrossRef]
- Alav, I.; Kobylka, J.; Kuth, M.S.; Pos, K.M.; Picard, M.; Blair, J.M.A.; Bavro, V.N. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem. Rev. 2021, 121, 5479–5596. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Blanco, P.; Alcalde-Rico, M.; Corona, F.; Reales-Calderón, J.A.; Sánchez, M.B.; Martínez, J.L. Multidrug Efflux Pumps as Main Players in Intrinsic and Acquired Resistance to Antimicrobials. Drug Resist. Updates 2016, 28, 13–27. [Google Scholar] [CrossRef]
- Novelli, M.; Bolla, J.-M. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Antibiotics 2024, 13, 501. [Google Scholar] [CrossRef]
- Zgurskaya, H.I.; Rybenkov, V.V. Permeability Barriers of Gram-Negative Pathogens. Ann. N. Y. Acad. Sci. 2020, 1459, 5–18. [Google Scholar] [CrossRef]
- Zgurskaya, H.I.; Walker, J.K.; Parks, J.M.; Rybenkov, V.V. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Acc. Chem. Res. 2021, 54, 930–939. [Google Scholar] [CrossRef]
- Compagne, N.; Vieira Da Cruz, A.; Müller, R.T.; Hartkoorn, R.C.; Flipo, M.; Pos, K.M. Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics 2023, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, H.; Acosta Gutierrez, S.; Bodrenko, I.; Malloci, G.; Scorciapino, M.A.; Winterhalter, M.; Ceccarelli, M. Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules. ACS Nano 2017, 11, 5465–5473. [Google Scholar] [CrossRef] [PubMed]
- El Zahed, S.S.; French, S.; Farha, M.A.; Kumar, G.; Brown, E.D. Physicochemical and Structural Parameters Contributing to the Antibacterial Activity and Efflux Susceptibility of Small-Molecule Inhibitors of Escherichia coli. Antimicrob. Agents Chemother. 2021, 65, e01925-20. [Google Scholar] [CrossRef] [PubMed]
- Mehla, J.; Malloci, G.; Mansbach, R.; López, C.A.; Tsivkovski, R.; Haynes, K.; Leus, I.V.; Grindstaff, S.B.; Cascella, R.H.; D’Cunha, N.; et al. Predictive Rules of Efflux Inhibition and Avoidance in Pseudomonas aeruginosa. mBio 2021, 12, e02785-20. [Google Scholar] [CrossRef] [PubMed]
- Douafer, H.; Andrieu, V.; Phanstiel, O.; Brunel, J.M. Antibiotic Adjuvants: Make Antibiotics Great Again! J. Med. Chem. 2019, 62, 8665–8681. [Google Scholar] [CrossRef]
- MacVane, S.H. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections. J. Intensive Care Med. 2017, 32, 25–37. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- Ude, J.; Tripathi, V.; Buyck, J.M.; Söderholm, S.; Cunrath, O.; Fanous, J.; Claudi, B.; Egli, A.; Schleberger, C.; Hiller, S.; et al. Outer Membrane Permeability: Antimicrobials and Diverse Nutrients Bypass Porins in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2021, 118, e2107644118. [Google Scholar] [CrossRef] [PubMed]
- Silver, L.L. Challenges of Antibacterial Discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [PubMed]
- Delcour, A.H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef]
- Selinsky, B.S.; Smith, R.; Frangiosi, A.; Vonbaur, B.; Pedersen, L. Squalamine Is Not a Proton Ionophore. Biochim. Biophys. Acta 2000, 1464, 135–141. [Google Scholar] [CrossRef]
- Wang, G.; Brunel, J.-M.; Preusse, M.; Mozaheb, N.; Willger, S.D.; Larrouy-Maumus, G.; Baatsen, P.; Häussler, S.; Bolla, J.-M.; Van Bambeke, F. The Membrane-Active Polyaminoisoprenyl Compound NV716 Re-Sensitizes Pseudomonas aeruginosa to Antibiotics and Reduces Bacterial Virulence. Commun. Biol. 2022, 5, 871. [Google Scholar] [CrossRef]
- Saxena, D.; Maitra, R.; Bormon, R.; Czekanska, M.; Meiers, J.; Titz, A.; Verma, S.; Chopra, S. Tackling the Outer Membrane: Facilitating Compound Entry into Gram-negative Bacterial Pathogens. Npj Antimicrob. Resist. 2023, 1, 17. [Google Scholar] [CrossRef]
- Tabcheh, J.; Vergalli, J.; Davin-Régli, A.; Ghanem, N.; Pages, J.-M.; Al-Bayssari, C.; Brunel, J.M. Rejuvenating the Activity of Usual Antibiotics on Resistant Gram-Negative Bacteria: Recent Issues and Perspectives. Int. J. Mol. Sci. 2023, 24, 1515. [Google Scholar] [CrossRef]
- Sabnis, A.; Hagart, K.L.; Klöckner, A.; Becce, M.; Evans, L.E.; Furniss, R.C.D.; Mavridou, D.A.; Murphy, R.; Stevens, M.M.; Davies, J.C.; et al. Colistin Kills Bacteria by Targeting Lipopolysaccharide in the Cytoplasmic Membrane. Elife 2021, 10, e65836. [Google Scholar] [CrossRef]
- Singh, S.; Mariappan, T.; Sharda, N. Atypical Log D Profile of Rifampicin. Indian. J. Pharm. Sci. 2007, 69, 197. [Google Scholar] [CrossRef]
- Ermondi, G.; Vallaro, M.; Saame, J.; Toom, L.; Leito, I.; Ruiz, R.; Caron, G. Rifampicin as an Example of Beyond-Rule-of-5 Compound: Ionization beyond Water and Lipophilicity beyond Octanol/Water. Eur. J. Pharm. Sci. 2021, 161, 105802. [Google Scholar] [CrossRef]
- Dhanda, G.; Acharya, Y.; Haldar, J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS Omega 2023, 8, 10757–10783. [Google Scholar] [CrossRef]
- Leus, I.V.; Weeks, J.W.; Bonifay, V.; Shen, Y.; Yang, L.; Cooper, C.J.; Nath, D.; Duerfeldt, A.S.; Smith, J.C.; Parks, J.M.; et al. Property Space Mapping of Pseudomonas aeruginosa Permeability to Small Molecules. Sci. Rep. 2022, 12, 8220. [Google Scholar] [CrossRef]
- Finnegan, S.; Percival, S.L. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Adv. Wound Care 2015, 4, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Aboelenin, A.M.; Hassan, R.; Abdelmegeed, E.S. The Effect of EDTA in Combination with Some Antibiotics against Clinical Isolates of Gram Negative Bacteria in Mansoura, Egypt. Microb. Pathog. 2021, 154, 104840. [Google Scholar] [CrossRef] [PubMed]
- Troudi, A.; Fethi, M.; Selim El Asli, M.; Bolla, J.M.; Klibi, N.; Brunel, J.M. Efficiency of a Tetracycline-Adjuvant Combination Against Multidrug Resistant Pseudomonas aeruginosa Tunisian Clinical Isolates. Antibiotics 2020, 9, 919. [Google Scholar] [CrossRef] [PubMed]
- Brunel, J.; Letourneux, Y. Recent Advances in the Synthesis of Spermine and Spermidine Analogs of the Shark Aminosterol Squalamine. Eur. J. Org. Chem. 2003, 20, 3897–3907. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). EUCAST Definitive Document E.DEF 3.1, June 2000: Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Agar Dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef]
Antibiotic | MIC (mg/L) | ||||
---|---|---|---|---|---|
Ø | +SQ (5 µM) | +NV716 (10 µM) | +EDTA (1 mM) | +CST (0.35 µM) | |
AZM | 128 | 128 | 32 | 64 | 64 |
ATM | 8 | 4 | 8 | 4 | 4 |
CAZ | 2 | 1 | 2 | 0.5 | 1 |
CHL | 64 | 32 | 4 | 4 | 32 |
CIP | 0.25 | 0.031 | 0.25 | 0.0625 | 0.5 |
DMC | 32 | 8 | 2 | 0.5 | 8 |
DTM | 512 | 256 | 128 | 256 | 256 |
DOX | 64 | 8 | 0.5 | 1 | 8 |
ENR | 1 | 0.125 | 0.25 | 0.25 | 1 |
ERY | 256 | 256 | 64 | 128 | 64 |
FFC | 256 | 128 | 4 | 16 | 128 |
MIN | 32 | 8 | 0.5 | 0.5 | 4 |
NAL | 256 | 16 | 8 | 64 | 64 |
OXA | 2048 | 2048 | 512 | 512 | 2048 |
RIF | 32 | 16 | 2 | 2 | 1 |
TIC | 32 | 16 | 16 | 8 | 16 |
Antibiotic | Molecular Weight (g/mol) | Molecular Surface Area (Å2) | Calculated LogD at pH 7.4 | Polarizability (Å3) | Polar Surface Area (Å2) |
---|---|---|---|---|---|
AZM | 749 | 1282.33 | −1.2 | 79.01 | 180.08 |
ATM | 435.4 | 537.79 | −6.2 | 36.66 | 201.58 |
CAZ | 546.6 | 657.8 | −6.9 | 50.38 | 191.22 |
CHL | 323.13 | 386.28 | 0.5 | 27.82 | 112.7 |
CIP | 331.34 | 440.5 | −1.26 | 32.27 | 72.88 |
DMC | 464.9 | 543.25 | −3.7 | 43.4 | 181.62 |
DTM | 835.1 | 1404.77 | 0.5 | 87.14 | 196.33 |
DOX | 444.4 | 558.6 | −2.8 | 43.22 | 181.62 |
ENR | 359.4 | 505.82 | 0.66 | 35.93 | 64.09 |
ERY | 733.9 | 1220.13 | 1.0 | 75.76 | 193.91 |
FFC | 358.2 | 437.95 | −0.12 | 31.01 | 83.47 |
MIN | 457.5 | 607.96 | −3.0 | 45.54 | 164.63 |
NAL | 232.23 | 505.82 | −1.9 | 23.02 | 70.5 |
OXA | 401.4 | 523.19 | −1.8 | 40 | 112.74 |
RIF | 822.9 | 1197.16 | 3.5 | 86.48 | 220.15 |
TIC | 384.4 | 463.93 | −6.0 | 34.58 | 124.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novelli, M.; Brunel, J.-M. Permeabilize, but Choose Wisely: Selective Antibiotic Potentiation Through Outer Membrane Disruption in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2025, 26, 9844. https://doi.org/10.3390/ijms26209844
Novelli M, Brunel J-M. Permeabilize, but Choose Wisely: Selective Antibiotic Potentiation Through Outer Membrane Disruption in Pseudomonas aeruginosa. International Journal of Molecular Sciences. 2025; 26(20):9844. https://doi.org/10.3390/ijms26209844
Chicago/Turabian StyleNovelli, Marine, and Jean-Michel Brunel. 2025. "Permeabilize, but Choose Wisely: Selective Antibiotic Potentiation Through Outer Membrane Disruption in Pseudomonas aeruginosa" International Journal of Molecular Sciences 26, no. 20: 9844. https://doi.org/10.3390/ijms26209844
APA StyleNovelli, M., & Brunel, J.-M. (2025). Permeabilize, but Choose Wisely: Selective Antibiotic Potentiation Through Outer Membrane Disruption in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 26(20), 9844. https://doi.org/10.3390/ijms26209844