Advances in Genetic Engineering Techniques for Improved Forest Trees: Applications in Biomass, Stress Resilience and Carbon Sequestration
Abstract
1. Introduction
2. Challenges and Opportunities of Traditional Breeding
3. Advancements in Molecular Design Breeding
3.1. Genetic Engineering Techniques
3.2. Methods of Genetic Engineering
3.2.1. Agrobacterium-Mediated Transformation
3.2.2. Biolistic Genetic Transformation Method
3.3. Marker Assisted Selection
3.4. Gene Editing Technology CRISPR
3.5. Applications of CRISPR Genome-Editing
4. Applications of Genetic Modification in Trees
4.1. Wood Qualities Improvement
4.2. Drought Tolerance
4.3. Insect Resistance
4.4. Phytoremediation
4.5. Carbon Sequestration and Climate Change Mitigation
4.6. Biodiversity Restoration
4.7. Herbicide Tolerance
5. Current Status of Genetically Modified Trees
5.1. Progress in Research and Development and Field Trials
5.2. Threats Posed by Genetically Modified Trees to Biodiversity Loss
5.3. Regulatory and Public Acceptance
5.4. Socio-Economic Dimensions Associated with Genetically Modified Trees
5.4.1. Intellectual Property Rights
5.4.2. Access to Technology
5.4.3. Cost Effectiveness
5.4.4. Inequality in the Forestry Sector
5.4.5. Land Use
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/handle/20.500.14283/ca9825en (accessed on 12 October 2025).
- Upadhyay, P.; Singh, T.S. The Importance of Conserving Existing Forest Areas and Protecting Biodiversity in Addressing Climate Change Issues. In Forests and Climate Change: Biological Perspectives on Impact, Adaptation, and Mitigation Strategies; Singh, H., Ed.; Springer Nature: Singapore, 2024; pp. 605–623. [Google Scholar]
- Aerts, R.; Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 2011, 11, 29. [Google Scholar] [CrossRef]
- Artaxo, P.; Hansson, H.C.; Machado, L.A.T.; Rizzo, L.V. Tropical forests are crucial in regulating the climate on Earth. PLoS Clim. 2022, 1, e0000054. [Google Scholar] [CrossRef]
- Harfouche, A.; Meilan, R.; Altman, A. Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol. 2011, 29, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.R.; Kamini; Kumar, N.; Kumar, D. Short-Rotation Forestry: Implications for Carbon Sequestration in Mitigating Climate Change. In Sustainable Agriculture, Forest and Environmental Management; Jhariya, M.K., Banerjee, A., Meena, R.S., Yadav, D.K., Eds.; Springer: Singapore, 2019; pp. 353–391. [Google Scholar]
- Manohar, K.A.; Shukla, G.; Shahina, N.N.; Sivasankarreddy, K.; Ravuther, S.S.; Chakravarty, S. Conventional Versus Non-Conventional Methods of Propagation of Forest Tree Species: Applications and Limitations. In Biotechnological Approaches for Sustaining Forest Trees and Their Products; Thomas, T.D., Razdan, M.K., Kumar, A., Eds.; Springer Nature: Singapore, 2024; pp. 483–517. [Google Scholar]
- Zhao, Y.; Tian, Y.; Sun, Y.; Li, Y. The Development of Forest Genetic Breeding and the Application of Genome Selection and CRISPR/Cas9 in Forest Breeding. Forests 2022, 13, 2116. [Google Scholar] [CrossRef]
- Ray, D.; Berlin, M.; Alia, R.; Sanchez, L.; Hynynen, J.; González-Martinez, S.; Bastien, C. Transformative changes in tree breeding for resilient forest restoration. Front. For. Glob. Change 2022, 5, 1005761. [Google Scholar] [CrossRef]
- Avisara, D.; Dias, T.B.; dos Santos, A.A.; Galan, M.P.; Gonsalves, J.M.W.; Graca, R.N.; Livne, S.; Manoeli, A.; Drezza, T.R.; Porto, A.C.M.; et al. Safety of genetically modified glyphosate-tolerant eucalyptus designed for integrated weed management. Adv. Weed Sci. 2023, 41, e020230032. [Google Scholar] [CrossRef]
- Wang, G.Y.; Dong, Y.; Liu, X.J.; Yao, G.S.; Yu, X.Y.; Yang, M.S. The Current Status and Development of Insect-Resistant Genetically Engineered Poplar in China. Front. Plant Sci. 2018, 9, 1408. [Google Scholar] [CrossRef]
- Jang, H.A.; Bae, E.K.; Kim, M.H.; Park, S.J.; Choi, N.Y.; Pyo, S.W.; Lee, C.; Jeong, H.Y.; Lee, H.; Choi, Y.I.; et al. CRISPR-Knockout of CSE Gene Improves Saccharification Efficiency by Reducing Lignin Content in Hybrid Poplar. Int. J. Mol. Sci. 2021, 22, 9750. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Y.H.; Hu, Z.J.; Liu, S.Y.; Zhang, X. Genetic Transformation of Forest Trees and Its Research Advances in Stress Tolerance. Forests 2024, 15, 441. [Google Scholar] [CrossRef]
- Ahmar, S.; Gill, R.A.; Jung, K.-H.; Faheem, A.; Qasim, M.U.; Mubeen, M.; Zhou, W. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. Int. J. Mol. Sci. 2020, 21, 2590. [Google Scholar] [CrossRef] [PubMed]
- Koskela, J.; Vinceti, B.; Dvorak, W.; Bush, D.; Dawson, I.K.; Loo, J.; Kjaer, E.D.; Navarro, C.; Padolina, C.; Bordacs, S.; et al. Utilization and transfer of forest genetic resources: A global review. For. Ecol. Manag. 2014, 333, 22–34. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Liang, B.; Yang, Q.; Li, X.; Chen, J.; Li, H.; Lyu, Y.; Lin, T. Genomic basis of selective breeding from the closest wild relative of large-fruited tomato. Hortic. Res. 2023, 10, uhad142. [Google Scholar] [CrossRef]
- Benetka, V.; Novotná, K.; Štochlová, P. Biomass production of Populus nigra L. clones grown in short station coppice systems in free different environments over four rotations. iForest-Biogeosci. For. 2014, 7, 233. [Google Scholar] [CrossRef]
- Vujnović, Z.; Bogdan, S.; Lanscak, M.; Gavranović Markić, A.; Zorić, N.; Bogunović, S.; Ivankovic, M. Preliminary Work on Generative Seedling Production and Clone Selection of European Black Poplar (Populus nigra L.). South-East Eur. For. 2023, 14, 101–109. [Google Scholar] [CrossRef]
- Wang, P.L.; Si, H.; Li, C.H.; Xu, Z.P.; Guo, H.M.; Jin, S.X.; Cheng, H.M. Plant genetic transformation: Achievements, current status and future prospects. Plant Biotechnol. J. 2025, 23, 2034–2058. [Google Scholar] [CrossRef]
- Castellanos-Hernandez, O.A.; Acevedo-Hernández, G.; Rodriguez-Sahagun, A.; Herrera-Estrella, L.R. Genetic Transformation of Forest Trees. In Genetic Transformation; Alvarez, M.A., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Bhuvaneswari, R.; Saravanan, K.R.; Vennila, S.; Suganthi, S. Precision Breeding Techniques: CRISPR-Cas9 and Beyond in Modern Plant Improvement. Plant Sci. Arch. 2020, 17, 21. [Google Scholar] [CrossRef]
- Chanoca, A.; de Vries, L.; Boerjan, W. Lignin Engineering in Forest Trees. Front. Plant Sci. 2019, 10, 912. [Google Scholar] [CrossRef]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. [Google Scholar] [CrossRef]
- Liu, D.; Lei, X.D.; Gao, W.Q.; Guo, H.; Xie, Y.S.; Fu, L.Y.; Lei, Y.C.; Li, Y.T.; Zhang, Z.L.; Tang, S.Z. Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling. J. For. Res. 2022, 33, 1739–1750. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.T.; Wei, J.T.; Li, Y.; Tigabu, M.; Zhao, X.Y. Genetic Improvement of Pinus koraiensis in China: Current Situation and Future Prospects. Forests 2020, 11, 148. [Google Scholar] [CrossRef]
- Kumar, K.; Shinde, A.; Aeron, V.; Verma, A.; Arif, N.S. Genetic engineering of plants for phytoremediation: Advances and challenges. J. Plant Biochem. Biotechnol. 2023, 32, 12–30. [Google Scholar] [CrossRef]
- Sharratt, L.; Chelo, J. The Global Status of Genetically Engineered Tree Development: A Growing Threat; Canadian Biotechnology Action Network: Halifax, NS, Canada, 2022. [Google Scholar]
- Kumar, K.; Gambhir, G.; Dass, A.; Tripathi, A.K.; Singh, A.; Jha, A.K.; Yadava, P.; Choudhary, M.; Rakshit, S. Genetically modified crops: Current status and future prospects. Planta 2020, 251, 91. [Google Scholar] [CrossRef]
- Ozyigit, I.I. Gene transfer to plants by electroporation: Methods and applications. Mol. Biol. Rep. 2020, 47, 3195–3210. [Google Scholar] [CrossRef]
- Matthysse, A.G. The Genus Agrobacterium. In The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 91–114. [Google Scholar]
- Zhao, H.; Fu, Y.; Lv, W.; Zhang, X.; Li, J.; Yang, D.; Shi, L.; Wang, H.; Li, W.; Huang, H.; et al. PuUBL5-mediated ZINC FINGER PROTEIN 1 stability is critical for root development under drought stress in Populus ussuriensis. Plant Physiol. 2025, 198, kiaf181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, X.; Sun, M.; Liu, C.; Yu, H. A Genotype-Independent Transformation and Gene-Editing System for Populus. Plant Biotechnol. J. 2025; advance online publication. [Google Scholar] [CrossRef]
- Hira, M.; Rubab Zahra, N.; Ammara, M.; Muhammad Waseem, S.; Raza, S. Gene transformation: Methods, Uses and Applications. J. Pharm. Biol. Sci. 2016, 4, 54–57. [Google Scholar]
- Song, C.W.; Lu, L.; Guo, Y.Y.; Xu, H.M.; Li, R.L. Efficient Agrobacterium-Mediated Transformation of the Commercial Hybrid Poplar Populus Alba × Populus glandulosa Uyeki. Int. J. Mol. Sci. 2019, 20, 2594. [Google Scholar] [CrossRef] [PubMed]
- Su, W.B.; Xu, M.Y.; Radani, Y.; Yang, L.M. Technological Development and Application of Plant Genetic Transformation. Int. J. Mol. Sci. 2023, 24, 10646. [Google Scholar] [CrossRef]
- Arokiaraj, P.; Jones, H.; Cheong, K.F.; Coomber, S.; Charlwood, B.V. Gene insertion into Hevea brasiliensis. Plant Cell Rep. 1994, 13, 425–431. [Google Scholar] [CrossRef]
- Noël, A.; Levasseur, C.; Le, V.Q.; Séguin, A. Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol. Mol. Plant Pathol. 2005, 67, 92–99. [Google Scholar] [CrossRef]
- Mohan, S.; Khan, A. Marker Assisted Selection: Concept and Role in Crop Improvement. In Advances in Genetics and Plant Breeding; AkiNik Publications: New Delhi, India, 2024; pp. 59–71. [Google Scholar]
- Remington, D.L.; Whetten, R.W.; Liu, B.H.; O’Malley, D.M. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor. Appl. Genet. 1999, 98, 1279–1292. [Google Scholar] [CrossRef]
- Chandra, K.; Pandey, S.; Chand, S.; Kumawat, G.; Kumawat, C.K.; Mishra, U.N.; Sharma, R.; Lenka, D. Insights into Marker Assisted Selection and Its Applications in Plant Breeding. In Plant Breeding—Current and Future Views; Abdurakhmonov, I.Y., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Parida, A.K.; Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees 2010, 24, 199–217. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Zhang, M.; Wei, H.; Bai, Y.; Tian, J.; Hu, J. Genomic selection for growth and wood properties in multi-generation hybrid populations of Populus deltoides. Hortic. Res. 2025, 12, uhaf165. [Google Scholar] [CrossRef]
- Tsarouhas, V.; Gullberg, U.; Lagercrantz, U. Mapping of Quantitative Trait Loci (qtls) Affecting Autumn Freezing Resistance and Phenology in Salix. Theor. Appl. Genet. 2004, 108, 1335–1342. [Google Scholar] [CrossRef]
- Karlson, C.K.S.; Mohd-Noor, S.N.; Nolte, N.; Tan, B.C. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants 2021, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Cabelkova, I.; Sanova, P.; Hlavacek, M.; Broz, D.; Smutka, L.; Prochazka, P. The moderating role of perceived health risks on the acceptance of genetically modified food. Front. Public Health 2024, 11, 1275287. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Yuan, H.; Du, W.; Li, G.; Xue, D.; Huang, Q. Active-Site Models of Streptococcus pyogenes Cas9 in DNA Cleavage State. Front. Mol. Biosci. 2021, 8, 653262, Erratum in Front. Mol. Biosci. 2021, 8, 719327. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Z.; Feng, Q.; Long, T.; Ding, J.; Shu, P.; Deng, H.; Yu, P.; Tan, W.; Liu, S.; et al. ELONGATED HYPOCOTYL 5a modulates FLOWERING LOCUS T2 and gibberellin levels to control dormancy and bud break in poplar. Plant Cell 2024, 36, 1963–1984. [Google Scholar] [CrossRef]
- Bae, E.-K.; Choi, H.; Choi, J.W.; Lee, H.; Kim, S.-G.; Ko, J.-H.; Choi, Y.-I. Efficient knockout of the phytoene desaturase gene in a hybrid poplar (Populus alba × Populus glandulosa) using the CRISPR/Cas9 system with a single gRNA. Transgenic Res. 2021, 30, 837–849. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.; Ding, C.; Hu, Z.; Fan, C.; Zhang, J.; Li, Z.; Diao, S.; Shen, L.; Zhang, B.; et al. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9. Plant Biotechnol. J. 2023, 21, 2160–2162. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Kong, L.; Yang, J.; Lin, M.; Zhang, Y.; Yang, X.; Wang, X.; Zhao, Z.; Zhang, M.; Pan, J.; et al. The transcription factor PtoMYB142 enhances drought tolerance in Populus tomentosa by regulating gibberellin catabolism. Plant J. 2024, 118, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, X.; Ran, L.; Li, C.; Fan, D.; Luo, K. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci. Rep. 2017, 7, 41209. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, L.; Ma, X.; Zhao, X.; Jiao, B.; Li, C.; Luo, K. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. Tree Physiol. 2017, 37, 665–675. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Wang, S.-Q.; Jia, X.-Y.; Jiao, X.; Qu, M.-Q.; Dong, Y.; Wang, Z.-Y.; Ma, Z.-Y.; Yang, S.; Han, X.; et al. Bioengineered poplar fibres via PagGLR2.8 editing: A synergistic design for high-performance biocomposites. Plant Biotechnol. J. 2025, 23, 2824–2838. [Google Scholar] [CrossRef]
- Nishiguchi, M.; Futamura, N.; Endo, M.; Mikami, M.; Toki, S.; Katahata, S.-I.; Ohmiya, Y.; Konagaya, K.-I.; Nanasato, Y.; Taniguchi, T.; et al. CRISPR/Cas9-mediated disruption of CjACOS5 confers no-pollen formation on sugi trees (Cryptomeria japonica D. Don). Sci. Rep. 2023, 13, 11779. [Google Scholar] [CrossRef]
- Ralph, J.; Lapierre, C.; Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 2019, 56, 240–249. [Google Scholar] [CrossRef]
- Mandal, D.D.; Singh, G.; Majumdar, S.; Chanda, P. Challenges in developing strategies for the valorization of lignin-a major pollutant of the paper mill industry. Environ. Sci. Pollut. Res. 2023, 30, 11119–11140. [Google Scholar] [CrossRef]
- Yang, X.; Lin, Q.; Udayabhanu, J.; Hua, Y.; Dai, X.; Xin, S.; Wang, X.; Huang, H.; Huang, T. An optimized CRISPRCas9-based gene editing system for efficiently generating homozygous edited plants in rubber tree (Hevea brasiliensis). Ind. Crops Prod. 2024, 222, 119740. [Google Scholar] [CrossRef]
- Ricroch, A.; Eriksson, D.; Miladinović, D.; Sweet, J.; Van Laere, K.; Woźniak-Gientka, E. A Roadmap for Plant Genome Editing; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Son, S.; Park, S.R. Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants. Front. Plant Sci. 2022, 13, 902413. [Google Scholar] [CrossRef]
- Plomion, C.; Bastien, C.; Bogeat-Triboulot, M.-B.; Bouffier, L.; Déjardin, A.; Duplessis, S.; Fady, B.; Heuertz, M.; Le Gac, A.-L.; Le Provost, G.; et al. Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann. For. Sci. 2016, 73, 77–103. [Google Scholar] [CrossRef]
- Cárdenas-Zapata, R.; Palma-Ramírez, D.; Flores-Vela, A.I.; Romero-Partida, J.N.; Paredes-Rojas, J.C.; Márquez-Rocha, F.J.; Bravo-Díaz, B. Structural and thermal study of hemicellulose and lignin removal from two types of sawdust to isolate cellulose. MRS Adv. 2022, 7, 49–55. [Google Scholar] [CrossRef]
- Kienberger, M. Potential Applications of Lignin. In Economics of Bioresources: Concepts, Tools, Experiences; Krozer, Y., Narodoslawsky, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 183–193. [Google Scholar]
- Nargotra, P.; Sharma, V.; Wang, H.M.D.; Shieh, C.J.; Liu, Y.C.; Kuo, C.H. Biocatalysis for Lignin Conversion and Valorization: Driving Sustainability in the Circular Economy. Catalysts 2025, 15, 91. [Google Scholar] [CrossRef]
- Yan, J.; Aznar, A.; Chalvin, C.; Birdseye, D.S.; Baidoo, E.E.K.; Eudes, A.; Shih, P.M.; Loqué, D.; Zhang, A.; Scheller, H.V. Increased drought tolerance in plants engineered for low lignin and low xylan content. Biotechnol. Biofuels 2018, 11, 195. [Google Scholar] [CrossRef]
- Wilkerson, C.G.; Mansfield, S.D.; Lu, F.; Withers, S.; Park, J.Y.; Karlen, S.D.; Gonzales-Vigil, E.; Padmakshan, D.; Unda, F.; Rencoret, J.; et al. Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone. Science 2014, 344, 90–93. [Google Scholar] [CrossRef]
- Sulis, D.B.; Jiang, X.; Yang, C.; Marques, B.M.; Matthews, M.L.; Miller, Z.; Lan, K.; Cofre-Vega, C.; Liu, B.; Sun, R.; et al. Multiplex CRISPR editing of wood for sustainable fiber production. Science 2023, 381, 216–221. [Google Scholar] [CrossRef]
- Ha, C.M.; Rao, X.; Saxena, G.; Dixon, R.A. Growth-defense trade-offs and yield loss in plants with engineered cell walls. New Phytol. 2021, 231, 60–74. [Google Scholar] [CrossRef]
- Beckers, B.; Op De Beeck, M.; Weyens, N.; Van Acker, R.; Van Montagu, M.; Boerjan, W.; Vangronsveld, J. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc. Natl. Acad. Sci. USA 2016, 113, 2312–2317. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. [Google Scholar]
- Polle, A.; Chen, S.L.; Eckert, C.; Harfouche, A. Engineering Drought Resistance in Forest Trees. Front. Plant Sci. 2019, 9, 1875. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.W. Genetic engineering to improve plant performance under drought: Physiological evaluation of achievements, limitations, and possibilities. J. Exp. Bot. 2013, 64, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Pamungkas, S.T.P.; Suwarto; Suprayogi; Farid, N. Drought Stress: Responses and Mechanism in Plants. Rev. Agric. Sci. 2022, 10, 168–185. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, X.; Qin, J.; Wang, X.; Yu, H.; Zhu, Q.; Lee, D.; Chen, L. Comprehensive Response Mechanisms of Plants to Water Deficit: A Physiological, Biochemical, Molecular, and Ecological Review. Mol. Soil. Biol. 2024, 15, 205–215. [Google Scholar] [CrossRef]
- Zang, R.; Zhang, Q.; Shao, M.a.; Jia, X.; Wei, X. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality. PLoS ONE 2017, 12, e0169770. [Google Scholar] [CrossRef]
- Fidler, J.; Graska, J.; Gietler, M.; Nykiel, M.; Prabucka, B.; Rybarczyk-Plonska, A.; Muszynska, E.; Morkunas, I.; Labudda, M. PYR/PYL/RCAR Receptors Play a Vital Role in the Abscisic-Acid-Dependent Responses of Plants to External or Internal Stimuli. Cells 2022, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Schweighofer, A.; Hirt, H.; Meskiene, L. Plant PP2C phosphatases: Emerging functions in stress signaling. Trends Plant Sci. 2004, 9, 236–243. [Google Scholar] [CrossRef]
- Son, S.; Park, S.R. The rice SnRK family: Biological roles and cell signaling modules. Front. Plant Sci. 2023, 14, 1285485. [Google Scholar] [CrossRef]
- Singh, D.; Laxmi, A. Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Front. Plant Sci. 2015, 6, 895. [Google Scholar] [CrossRef]
- Shinwari, Z.K.; Jan, S.A.; Nakashima, K.; Yamaguchi-Shinozaki, K. Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol. Rep. 2020, 14, 151–162. [Google Scholar] [CrossRef]
- Martignago, D.; Rico-Medina, A.; Blasco-Escáez, D.; Fontanet-Manzaneque, J.B.; Cano-Delgado, A.I. Drought Resistance by Engineering Plant Tissue-Specific Responses. Front. Plant Sci. 2020, 10, 1676. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhang, J.R.; Song, X.Y. Breeding Maize Hybrids with Improved Drought Tolerance Using Genetic Transformation. Int. J. Mol. Sci. 2024, 25, 10630. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Karimi, M.; Venditti, A.; Zahra, N.; Siddique, K.H.M.; Farooq, M. Plant Adaptation to Drought Stress: The Role of Anatomical and Morphological Characteristics in Maintaining the Water Status. J. Soil Sci. Plant Nutr. 2025, 25, 409–427. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Kou, X.Y.; Han, W.H.; Kang, J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Front. Plant Sci. 2022, 13, 1085409. [Google Scholar] [CrossRef] [PubMed]
- Brandt, B.; Munemasa, S.; Wang, C.; Desiree, N.; Yong, T.; Yang, P.G.; Poretsky, E.; Belknap, T.F.; Waadt, R.; Aleman, F.; et al. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsi guard cells. eLife 2015, 4, e03599, Erratum in eLife 2015, 4, e10328. [Google Scholar] [CrossRef]
- Aliniaeifard, S.; Shomali, A.; Seifikalhor, M.; Lastochkina, O. Calcium Signaling in Plants Under Drought. In Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms; Hasanuzzaman, M., Tanveer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 259–298. [Google Scholar]
- Mu, Z.Y.; Xu, M.Y.; Manda, T.; Yang, L.M.; Hwarari, D.; Zhu, F.Y. Genomic survey and evolution analysis of calcium-dependent protein kinases in plants and their stress-responsive patterns in populus. BMC Genom. 2024, 25, 1108. [Google Scholar] [CrossRef]
- Anderson, J.P.; Badruzsaufari, E.; Schenk, P.M.; Manners, J.M.; Desmond, O.J.; Ehlert, C.; Maclean, D.J.; Ebert, P.R.; Kazan, K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004, 16, 3460–3479. [Google Scholar] [CrossRef]
- Kaya, C.; Ugurlar, F.; Adamakis, I.D.S. Epigenetic Modifications of Hormonal Signaling Pathways in Plant Drought Response and Tolerance for Sustainable Food Security. Int. J. Mol. Sci. 2024, 25, 8229. [Google Scholar] [CrossRef]
- Liu, S.J.; Zhang, H.; Jin, X.T.; Niu, M.X.; Feng, C.H.; Liu, X.; Chao, L.; Wang, H.-L.; Yin, W.; Xia, X. PeFUS3 Drives Lateral Root Growth Via Auxin and ABA Signalling Under Drought Stress in Populus. Plant Cell Environ. 2024, 48, 664–681. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, Y.; Li, Q.; Liu, S.; He, F.; An, Y.; Zhou, Y.; Liu, C.; Yin, W.; Xia, X. PdGNC confers drought tolerance by mediating stomatal closure resulting from NO and H2O2 production via the direct regulation of PdHXK1 expression in Populus. New Phytol. 2021, 230, 1868–1882. [Google Scholar] [CrossRef]
- Uma, G.S.; Mahanta, D.K.; Sharma, L. Advancing Forest Insect Pest Management: A Focus on Biotechnological Approaches. In Biotechnological Approaches for Sustaining Forest Trees and Their Products; Thomas, T.D., Razdan, M.K., Kumar, A., Eds.; Springer Nature: Singapore, 2024; pp. 347–383. [Google Scholar]
- Gao, B.; Zhu, S. The evolutionary novelty of insect defensins: From bacterial killing to toxin neutralization. Cell. Mol. Life Sci. 2024, 81, 230. [Google Scholar] [CrossRef]
- Wei, T. Recent advances in the molecular genetics of resin biosynthesis and genetic engineering strategies to improve defenses in conifers. J. For. Res. 2003, 14, 171–179. [Google Scholar] [CrossRef]
- Woodcock, P.; Cottrell, J.E.; Buggs, R.J.A.; Quine, C.P. Mitigating pest and pathogen impacts using resistant trees: A framework and overview to inform development and deployment in Europe and North America. Forestry 2018, 91, 1–16. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Dos Santos, A.A.; Avisar, D.; Gonsalves, J.M.; Galan, M.P.; Abramson, M.; Barimboim, N.; Abrahao, O.; Graca, R.N.; Drezza, T.R.; et al. Five-years Post Commercial Approval Monitoring of Eucalyptus H421. Front. Bioeng. Biotechnol. 2023, 11, 1257576. [Google Scholar] [CrossRef]
- Sharma, M.; Rawat, S.; Rautela, A. Phytoremediation in sustainable wastewater management: An eco-friendly review of current techniques and future prospects. Aqua-Water Infrastruct. Ecosyst. Soc. 2024, 73, 1946–1975. [Google Scholar] [CrossRef]
- Ahmad, H. Phytoremediation: The Green Solution. In Bioremediation for Environmental Sustainability; Abd El-Rahim, W.M., Ed.; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar]
- Ozyigit, I.I.; Can, H.; Dogan, I. Phytoremediation using genetically engineered plants to remove metals: A review. Environ. Chem. Lett. 2021, 19, 669–698. [Google Scholar] [CrossRef]
- Bamagoos, A.A.; Mallhi, Z.I.; El-Esawi, M.A.; Rizwan, M.; Ahmad, A.; Hussain, A.; Alharby, H.F.; Alharbi, B.M.; Ali, S. Alleviating lead-induced phytotoxicity and enhancing the phytoremediation of castor bean (Ricinus communi L.) by glutathione application: New insights into the mechanisms regulating antioxidants, gas exchange and lead uptake. Int. J. Phytoremediation 2022, 24, 933–944. [Google Scholar] [CrossRef]
- Ionata, E.; Caputo, E.; Mandrich, L.; Marcolongo, L. Moving towards Biofuels and High-Value Products through Phytoremediation and Biocatalytic Processes. Catalysts 2024, 14, 118. [Google Scholar] [CrossRef]
- Park, J.K.; Oh, K. Advancements in Phytoremediation Research for Soil and Water Resources: Harnessing Plant Power for Environmental Cleanup. Sustainability 2023, 15, 13901. [Google Scholar] [CrossRef]
- Koul, B.; Taak, P. Chemical Methods of Soil Remediation. In Biotechnological Strategies for Effective Remediation of Polluted Soils; Koul, B., Taak, P., Eds.; Springer: Singapore, 2018; pp. 77–84. [Google Scholar]
- Lone, M.I.; He, Z.L.; Stoffella, P.J.; Yang, X.E. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ.-Sci. B 2008, 9, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Agrawal, S.B.; Agrawal, M. Heavy Metal Accumulation Potential and Tolerance in Tree and Grass Species. In Plant Responses to Xenobiotics; Singh, A., Prasad, S.M., Singh, R.P., Eds.; Springer: Singapore, 2016; pp. 177–210. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van der Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef]
- Asare, M.O.; Szakova, J.; Tlustos, P. Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere. Front. Environ. Sci. 2023, 11, 1157415. [Google Scholar] [CrossRef]
- Kumar, S.; Shah, S.H.; Vimala, Y.; Jatav, H.S.; Ahmad, P.; Chen, Y.; Siddique, K.H.M. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Front. Plant Sci. 2022, 13, 972856. [Google Scholar] [CrossRef] [PubMed]
- Mihucz, V.G.; Csog, Á.; Fodor, F.; Tatár, E.; Szoboszlai, N.; Silaghi-Dumitrescu, L.; Záray, G. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics. J. Plant Physiol. 2012, 169, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Laureysens, I.; Blust, R.; De Temmerman, L.; Lemmens, C.; Ceulemans, R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ. Pollut. 2004, 131, 485–494. [Google Scholar] [CrossRef]
- Elobeid, M.; Göbel, C.; Feussner, I.; Polle, A. Cadmium interferes with auxin physiology and lignification in poplar. J. Exp. Bot. 2012, 63, 1413–1421. [Google Scholar] [CrossRef]
- Kumar, K.; Das, D. Carbon Dioxide Sequestration by Biological Processes. In Transformation and Utilization of Carbon Dioxide; Bhanage, B.M., Arai, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 303–334. [Google Scholar]
- Kumar, A.; Singh, R.; Chaurasia, S. Carbon Sequestration by Trees in University Campus. J. Emerg. Technol. Innov. Res. 2024, 11, G1–G5. [Google Scholar]
- Özparpucu, M.; Rüggeberg, M.; Gierlinger, N.; Cesarino, I.; Vanholme, R.; Boerjan, W.; Burgert, I. Unravelling the impact of lignin on cell wall mechanics: A comprehensive study on young poplar trees downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD). Plant J. 2017, 91, 480–490. [Google Scholar] [CrossRef]
- Finér, L.; Helmisaari, H.-S.; Lõhmus, K.; Majdi, H.; Brunner, I.; Børja, I.; Eldhuset, T.; Godbold, D.; Grebenc, T.; Konôpka, B.; et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots Pine (Pinus sylvestris L.). Plant Biosyst. 2007, 141, 394–405. [Google Scholar] [CrossRef]
- da Silva, P.H.M.; Abrahão, O.S. Gene flow and spontaneous seedling establishment around genetically modified eucalypt plantations. New For. 2021, 52, 349–361. [Google Scholar] [CrossRef]
- Donahue, R.A.; Davis, T.D.; Michler, C.H.; Riemenschneider, D.E.; Carter, D.R.; Marquardt, P.E.; Sankhla, N.; Sankhla, D.; Haissig, B.E.; Isebrands, J.G. Growth, photosynthesis, and herbicide tolerance of genetically modified hybrid poplar. Can. J. For. Res. 1994, 24, 2377–2383. [Google Scholar] [CrossRef]
- Hong-yu, R.; Ying, C.; Min-ren, H.; Ming-xiu, W.; Ning-feng, W.; Yun-liu, F. Genetic Transformation of Poplar NL-80106 Transferred by Bt Gene and Its Insect-Resistance. J. Plant Resour. Environ. 2000, 9, 1–5. [Google Scholar] [CrossRef]
- Nonic, M.; Vettori, C.; Boscaleri, F.; Milovanovic, J.; Sijacic-Nikolic, M. Genetically modified trees: State and perspectives. Genetika 2012, 44, 429–440. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Silva-Junior, O.B.; Resende, R.T.; Cappa, E.P.; Muller, B.S.F.; Tan, B.; Isik, F.; Ratcliffe, B.; El-Kassaby, Y.A. Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding. Front. Plant Sci. 2018, 9, 1693. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Wu, Q.Y.; Wang, N.N.; Ye, S.W.; Wang, Y.J.; Zhang, J.; Lin, C.T.; Zhu, Q. Advances in bamboo genomics: Growth and development, stress tolerance, and genetic engineering. J. Integr. Plant Biol. 2025, 67, 1725–1755. [Google Scholar] [CrossRef]
- Elumalai, S. Genetic Transformation of Rubber Trees for Production of Pharmaceuticals and Improvement of Agronomic Traits. Ph.D. Thesis, University of Madras, Chennai, India, 2010. [Google Scholar]
- Liziniewicz, M.; Barbeito, I.; Zvirgzdins, A.; Stener, L.G.; Niemistö, P.; Fahlvik, N.; Johansson, U.; Karlsson, B.; Nilsson, U. Production of genetically improved silver birch plantations in southern and central Sweden. Silva Fenn. 2022, 56, 10512. [Google Scholar] [CrossRef]
- Sabatia, C.O. Stand Dynamics, Growth, and Yield of Genetically Enhanced Loblolly Pine (Pinus taeda L.). Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2011. [Google Scholar]
- Doi, T.; Suzuki, Y.; Kobayashi, Y.; Kawazu, T.; Koyama, H.; Sato, S. Improvement of root function to enhance growth of Eucalyptus. Jpn. For. Soc. Congr. 2009, 120, 245. [Google Scholar] [CrossRef]
- Haygood, R.; Ives, A.R.; Andow, D.A. Population genetics of transgene containment. Ecol. Lett. 2004, 7, 213–220. [Google Scholar] [CrossRef]
- Slavov, G.T.; Leonardi, S.; Burczyk, J.; Adams, W.T.; Strauss, S.H.; Difazio, S.P. Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Mol. Ecol. 2009, 18, 357–373. [Google Scholar] [CrossRef]
- Zhang, C.; Norris-Caneda, K.H.; Rottmann, W.H.; Gulledge, J.E.; Chang, S.; Kwan, B.Y.-H.; Thomas, A.M.; Mandel, L.C.; Kothera, R.T.; Victor, A.D.; et al. Control of Pollen-Mediated Gene Flow in Transgenic Trees. Plant Physiol. 2012, 159, 1319–1334. [Google Scholar] [CrossRef]
- Merkle, S. Engineering Forest Trees with Heavy Metal Resistance Genes. Silvae Genet. 2006, 55, 263–268. [Google Scholar] [CrossRef]
- James, D. Impact Assessment of Genetically Engineered Trees: An Overview on Risk Assessment and Management. In Biotechnological Approaches for Sustaining Forest Trees and Their Products; Thomas, T.D., Razdan, M.K., Kumar, A., Eds.; Springer Nature: Singapore, 2024; pp. 425–462. [Google Scholar]
- Wang, S.; Liu, J.; Dong, Y.; Li, Y.; Huang, Y.; Ren, M.; Yang, M.; Wang, J. Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities. For. Ecol. Manag. 2022, 505, 119921. [Google Scholar] [CrossRef]
- Xu, P.; Kong, Y.M.; Song, D.L.; Huang, C.; Li, X.; Li, L.G. Conservation and functional influence of alternative splicing in wood formation of Populus and Eucalyptus. BMC Genom. 2014, 15, 780. [Google Scholar] [CrossRef]
- Fan, J.; Dong, Y.; Yu, X.; Yao, L.; Li, D.; Wang, J.; Yang, M. Assessment of environmental microbial effects of insect-resistant transgenic Populus × euramericana cv. ‘74/76’ based on high-throughput sequencing. Acta Physiol. Plant. 2020, 42, 167. [Google Scholar] [CrossRef]
- Zheng, Y.; Lv, G.B.; Chen, K.; Yu, Q.; Niu, B.; Jiang, J.; Liu, G. Impact of PaGLK transgenic poplar on microbial community and soil enzyme activity in rhizosphere soil. Front. Bioeng. Biotechnol. 2022, 10, 965209. [Google Scholar] [CrossRef] [PubMed]
- Kuparinen, A.; Schurr, F.M. Assessing the risk of gene flow from genetically modified trees carrying mitigation transgenes. Biol. Invasions 2008, 10, 281–290. [Google Scholar] [CrossRef]
- Fritsche, S.; Klocko, A.L.; Boron, A.; Brunner, A.M.; Thorlby, G. Strategies for Engineering Reproductive Sterility in Plantation Forests. Front. Plant Sci. 2018, 9, 1671. [Google Scholar] [CrossRef]
- World Intellectual Property Organization. Intellectual Property and New Genomic Technologies: Proposals to Facilitate Identification, Access, and Use of Intellectual Property; L’ Association Française des Biotechnologies Végétales: Paris, France, 2024. [Google Scholar]
- Myking, T.; Walløe Tvedt, M.; Karlsson, B. Protection of forest genetic resources by intellectual property rights—Exploring possibilities and conceivable conflicts. Scand. J. For. Res. 2017, 32, 598–606. [Google Scholar] [CrossRef]
- Wright, B.D. Plant Genetic Engineering and Intellectual Property Protection; University of California: Oakland, CA, USA, 2006. [Google Scholar]
- Kushwaha, N. Application of Genetic Engineering Technology in Trees: Innovations, Challenges and Future Prospects. J. Biochem. Int. 2025, 12, 92–104. [Google Scholar] [CrossRef]
- De Meester, B.; Vanholme, R.; Mota, T.; Boerjan, W. Lignin engineering in forest trees: From gene discovery to field trials. Plant Commun. 2022, 3, 100465. [Google Scholar] [CrossRef]
- Klopfenstein, N.B.; Chun, Y.W.; Kim, M.S.; Ahuja, M.A.; Dillon, M.C.; Carman, R.C.; Eskew, L.G. Micropropagation, Genetic Engineering, and Molecular Biology of Populus; U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1997.
- Hagen, K.; Engelhard, M.; Otto, M.; Simon, S.; Stracke, K. Genetic Engineering, Nature Conservation and Biological Diversity: Boundaries of Design; German Federal Agency for Nature Conservation: Bonn, Germany, 2022. [CrossRef]
- Abbas, M.S.T. Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt. J. Biol. Pest Control 2018, 28, 52. [Google Scholar] [CrossRef]
- Savill, P.; Kanowski, P. Tree improvement programs for European oaks: Goals and strategies. Ann. Sci. For. 1993, 50, 368s–383s. [Google Scholar] [CrossRef]
- FAO. The Potential Environmental, Cultural and Socio-Economic Impacts of Genetically Modified Trees. In Proceedings of the 13th meeting of the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA), Rome, Italy, 18–22 February 2008. [Google Scholar]
- Ahmad, H. Phytoremediation: The Green Solution; IntechOpen: London, UK, 2024. [Google Scholar]
- Steinbrecher, R.A.; Lorch, A. Federation of German Scientists Genetically Engineered Trees & Risk Assessment. In Proceedings of the 9th Conference of the Parties (COP9), Bonn, Germany, 19–30 May 2008. [Google Scholar]
- Petermann, A. International Status of GE Trees: UN FAO Report The International Status of Genetically Modified Trees; FAO: Rome, Italy, 2005. [Google Scholar]
- Yin, Y.; Wang, C.; Xiao, D.; Liang, Y.; Wang, Y. Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees. Front. Plant Sci. 2021, 12, 786328. [Google Scholar] [CrossRef]
- Megalos, M.A. Private Forests and Transgenic Forest Trees. In Landscapes, Genomics and Transgenic Conifers; Williams, C.G., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 209–225. [Google Scholar]
- Bruegmann, T.; Fendel, A.; Zahn, V.; Fladung, M. Genome Editing in Forest Trees. In A Roadmap for Plant Genome Editing; Ricroch, A., Eriksson, D., Miladinović, D., Sweet, J., Van Laere, K., Woźniak-Gientka, E., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 347–372. [Google Scholar]
Selective Breeding | Hybridization | Provenance Trial |
---|---|---|
Choosing superior trees from their natural stand based on their physical characteristics and collecting seeds for further breeding. | Trees from different genetic make-up or ancestry are crossed to obtain a recombinant variant, for example, a wood-improved species is crossed with a drought-tolerant type. | Seeds from different geographical locations are collected and planted under the same conditions, and the best-performing genotype in the environment will be further used for breeding purposes. |
Species | Gene Edited | Trait Modified | Function | Reference |
---|---|---|---|---|
Poplar species | CSE | Wood quality improvement For biofuel production | Reduces lignin biosynthesis and enhances biomass quality | [13] |
Poplar species | PDS | Participates in carotenoid biosynthesis and is used as a visual marker | Albino phenotype used to validate CRISPR editing | [50] |
Poplar hybrid | PagHyPRP1 | Drought and salt stress tolerance | Enable poplars to withstand water scarcity and a saline environment | [51] |
Populus tomesa | PtoMYB142 | Drought stress tolerance | Knockout improves drought tolerance of poplars | [52] |
Populus tomesa | PtoMYB156 | Positively regulates secondary cell wall formation | Knockout of PtoMYB156 causes accumulation of lignin, cellulose, and Xylan | [53] |
Populus trichocarpa | PtHY5a | Modulates seasonal growth | Cease growth during winter and promote bud development after winter break | [49] |
Populus trichocarpa | PtWRKY18 and PtWRKY35 | Biotic stress resistance | Melampsora resistance | [54] |
Populus alba × P. glandulosa | PagGLR2.8 | Improves poplar wood quality | Knockout of PagGLR2.8 enhances wood fiber quality | [55] |
Cryptomeria japonica (L. f.) D. Don | CjACOS5a and CjACOS5b | Production of male sterile strobili | Knockout of CjACOS5 causes the production of pollen-free male strobili | [56] |
Country | Species | Applicant for Field Testing | Reference |
---|---|---|---|
China | Insect-resistant poplar species. | China | [12] |
Locust tree for insect resistance, drought tolerance, and improved wood quality. | www.fao.org | ||
Japanese pagoda for enhancing engineered for growth acceleration and stress tolerance. | [28] | ||
Bamboo species engineered for growth and development, and stress tolerance. | [123] | ||
Rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) engineered for high yield potential, disease resistance, and drought tolerance. | [28] | ||
Malaysia | Genetically engineered rubber tree for pharmaceuticals. | Malaysian Rubber board | [124] |
Sweden | Genetically engineered birch for growth performance and adaptability. | Universities | [125] |
India | Genetically engineered rubber tree (H. brasiliensis) for fast growth. | Rubber research institute of India | [28] |
United states of America | Loblolly Pinus spp. engineered for bioenergy, timber and pulp, and paper industries. | ArborGen | [126] |
Genetically engineered Eucalyptus spp. for cold tolerance. | Suzano, FuturaGene | [28] | |
Insect-resistant American chestnut. fast growth poplar species engineered for carbon sequestration. | State University of New York, college of environmental science | ||
New Zealand | Genetically engineered radiata pine for herbicide tolerance, climate resilience, and drought tolerance. | SCION forest research institute. SCION forest research institute | [126] |
Genetically engineered Norway spruce for herbicide tolerance. | |||
Japan | Genetically engineered eucalyptus for cold tolerance. | Horizon 2 with ArborGen | [28] |
Genetically engineered eucalyptus for cold tolerance and salt tolerance. | University of Tsukuba’s gene research Centre | ||
Genetically engineered Poplar for cellulose increment. | Forest tree breeding Centre | ||
Pollen-free genetically engineered Cryptomeria japonica. | |||
Genetically engineered eucalyptus tree to grow in acidic soils. | Japan’s Oji paper Company and Gifu University | [127] | |
Canada | Genetically engineered Poplar for herbicide tolerance and early flowering. | Canadian forest service | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matola, S.H.; Li, J.; Sun, M.; Yang, L.; Zhuang, W.; Yang, J. Advances in Genetic Engineering Techniques for Improved Forest Trees: Applications in Biomass, Stress Resilience and Carbon Sequestration. Int. J. Mol. Sci. 2025, 26, 10192. https://doi.org/10.3390/ijms262010192
Matola SH, Li J, Sun M, Yang L, Zhuang W, Yang J. Advances in Genetic Engineering Techniques for Improved Forest Trees: Applications in Biomass, Stress Resilience and Carbon Sequestration. International Journal of Molecular Sciences. 2025; 26(20):10192. https://doi.org/10.3390/ijms262010192
Chicago/Turabian StyleMatola, Sophia Hydarry, Jingjing Li, Meiou Sun, Lu Yang, Wenhui Zhuang, and Jingli Yang. 2025. "Advances in Genetic Engineering Techniques for Improved Forest Trees: Applications in Biomass, Stress Resilience and Carbon Sequestration" International Journal of Molecular Sciences 26, no. 20: 10192. https://doi.org/10.3390/ijms262010192
APA StyleMatola, S. H., Li, J., Sun, M., Yang, L., Zhuang, W., & Yang, J. (2025). Advances in Genetic Engineering Techniques for Improved Forest Trees: Applications in Biomass, Stress Resilience and Carbon Sequestration. International Journal of Molecular Sciences, 26(20), 10192. https://doi.org/10.3390/ijms262010192