Cardiovascular Risk Factors Involved in Hemorrhagic Transformation After Intravenous Thrombolytic Therapy in Patients with Acute Ischemic Stroke
Abstract
1. Introduction
2. Methods
3. Incidence and Classification
4. Ischemic Stroke and Hemorrhagic Transformation: Cellular Pathology
5. Clinical Outcome
6. Cardiovascular Risk Factors
6.1. Age
6.2. Arterial Hypertension
- Central autonomic dysregulation.
- Acute sympathoadrenal (stress) surge.
- Pre-existing or uncontrolled hypertension.
- Neuroendocrine activation with downstream inflammatory cascades.
- Raised intracranial pressure [13].
6.2.1. The Variability in Systolic Blood Pressure and Pulse Pressure
6.2.2. Hypertension Treatment to Prevent HT
Study (First Author, Year) | Country/Region | Design | Sample Size (N) | Population (AIS + IVT Only/IVT + EVT) | IVT Agent | Conclusions | Citation (PMID/DOI) |
---|---|---|---|---|---|---|---|
Waltimo 2016 | Finland | Observational cohort | 1868 | AIS + IVT only | Alteplase | Higher systolic BP at multiple post-IVT time points (2, 4, 12, 48 h) was associated with sICH; per +10 mmHg, OR ≈ 1.14 (2–4 h) and 1.12 (12–48 h). No significant difference at 24 h. sICH (ECASS II) overall 5.8%. | [94] |
Mokin 2012 | USA | Retrospective cohort | 267 | AIS + IVT only | Alteplase | Among patients who developed symptomatic ICH after IV tPA, higher post-tPA systolic BP correlated with larger initial hematoma volume (r = 0.46; p = 0.03). Greater reductions in SBP were associated with less hematoma growth (r = −0.67; p = 0.02); diastolic BP showed no similar association. | [95] |
Delgado-Mederos 2008 | Spain | Prospective cohort | 80 | AIS with MCA occlusion; IVT only | Alteplase | Higher short-term BP variability (SD of SBP/DBP over 24 h) was linked to greater DWI lesion growth, worse early clinical course, and poorer 3-month outcome; effects were pronounced in patients without early recanalization. | [96] |
Butcher 2010 (EPITHET) | International (EPITHET trial) | Post hoc analysis of randomized trial (tPA vs. placebo) | 97 (49 tPA; 48 placebo) | AIS randomized to IV tPA vs. placebo (IVT context) | Alteplase | 24 h time-weighted mean SBP independently predicted parenchymal hematoma. Baseline SBP did not differ by HT status. PH occurred more often with tPA vs. placebo (11/49 vs. 4/48; p = 0.049). | [97] |
Sun 2020 | China | Prospective observational cohort | 306 | AIS + IVT only | Alteplase | Independent predictors of HT included age ≥ 68 years, smoking, atrial fibrillation, NIHSS ≥ 17, and systolic BP at two hours ≥ 149 mmHg. | [98] |
Lei 2022 | China | Retrospective cohort; IVT vs. no IVT in AIS with cerebral microbleeds | 220 (CMB-positive AIS) | AIS with CMB; IVT subgroup vs. non-IVT controls | Alteplase | IV rt-PA in CMB-positive AIS improved 7-day NIHSS and 90-day good outcome vs. no IVT, with no significant differences in ICH incidence or mortality. Independent risk factors for HT after thrombolysis included longer onset-to-needle time, higher baseline NIHSS, and atrial fibrillation. | [99] |
Ahmed 2009 (SITS-ISTR) | International (SITS-ISTR registry) | Retrospective analysis of a prospective registry | 11,080 | AIS treated with IV thrombolysis | Alteplase | Higher systolic BP between 2 and 24 h post-thrombolysis was linked to worse outcomes; categorical SBP showed a linear relation with sICH and a U-shaped relation with mortality and independence (best outcomes at SBP 141–150 mmHg). Withholding antihypertensives up to 7 days in patients with prior hypertension was associated with higher sICH and mortality, whereas initiating therapy in newly recognized moderate hypertension was associated with lower mortality and similar sICH compared with no treatment. | [100] |
Zhu 2025 | China | Prospective cohort | 340 | AIS + IVT only | Alteplase | Over the first 24 h post-thrombolysis, higher average pressures (SBP/MAP) tracked with worse 90-day outcomes; each +10 mmHg in mean SBP was linked to ~20% higher odds of mRS 3–6. The poorer-outcome group showed greater BP variability Larger SBP reductions in the 0–2 h and 2–6 h windows were associated with less ICH at 24 h, without a corresponding gain in 90-day functional status. | [103] |
Reddy 2023 | India | Retrospective analysis of a prospective registry | 237 | AIS + IVT only | Alteplase | A prior stroke, a baseline NIHSS > 15, a mean SBP ≥ 160 mmHg, and SBP variability > 45 were each independently associated with higher odds of 3-month disability (mRS > 2). Symptomatic ICH occurred in 11 patients (4.6%). Factors linked to sICH included age > 60 years, atrial fibrillation, admission glucose ≥ 180 mg/dL, and SBP variability > 45. | [104] |
Liu 2024 | China | Retrospective cohort | 138 | AIS + IVT only | Alteplase | HT occurred in 39.1%. The risk of post-thrombolytic HT was associated with excessive 24 h systolic BP extremes after admission, independent of BP at the time of thrombolysis and post-thrombolysis. (OR = 1.042; 95% CI: 1.000–1.086, p < 0.05). | [112] |
Kamp 2022 | USA | Multicenter retrospective cohort | 179 | AIS + IVT only; | Alteplase | In AIS patients presenting with uncontrolled BP, starting with intermittent boluses versus a continuous infusion did not meaningfully alter the time to alteplase. | [119] |
Huang 2025 | USA | Multicenter retrospective cohort | 481 | AIS + IVT only; | Alteplase | No meaningful difference in door-to-needle time was observed between labetalol and nicardipine. | [120] |
6.3. Hyperglycemia
6.4. Dyslipidemia
6.5. Smoking, Sex, and Body Weight
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desai, S.M.; Starr, M.; Molyneaux, B.J.; Rocha, M.; Jovin, T.G.; Jadhav, A.P. Acute Ischemic Stroke with Vessel Occlusion—Prevalence and Thrombectomy Eligibility at a Comprehensive Stroke Center. J. Stroke Cerebrovasc. Dis. 2019, 28, 104315. [Google Scholar] [CrossRef] [PubMed]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Adams, R.J.; Berry, J.D.; Brown, T.M.; Carnethon, M.R.; Dai, S.; de Simone, G.; Ford, E.S.; et al. Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation 2011, 123, e18–e209, Erratum in Circulation 2011, 124, e426. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Turc, G.; Bhogal, P.; Fischer, U.; Khatri, P.; Lobotesis, K.; Mazighi, M.; Schellinger, P.D.; Toni, D.; de Vries, J.; White, P.; et al. European Stroke Organisation (ESO)—European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke. J. Neurointerv Surg. 2023, 15, e8. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Suwanwela, N.C. Stroke epidemiology in Thailand. J. Stroke 2014, 16, 1–7. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Jiang, L.; Chen, T.; Sang, Y.; Wang, Y.; Ren, Y.; Mao, G.; Gu, Y.; Shen, H.; et al. The risk factors of early hemorrhage after emergency intravenous thrombolysis in patients with acute ischemic stroke. Ann. Palliat. Med. 2021, 10, 5706–5713. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2018, 49, e46–e110, Erratum in Stroke 2018, 49, e233–e234. [Google Scholar] [CrossRef]
- Maïer, B.; Desilles, J.P.; Mazighi, M. Intracranial Hemorrhage After Reperfusion Therapies in Acute Ischemic Stroke Patients. Front. Neurol. 2020, 11, 599908. [Google Scholar] [CrossRef] [PubMed]
- Jickling, G.C.; Liu, D.; Stamova, B.; Ander, B.P.; Zhan, X.; Lu, A.; Sharp, F.R. Hemorrhagic transformation after ischemic stroke in animals and humans. J. Cereb. Blood Flow. Metab. 2014, 34, 185–199. [Google Scholar] [CrossRef]
- Yaghi, S.; Willey, J.Z.; Cucchiara, B.; Goldstein, J.N.; Gonzales, N.R.; Khatri, P.; Kim, L.J.; Mayer, S.A.; Sheth, K.N.; Schwamm, L.H. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2017, 48, e343–e361. [Google Scholar] [CrossRef]
- Spronk, E.; Sykes, G.; Falcione, S.; Munsterman, D.; Joy, T.; Kamtchum-Tatuene, J.; Jickling, G.C. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front. Neurol. 2021, 12, 661955. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.; Schlemm, E.; Cheng, B.; Lettow, I.; Quandt, F.; Boutitie, F.; Ebinger, M.; Endres, M.; Fiebach, J.B.; Fiehler, J.; et al. Clinical Characteristics and Outcome of Patients with Hemorrhagic Transformation After Intravenous Thrombolysis in the WAKE-UP Trial. Front. Neurol. 2020, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Fekete, K.E.; Héja, M.; Márton, S.; Tóth, J.; Harman, A.; Horváth, L.; Fekete, I. Predictors and long-term outcome of intracranial hemorrhage after thrombolytic therapy for acute ischemic stroke-A prospective single-center study. Front. Neurol. 2023, 14, 1080046. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, A.; Gröschel, K.; Ringer, T.M.; Redecker, C.; Cordesmeyer, R.; Witte, O.W.; Terborg, C. Early disruption of the blood-brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke 2008, 39, 2385–2387. [Google Scholar] [CrossRef]
- Hong, J.M.; Kim, D.S.; Kim, M. Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front. Neurol. 2021, 12, 703258. [Google Scholar] [CrossRef]
- Honig, A.; Percy, J.; Sepehry, A.A.; Gomez, A.G.; Field, T.S.; Benavente, O.R. Hemorrhagic Transformation in Acute Ischemic Stroke: A Quantitative Systematic Review. J. Clin. Med. 2022, 11, 1162. [Google Scholar] [CrossRef]
- Valentino, F.; Gentile, L.; Terruso, V.; Mastrilli, S.; Aridon, P.; Ragonese, P.; Sarno, C.; Savettieri, G.; D’Amelio, M. Frequency and determinants for hemorrhagic transformation of posterior cerebral stroke: Posterior ischemic stroke and hemorrhagic transformation. BMC Res. Notes 2017, 10, 592. [Google Scholar] [CrossRef]
- Charbonnier, G.; Bonnet, L.; Biondi, A.; Moulin, T. Intracranial Bleeding After Reperfusion Therapy in Acute Ischemic Stroke. Front. Neurol. 2020, 11, 629920. [Google Scholar] [CrossRef]
- Paciaroni, M.; Agnelli, G.; Corea, F.; Ageno, W.; Alberti, A.; Lanari, A.; Caso, V.; Micheli, S.; Bertolani, L.; Venti, M.; et al. Early hemorrhagic transformation of brain infarction: Rate, predictive factors, and influence on clinical outcome: Results of a prospective multicenter study. Stroke 2008, 39, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Beslow, L.A.; Smith, S.E.; Vossough, A.; Licht, D.J.; Kasner, S.E.; Favilla, C.G.; Halperin, A.R.; Gordon, D.M.; Jones, C.I.; Cucchiara, A.J.; et al. Hemorrhagic transformation of childhood arterial ischemic stroke. Stroke 2011, 42, 941–946. [Google Scholar] [CrossRef]
- Strbian, D.; Sairanen, T.; Meretoja, A.; Pitkäniemi, J.; Putaala, J.; Salonen, O.; Silvennoinen, H.; Kaste, M.; Tatlisumak, T. Patient outcomes from symptomatic intracerebral hemorrhage after stroke thrombolysis. Neurology 2011, 77, 341–348. [Google Scholar] [CrossRef]
- Iancu, A.; Buleu, F.; Chita, D.S.; Tutelca, A.; Tudor, R.; Brad, S. Early Hemorrhagic Transformation after Reperfusion Therapy in Patients with Acute Ischemic Stroke: Analysis of Risk Factors and Predictors. Brain Sci. 2023, 13, 840. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.H.; Liu, C.H.; Wang, J.G. Blood Pressure Goals in Acute Stroke. Am. J. Hypertens. 2022, 35, 483–499. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528, Erratum in Circulation 2020, 141, e33. [Google Scholar] [CrossRef]
- Miller, D.J.; Simpson, J.R.; Silver, B. Safety of thrombolysis in acute ischemic stroke: A review of complications, risk factors, and newer technologies. Neurohospitalist 2011, 1, 138–147. [Google Scholar] [CrossRef]
- Whiteley, W.N.; Emberson, J.; Lees, K.R.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Risk of intracerebral haemorrhage with alteplase after acute ischaemic stroke: A secondary analysis of an individual patient data meta-analysis. Lancet Neurol. 2016, 15, 925–933. [Google Scholar] [CrossRef]
- Trouillas, P.; von Kummer, R. Classification and pathogenesis of cerebral hemorrhages after thrombolysis in ischemic stroke. Stroke 2006, 37, 556–561. [Google Scholar] [CrossRef]
- von Kummer, R.; Broderick, J.P.; Campbell, B.C.; Demchuk, A.; Goyal, M.; Hill, M.D.; Treurniet, K.M.; Majoie, C.B.; Marquering, H.A.; Mazya, M.V.; et al. The Heidelberg Bleeding Classification: Classification of Bleeding Events After Ischemic Stroke and Reperfusion Therapy. Stroke 2015, 46, 2981–2986. [Google Scholar] [CrossRef] [PubMed]
- Chalet, L.; Boutelier, T.; Christen, T.; Raguenes, D.; Debatisse, J.; Eker, O.F.; Becker, G.; Nighoghossian, N.; Cho, T.-H.; Canet-Soulas, E.; et al. Clinical Imaging of the Penumbra in Ischemic Stroke: From the Concept to the Era of Mechanical Thrombectomy. Front. Cardiovasc. Med. 2022, 9, 861913. [Google Scholar] [CrossRef]
- Walter, K. What is Acute Ischemic Stroke? Jama 2022, 327, 885. [Google Scholar] [CrossRef] [PubMed]
- Thomalla, G.; Sobesky, J.; Köhrmann, M.; Fiebach, J.B.; Fiehler, J.; Zaro Weber, O.; Kruetzelmann, A.; Kucinski, T.; Rosenkranz, M.; Röther, J.; et al. Two tales: Hemorrhagic transformation but not parenchymal hemorrhage after thrombolysis is related to severity and duration of ischemia: MRI study of acute stroke patients treated with intravenous tissue plasminogen activator within 6 hours. Stroke 2007, 38, 313–318. [Google Scholar] [CrossRef]
- László, J.; Hortobagyi, T. Hemorrhagic transformation of ischemic stroke. Vasc. Dis. Ther. 2017, 2, 1–25. [Google Scholar] [CrossRef]
- Majumder, D. Ischemic Stroke: Pathophysiology and Evolving Treatment Approaches. Neurosci. Insights 2024, 19, 26331055241292600. [Google Scholar] [CrossRef]
- Woodruff, T.M.; Thundyil, J.; Tang, S.C.; Sobey, C.G.; Taylor, S.M.; Arumugam, T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener. 2011, 6, 11. [Google Scholar] [CrossRef]
- Rehman, S.; Nadeem, A.; Akram, U.; Sarwar, A.; Quraishi, A.; Siddiqui, H.; Malik, M.A.J.; Nabi, M.; Ul Haq, I.; Cho, A.; et al. Molecular Mechanisms of Ischemic Stroke: A Review Integrating Clinical Imaging and Therapeutic Perspectives. Biomedicines 2024, 12, 812. [Google Scholar] [CrossRef]
- Rehncrona, S. Brain acidosis. Ann. Emerg. Med. 1985, 14, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Mitroshina, E.V.; Savyuk, M.O.; Ponimaskin, E.; Vedunova, M.V. Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease. Front. Cell Dev. Biol. 2021, 9, 703084. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, W.; Kang, Y.J. Copper affects the binding of HIF-1α to the critical motifs of its target genes. Metallomics 2019, 11, 429–438. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Y.; Wang, T.; Jiao, L.; Luo, Y. VEGF, a Key Factor for Blood Brain Barrier Injury After Cerebral Ischemic Stroke. Aging Dis. 2022, 13, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Gu, J.; Liu, Z.; Xu, C.; Qian, S.; Zhang, X.; Zhou, B.; Guan, Q.; Sun, Y.; Wang, Y.; et al. Inhibition of HIF-1α Reduced Blood Brain Barrier Damage by Regulating MMP-2 and VEGF During Acute Cerebral Ischemia. Front. Cell Neurosci. 2018, 12, 288. [Google Scholar] [CrossRef]
- Yang, C.; Hawkins, K.E.; Doré, S.; Candelario-Jalil, E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol. 2019, 316, C135–C153. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int. J. Mol. Sci. 2024, 25, 4465. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Parpura, V.; Vardjan, N.; Zorec, R. Physiology of Astroglia. Adv. Exp. Med. Biol. 2019, 1175, 45–91. [Google Scholar] [CrossRef]
- Jover-Mengual, T.; Hwang, J.Y.; Byun, H.R.; Court-Vazquez, B.L.; Centeno, J.M.; Burguete, M.C.; Zukin, R.S. The Role of NF-κB Triggered Inflammation in Cerebral Ischemia. Front. Cell Neurosci. 2021, 15, 633610. [Google Scholar] [CrossRef]
- Zong, W.X.; Thompson, C.B. Necrotic death as a cell fate. Genes. Dev. 2006, 20, 1–15. [Google Scholar] [CrossRef]
- Yilmaz, G.; Granger, D.N. Leukocyte recruitment and ischemic brain injury. Neuromol. Med. 2010, 12, 193–204. [Google Scholar] [CrossRef]
- Martha, S.R.; Cheng, Q.; Fraser, J.F.; Gong, L.; Collier, L.A.; Davis, S.M.; Lukins, D.; Alhajeri, A.; Grupke, S.; Pennypacker, K.R. Expression of Cytokines and Chemokines as Predictors of Stroke Outcomes in Acute Ischemic Stroke. Front. Neurol. 2019, 10, 1391. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Machado, C.; Santo, G.; Silva, F.; Ferreira, L.; et al. Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front. Neurol. 2020, 11, 594672. [Google Scholar] [CrossRef]
- Nian, K.; Harding, I.C.; Herman, I.M.; Ebong, E.E. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front. Physiol. 2020, 11, 605398. [Google Scholar] [CrossRef]
- Arba, F.; Rinaldi, C.; Caimano, D.; Vit, F.; Busto, G.; Fainardi, E. Blood-Brain Barrier Disruption and Hemorrhagic Transformation in Acute Ischemic Stroke: Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 594613. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Zhou, X.; Yang, Z.-H.; Si, X.-K.; Sun, X. Stroke-induced damage on the blood–brain barrier. Front. Neurol. 2023, 14, 1248970. [Google Scholar] [CrossRef]
- Shi, K.; Zou, M.; Jia, D.M.; Shi, S.; Yang, X.; Liu, Q.; Dong, J.F.; Sheth, K.N.; Wang, X.; Shi, F.D. tPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke. Circ. Res. 2021, 128, 62–75. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Sun, H.; Xing, Y. Hemorrhagic transformation after cerebral infarction: Current concepts and challenges. Ann. Transl. Med. 2014, 2, 81. [Google Scholar]
- Hao, Y.; Zhou, H.; Pan, C.; Xie, G.; Hu, J.; Zhang, B.; Qian, S.; Yan, S. Prediction factors and clinical significance of different types of hemorrhagic transformation after intravenous thrombolysis. Eur. J. Med. Res. 2023, 28, 509. [Google Scholar] [CrossRef]
- Krongsut, S.; Naraphong, W.; Srikaew, S.; Anusasnee, N. Association of the Type of Intracerebral Hemorrhage with Serious Complications and Predictive Factors for Hemorrhagic Transformation after Thrombolytic Treatment in Patients with Acute Ischemic Stroke. J. Southeast. Asian Med. Res. 2024, 8, e0186. [Google Scholar] [CrossRef]
- Yang, T.; Jing, H.; Cao, Y.; Lin, X.; Yan, J.; Xiao, M.; Huang, X.; Cheng, Z.; Han, Z. The Relationship of the Type of Intracerebral Hemorrhage to Early Disease Evolution and Long-Term Prognosis After r-tPA Thrombolysis. Clin. Appl. Thromb. Hemost. 2021, 27, 1076029621992125. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Yan, C.; Zhou, C.; Zheng, Q.; Li, D.; Tu, P. Risk prediction models for intracranial hemorrhage in acute ischemic stroke patients receiving intravenous alteplase treatment: A systematic review. Front. Neurol. 2023, 14, 1224658. [Google Scholar] [CrossRef]
- Foschi, M.; D’Anna, L.; Gabriele, C.; Conversi, F.; Gabriele, F.; De Santis, F.; Orlandi, B.; De Santis, F.; Ornello, R.; Sacco, S. Sex Differences in the Epidemiology of Intracerebral Hemorrhage Over 10 Years in a Population-Based Stroke Registry. J. Am. Heart Assoc. 2024, 13, e032595. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, Z.; Fang, Z.; Ma, F.; Lv, M.; Zhang, J. Risk factors for thrombolysis-related intracranial hemorrhage: A systematic review and meta-analysis. Thromb. J. 2023, 21, 27. [Google Scholar] [CrossRef]
- Pires, P.W.; Dams Ramos, C.M.; Matin, N.; Dorrance, A.M. The effects of hypertension on the cerebral circulation. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1598–H1614. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, Y. Guidelines for Acute Ischemic Stroke Treatment. Neurosci. Bull. 2020, 36, 1229–1232. [Google Scholar] [CrossRef]
- De Silva, D.A.; Ebinger, M.; Christensen, S.; Parsons, M.W.; Levi, C.; Butcher, K.; Barber, P.A.; Bladin, C.; Donnan, G.A.; Davis, S.M. Baseline diabetic status and admission blood glucose were poor prognostic factors in the EPITHET trial. Cerebrovasc. Dis. 2010, 29, 14–21. [Google Scholar] [CrossRef]
- Weir, C.J.; Murray, G.D.; Dyker, A.G.; Lees, K.R. Is hyperglycaemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow up study. Bmj 1997, 314, 1303–1306. [Google Scholar] [CrossRef]
- Kunte, H.; Busch, M.A.; Trostdorf, K.; Vollnberg, B.; Harms, L.; Mehta, R.I.; Castellani, R.J.; Mandava, P.; Kent, T.A.; Simard, J.M. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Ann. Neurol. 2012, 72, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Hao, Y.; Wang, T.; Xie, M.; Li, H.; Feng, J.; Feng, L.; Ma, D. A review of stress-induced hyperglycaemia in the context of acute ischaemic stroke: Definition, underlying mechanisms, and the status of insulin therapy. Front. Neurol. 2023, 14, 1149671. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Weber, N.C.; Cohn, D.M.; Hollmann, M.W.; DeVries, J.H.; Hermanides, J.; Preckel, B. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J. Clin. Med. 2021, 10, 2419. [Google Scholar] [CrossRef]
- Hashmat, A.; Ya, J.; Kadir, R.; Alwjwaj, M.; Bayraktutan, U. Hyperglycaemia perturbs blood-brain barrier integrity through its effects on endothelial cell characteristics and function. Tissue Barriers 2025, 13, 2350821. [Google Scholar] [CrossRef]
- Cheng, K.H.; Lin, J.R.; Anderson, C.S.; Lai, W.T.; Lee, T.H. SRICHS Group. Lipid Paradox in Statin-Naïve Acute Ischemic Stroke But Not Hemorrhagic Stroke. Front. Neurol. 2018, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.F.; Chao, A.C.; Hu, H.H.; Lin, R.T.; Chen, C.H.; Chan, L.; Lin, H.J.; Sun, Y.; Lin, Y.Y.; Chen, P.L.; et al. Low Cholesterol Levels Increase Symptomatic Intracranial Hemorrhage Rates After Intravenous Thrombolysis: A Multicenter Cohort Validation Study. J. Atheroscler. Thromb. 2019, 26, 513–527. [Google Scholar] [CrossRef]
- Deplanque, D.; Masse, I.; Lefebvre, C.; Libersa, C.; Leys, D.; Bordet, R. Prior TIA, lipid-lowering drug use, and physical activity decrease ischemic stroke severity. Neurology 2006, 67, 1403–1410. [Google Scholar] [CrossRef]
- Messé, S.R.; Pervez, M.A.; Smith, E.E.; Siddique, K.A.; Hellkamp, A.S.; Saver, J.L.; Bhatt, D.L.; Fonarow, G.C.; Peterson, E.D.; Schwamm, L.H. Lipid profile, lipid-lowering medications, and intracerebral hemorrhage after tPA in get with the guidelines-stroke. Stroke 2013, 44, 1354–1359. [Google Scholar] [CrossRef]
- Anadani, M.; Turan, T.N.; Yaghi, S.; Spiotta, A.M.; Gory, B.; Sharma, R.; Sheth, K.N.; de Havenon, A. Change in Smoking Behavior and Outcome After Ischemic Stroke: Post-Hoc Analysis of the SPS3 Trial. Stroke 2023, 54, 921–927. [Google Scholar] [CrossRef]
- Wang, R.; Zeng, J.; Wang, F.; Zhuang, X.; Chen, X.; Miao, J. Risk factors of hemorrhagic transformation after intravenous thrombolysis with rt-PA in acute cerebral infarction. Qjm 2019, 112, 323–326. [Google Scholar] [CrossRef]
- Kim, C.K.; Ryu, W.S.; Kim, B.J.; Lee, S.H. Paradoxical effect of obesity on hemorrhagic transformation after acute ischemic stroke. BMC Neurol. 2013, 13, 123. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, B.; Yu, Y.; Gao, W.; Liu, W.; Chen, L.; Xia, Z.; Cao, Q. Vascular Aging in Ischemic Stroke. J. Am. Heart Assoc. 2024, 13, e033341. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Rahman, A.A.; Lee, S.; Malhotra, R. The Implications of Aging on Vascular Health. Int. J. Mol. Sci. 2024, 25, 11188. [Google Scholar] [CrossRef] [PubMed]
- Pohlmann, J.E.; Kim, I.S.Y.; Brush, B.; Sambhu, K.M.; Conti, L.; Saglam, H.; Milos, K.; Yu, L.; Cronin, M.F.M.; Balogun, O.; et al. Association of large core middle cerebral artery stroke and hemorrhagic transformation with hospitalization outcomes. Sci. Rep. 2024, 14, 10008. [Google Scholar] [CrossRef] [PubMed]
- Larrue, V.; von Kummer, R.R.; Müller, A.; Bluhmki, E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: A secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke 2001, 32, 438–441. [Google Scholar] [CrossRef]
- Sun, J.; Lam, C.; Christie, L.; Blair, C.; Li, X.; Werdiger, F.; Yang, Q.; Bivard, A.; Lin, L.; Parsons, M. Risk factors of hemorrhagic transformation in acute ischaemic stroke: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1079205. [Google Scholar] [CrossRef] [PubMed]
- Marschall, A.; Rivero, F.; del Val, D.; Bastante, T.; López Soberón, E.; Gómez Sánchez, I.; Basabe Velasco, E.; Alfonso, F.; de la Torre Hernández, J.M.; Martí Sánchez, D. Bleeding Risk in Elderly Patients Undergoing Percutaneous Coronary Intervention: A Comprehensive Review. J. Clin. Med. 2025, 14, 1194. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Chu, J.; Han, S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis. 2024, 16, 980–1002. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S. Gut Microbiota and Ischemic Stroke: The Role of Trimethylamine N-Oxide. J. Stroke 2019, 21, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Joris, P.J.; Mensink, R.P.; Adam, T.C.; Liu, T.T. Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients 2018, 10, 530. [Google Scholar] [CrossRef]
- Fantini, S.; Sassaroli, A.; Tgavalekos, K.T.; Kornbluth, J. Cerebral blood flow and autoregulation: Current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 2016, 3, 031411. [Google Scholar] [CrossRef]
- Ganti, L. Management of acute ischemic stroke in the emergency department: Optimizing the brain. Int. J. Emerg. Med. 2025, 18, 7. [Google Scholar] [CrossRef]
- Wahlgren, N.; Ahmed, N.; Dávalos, A.; Ford, G.A.; Grond, M.; Hacke, W.; Hennerici, M.G.; Kaste, M.; Kuelkens, S.; Larrue, V.; et al. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): An observational study. Lancet 2007, 369, 275–282. [Google Scholar] [CrossRef]
- Perini, F.; De Boni, A.; Marcon, M.; Bolgan, I.; Pellizzari, M.; Dionisio, L.D. Systolic blood pressure contributes to intracerebral haemorrhage after thrombolysis for ischemic stroke. J. Neurol. Sci. 2010, 297, 52–54. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Fieschi, C.; von Kummer, R.; Davalos, A.; Meier, D.; Larrue, V.; Bluhmki, E.; Davis, S.; Donnan, G.; et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 1998, 352, 1245–1251. [Google Scholar] [CrossRef]
- Qureshi, A.I. Acute hypertensive response in patients with stroke: Pathophysiology and management. Circulation 2008, 118, 176–187. [Google Scholar] [CrossRef]
- Liu, F.; Anderson, C.S. Blood Pressure Management Pre- and Post-Reperfusion in Acute Ischemic Stroke: Evidence and Insights from Recent Studies. Curr. Neurol. Neurosci. Rep. 2025, 25, 52. [Google Scholar] [CrossRef] [PubMed]
- Gilligan, A.K.; Markus, R.; Read, S.; Srikanth, V.; Hirano, T.; Fitt, G.; Arends, M.; Chambers, B.R.; Davis, S.M.; Donnan, G.A. Baseline blood pressure but not early computed tomography changes predicts major hemorrhage after streptokinase in acute ischemic stroke. Stroke 2002, 33, 2236–2242. [Google Scholar] [CrossRef]
- Waltimo, T.; Haapaniemi, E.; Surakka, I.L.; Melkas, S.; Sairanen, T.; Sibolt, G.; Tatlisumak, T.; Strbian, D. Post-thrombolytic blood pressure and symptomatic intracerebral hemorrhage. Eur. J. Neurol. 2016, 23, 1757–1762. [Google Scholar] [CrossRef]
- Mokin, M.; Kass-Hout, T.; Kass-Hout, O.; Zivadinov, R.; Mehta, B. Blood pressure management and evolution of thrombolysis-associated intracerebral hemorrhage in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2012, 21, 852–859. [Google Scholar] [CrossRef]
- Delgado-Mederos, R.; Ribo, M.; Rovira, A.; Rubiera, M.; Munuera, J.; Santamarina, E.; Delgado, P.; Maisterra, O.; Alvarez-Sabin, J.; Molina, C.A. Prognostic significance of blood pressure variability after thrombolysis in acute stroke. Neurology 2008, 71, 552–558. [Google Scholar] [CrossRef]
- Butcher, K.; Christensen, S.; Parsons, M.; De Silva, D.A.; Ebinger, M.; Levi, C.; Jeerakathil, T.; Campbell, B.C.; Barber, P.A.; Bladin, C.; et al. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. Stroke 2010, 41, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, H.; Fu, H.X.; Li, C.B.; Geng, X.J.; Zhang, X.X.; Zhu, J.; Ma, Z.; Gao, Y.J.; Dou, Z.J. Predictive Factors of Hemorrhage After Thrombolysis in Patients with Acute Ischemic Stroke. Front. Neurol. 2020, 11, 551157. [Google Scholar] [CrossRef]
- Lei, Y.S.; Li, H.; Lei, J.Y.; Li, S.X.; Li, D.F. Effect of intravenous thrombolysis in acute ischemic stroke patients with cerebral microbleeds and analysis of risk factors for hemorrhagic transformation. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Wahlgren, N.; Brainin, M.; Castillo, J.; Ford, G.A.; Kaste, M.; Lees, K.R.; Toni, D. Relationship of blood pressure, antihypertensive therapy, and outcome in ischemic stroke treated with intravenous thrombolysis: Retrospective analysis from Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register (SITS-ISTR). Stroke 2009, 40, 2442–2449. [Google Scholar] [CrossRef]
- Wu, W.; Huo, X.; Zhao, X.; Liao, X.; Wang, C.; Pan, Y.; Wang, Y.; Wang, Y. Relationship between Blood Pressure and Outcomes in Acute Ischemic Stroke Patients Administered Lytic Medication in the TIMS-China Study. PLoS ONE 2016, 11, e0144260. [Google Scholar] [CrossRef] [PubMed]
- Tsivgoulis, G.; Frey, J.L.; Flaster, M.; Sharma, V.K.; Lao, A.Y.; Hoover, S.L.; Liu, W.; Stamboulis, E.; Alexandrov, A.W.; Malkoff, M.D.; et al. Pre-tissue plasminogen activator blood pressure levels and risk of symptomatic intracerebral hemorrhage. Stroke 2009, 40, 3631–3634. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xie, J.; Xie, Q.; Xu, Y.; Chen, Y.; Li, Y.; Zhang, J.; Pang, C.; Gao, L.; Yu, H.; et al. Association of Early Blood Pressure Levels and Outcomes in Ischemic Stroke Treated with Intravenous Thrombolysis: A Prospective Cohort Study. CNS Neurosci. Ther. 2025, 31, e70318. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Paramasivan, N.K.; Sreedharan, S.E.; Sukumaran, S.; Vinoda Thulaseedharan, J.; Sylaja, P.N. Association of 24 h Blood Pressure on Functional Outcome in Patients with Acute Ischemic Stroke Post Intravenous Thrombolysis. Cerebrovasc. Dis. 2023, 52, 177–183. [Google Scholar] [CrossRef]
- Kellert, L.; Hametner, C.; Ahmed, N.; Rauch, G.; MacLeod, M.J.; Perini, F.; Lees, K.R.; Ringleb, P.A. Reciprocal Interaction of 24-Hour Blood Pressure Variability and Systolic Blood Pressure on Outcome in Stroke Thrombolysis. Stroke 2017, 48, 1827–1834. [Google Scholar] [CrossRef]
- Leonardi-Bee, J.; Bath, P.M.; Phillips, S.J.; Sandercock, P.A. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke 2002, 33, 1315–1320. [Google Scholar] [CrossRef]
- Kim, T.J.; Park, H.K.; Kim, J.M.; Lee, J.S.; Park, S.H.; Jeong, H.B.; Park, K.Y.; Rha, J.H.; Yoon, B.W.; Ko, S.B. Blood pressure variability and hemorrhagic transformation in patients with successful recanalization after endovascular recanalization therapy: A retrospective observational study. Ann. Neurol. 2019, 85, 574–581. [Google Scholar] [CrossRef]
- Liu, K.; Yan, S.; Zhang, S.; Guo, Y.; Lou, M. Systolic Blood Pressure Variability is Associated with Severe Hemorrhagic Transformation in the Early Stage After Thrombolysis. Transl. Stroke Res. 2016, 7, 186–191. [Google Scholar] [CrossRef]
- Stead, L.G.; Gilmore, R.M.; Vedula, K.C.; Weaver, A.L.; Decker, W.W.; Brown, R.D., Jr. Impact of acute blood pressure variability on ischemic stroke outcome. Neurology 2006, 66, 1878–1881. [Google Scholar] [CrossRef]
- Sare, G.M.; Ali, M.; Shuaib, A.; Bath, P.M. Relationship between hyperacute blood pressure and outcome after ischemic stroke: Data from the VISTA collaboration. Stroke 2009, 40, 2098–2103. [Google Scholar] [CrossRef]
- Acampa, M.; Camarri, S.; Lazzerini, P.E.; Guideri, F.; Tassi, R.; Valenti, R.; Cartocci, A.; Martini, G. Increased arterial stiffness is an independent risk factor for hemorrhagic transformation in ischemic stroke undergoing thrombolysis. Int. J. Cardiol. 2017, 243, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, J.; Zhao, H.; Xu, Y.; Zhou, Y.; Liu, Y.; Shen, J.; Zhang, Z. Impact of blood pressure variability on hemorrhagic transformation post-rt-PA thrombolysis in patients with acute ischemic stroke. SAGE Open Med. 2024, 12, 20503121241283881. [Google Scholar] [CrossRef] [PubMed]
- Sandu, O.E.; Bogdan, C.; Apostol, A.; Daniluc, L.M.-A.; Schuldesz, A.C.; Simu, M.A. Visit-to-Visit Systolic Blood Pressure Variability and Risk of Ischemic and Hemorrhagic Stroke. Medicina 2025, 61, 267. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, L.-B.; Bolognese, M.; Österreich, M.; Müller, M.; Karwacki, G.M. Pretreatment Cranial Computed Tomography Perfusion Predicts Dynamic Cerebral Autoregulation Changes in Acute Hemispheric Stroke Patients Having Undergone Recanalizing Therapy: A Retrospective Study. Neurol. Int. 2024, 16, 1636–1652. [Google Scholar] [CrossRef]
- Selker, H.P.; Beshansky, J.R.; Schmid, C.H.; Griffith, J.L.; Longstreth, W.T., Jr.; O’Connor, C.M.; Caplan, L.R.; Massey, E.W.; D’Agostino, R.B.; Laks, M.M.; et al. Presenting pulse pressure predicts thrombolytic therapy-related intracranial hemorrhage. Thrombolytic Predictive Instrument (TPI) Project results. Circulation 1994, 90, 1657–1661. [Google Scholar] [CrossRef]
- Haider, A.W.; Larson, M.G.; Franklin, S.S.; Levy, D. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. Ann. Intern. Med. 2003, 138, 10–16. [Google Scholar] [CrossRef]
- Vemmos, K.N.; Tsivgoulis, G.; Spengos, K.; Manios, E.; Daffertshofer, M.; Kotsis, V.; Lekakis, J.P.; Zakopoulos, N. Pulse pressure in acute stroke is an independent predictor of long-term mortality. Cerebrovasc. Dis. 2004, 18, 30–36. [Google Scholar] [CrossRef]
- Todo, K. Blood pressure variability in acute ischemic stroke. Hypertens. Res. 2024, 47, 679–680. [Google Scholar] [CrossRef]
- Kamp, A.; Huang, W.; Lassiter, T.; Shah, S.; Liu, B.; Kram, B. Comparison of intermittent versus continuous infusion antihypertensives in acute ischemic stroke. Am. J. Emerg. Med. 2022, 52, 220–224. [Google Scholar] [CrossRef]
- Huang, A.; Parker, D., Jr.; Wein, R. Comparison of nicardipine versus labetalol for time to alteplase administration in acute ischemic stroke. Front. Neurol. 2025, 16, 1573352. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.S.; Huang, Y.; Lindley, R.I.; Chen, X.; Arima, H.; Chen, G.; Li, Q.; Billot, L.; Delcourt, C.; Bath, P.M.; et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): An international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet 2019, 393, 877–888. [Google Scholar] [CrossRef]
- De Georgia, M.; Bowen, T.; Duncan, K.R.; Chebl, A.B. Blood pressure management in ischemic stroke patients undergoing mechanical thrombectomy. Neurol. Res. Pract. 2023, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.; Schönenberger, S.; Hendèn, P.L.; Valentin, J.B.; Espelund, U.S.; Sørensen, L.H.; Juul, N.; Uhlmann, L.; Johnsen, S.P.; Rentzos, A.; et al. Blood Pressure Thresholds and Neurologic Outcomes After Endovascular Therapy for Acute Ischemic Stroke: An Analysis of Individual Patient Data from 3 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Hemphill, J.C., 3rd; Greenberg, S.M.; Anderson, C.S.; Becker, K.; Bendok, B.R.; Cushman, M.; Fung, G.L.; Goldstein, J.N.; Macdonald, R.L.; Mitchell, P.H.; et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2015, 46, 2032–2060. [Google Scholar] [CrossRef]
- Wajngarten, M.; Silva, G.S. Hypertension and Stroke: Update on Treatment. Eur. Cardiol. 2019, 14, 111–115. [Google Scholar] [CrossRef]
- Vitt, J.R.; Trillanes, M.; Hemphill, J.C., 3rd. Management of Blood Pressure During and After Recanalization Therapy for Acute Ischemic Stroke. Front. Neurol. 2019, 10, 138. [Google Scholar] [CrossRef]
- Wang, A.; Ortega-Gutierrez, S.; Petersen, N.H. Autoregulation in the Neuro ICU. Curr. Treat. Options Neurol. 2018, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.; Azevedo, E.; Sorond, F. Cerebral Autoregulation in Stroke. Curr. Atheroscler. Rep. 2018, 20, 37. [Google Scholar] [CrossRef]
- Castro, P.; Serrador, J.M.; Rocha, I.; Sorond, F.; Azevedo, E. Efficacy of Cerebral Autoregulation in Early Ischemic Stroke Predicts Smaller Infarcts and Better Outcome. Front. Neurol. 2017, 8, 113. [Google Scholar] [CrossRef]
- Mattle, H.P.; Kappeler, L.; Arnold, M.; Fischer, U.; Nedeltchev, K.; Remonda, L.; Jakob, S.M.; Schroth, G. Blood pressure and vessel recanalization in the first hours after ischemic stroke. Stroke 2005, 36, 264–268. [Google Scholar] [CrossRef]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2020, 26, 25–32. [Google Scholar] [CrossRef]
- Garg, R.; Chaudhuri, A.; Munschauer, F.; Dandona, P. Hyperglycemia, insulin, and acute ischemic stroke: A mechanistic justification for a trial of insulin infusion therapy. Stroke 2006, 37, 267–273. [Google Scholar] [CrossRef]
- Williams, L.S.; Rotich, J.; Qi, R.; Fineberg, N.; Espay, A.; Bruno, A.; Fineberg, S.E.; Tierney, W.R. Effects of admission hyperglycemia on mortality and costs in acute ischemic stroke. Neurology 2002, 59, 67–71. [Google Scholar] [CrossRef]
- Scott, J.F.; Robinson, G.M.; French, J.M.; O’Connell, J.E.; Alberti, K.G.; Gray, C.S. Prevalence of admission hyperglycaemia across clinical subtypes of acute stroke. Lancet 1999, 353, 376–377. [Google Scholar] [CrossRef]
- Won, S.J.; Tang, X.N.; Suh, S.W.; Yenari, M.A.; Swanson, R.A. Hyperglycemia promotes tissue plasminogen activator-induced hemorrhage by Increasing superoxide production. Ann. Neurol. 2011, 70, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Pandolfi, A.; Giaccari, A.; Cilli, C.; Alberta, M.M.; Morviducci, L.; De Filippis, E.A.; Buongiorno, A.; Pellegrini, G.; Capani, F.; Consoli, A. Acute hyperglycemia and acute hyperinsulinemia decrease plasma fibrinolytic activity and increase plasminogen activator inhibitor type 1 in the rat. Acta Diabetol. 2001, 38, 71–76. [Google Scholar] [CrossRef]
- Ribo, M.; Molina, C.; Montaner, J.; Rubiera, M.; Delgado-Mederos, R.; Arenillas, J.F.; Quintana, M.; Alvarez-Sabín, J. Acute hyperglycemia state is associated with lower tPA-induced recanalization rates in stroke patients. Stroke 2005, 36, 1705–1709. [Google Scholar] [CrossRef] [PubMed]
- Ning, R.; Chopp, M.; Yan, T.; Zacharek, A.; Zhang, C.; Roberts, C.; Cui, X.; Lu, M.; Chen, J. Tissue plasminogen activator treatment of stroke in type-1 diabetes rats. Neuroscience 2012, 222, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, G.; Zhang, J.; Wang, J.; You, W.; Zhu, J. Blood glucose level affects prognosis of patients who received intravenous thrombolysis after acute ischemic stroke? A meta-analysis. Front. Endocrinol. 2023, 14, 1120779. [Google Scholar] [CrossRef]
- Neacă, I.; Negroiu, C.E.; Tudorașcu, I.; Dănoiu, R.; Moise, C.G.; Toader, D.M.; Dănoiu, S. Risk Factors and Outcomes of Hemorrhagic Transformation in Acute Ischemic Stroke Following Thrombolysis: Analysis of a Single-Center Experience and Review of the Literature. Medicine 2025, 61, 722. [Google Scholar] [CrossRef]
- Poppe, A.Y.; Majumdar, S.R.; Jeerakathil, T.; Ghali, W.; Buchan, A.M.; Hill, M.D. Admission hyperglycemia predicts a worse outcome in stroke patients treated with intravenous thrombolysis. Diabetes Care 2009, 32, 617–622. [Google Scholar] [CrossRef]
- Bruno, A.; Biller, J.; Adams, H.P., Jr.; Clarke, W.R.; Woolson, R.F.; Williams, L.S.; Hansen, M.D. Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators. Neurology 1999, 52, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Callahan, A.; Amarenco, P.; Goldstein, L.B.; Sillesen, H.; Messig, M.; Samsa, G.P.; Altafullah, I.; Ledbetter, L.Y.; MacLeod, M.J.; Scott, R.; et al. Risk of stroke and cardiovascular events after ischemic stroke or transient ischemic attack in patients with type 2 diabetes or metabolic syndrome: Secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Arch. Neurol. 2011, 68, 1245–1251. [Google Scholar] [CrossRef]
- Tanne, D.; Kasner, S.E.; Demchuk, A.M.; Koren-Morag, N.; Hanson, S.; Grond, M.; Levine, S.R.; the Multicenter rt-PA Stroke Survey Group. Markers of Increased Risk of Intracerebral Hemorrhage After Intravenous Recombinant Tissue Plasminogen Activator Therapy for Acute Ischemic Stroke in Clinical Practice. Circulation 2002, 105, 1679–1685. [Google Scholar] [CrossRef] [PubMed]
- Mazya, M.; Egido, J.A.; Ford, G.A.; Lees, K.R.; Mikulik, R.; Toni, D.; Wahlgren, N.; Ahmed, N. Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: Safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. Stroke 2012, 43, 1524–1531. [Google Scholar] [CrossRef]
- Masrur, S.; Cox, M.; Bhatt, D.L.; Smith, E.E.; Ellrodt, G.; Fonarow, G.C.; Schwamm, L. Association of Acute and Chronic Hyperglycemia with Acute Ischemic Stroke Outcomes Post-Thrombolysis: Findings from Get with the Guidelines-Stroke. J. Am. Heart Assoc. 2015, 4, e002193. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.F.; Chao, A.C.; Hu, H.H.; Lin, R.T.; Chen, C.H.; Chan, L.; Lin, H.J.; Sun, Y.; Lin, Y.Y.; Chen, P.L.; et al. Hyperglycemia predicts unfavorable outcomes in acute ischemic stroke patients treated with intravenous thrombolysis among a Chinese population: A prospective cohort study. J. Neurol. Sci. 2018, 388, 195–202. [Google Scholar] [CrossRef]
- Nikneshan, D.; Raptis, R.; Pongmoragot, J.; Zhou, L.; Johnston, S.C.; Saposnik, G. Predicting clinical outcomes and response to thrombolysis in acute stroke patients with diabetes. Diabetes Care 2013, 36, 2041–2047. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, J.; Spencer, P.; Li, Y.; Vodovoz, S.J.; Ning, M.-M.; Liu, N.; Wang, X.; Dumont, A.S. Diabetes mellitus: A common comorbidity increasing hemorrhagic transformation after tPA thrombolytic therapy for ischemic stroke. Brain Hemorrhages 2021, 2, 116–123. [Google Scholar] [CrossRef]
- Gidding, S.S.; Allen, N.B. Cholesterol and Atherosclerotic Cardiovascular Disease: A Lifelong Problem. J. Am. Heart Assoc. 2019, 8, e012924. [Google Scholar] [CrossRef]
- Zeng, G.; Zhang, C.; Song, Y.; Zhang, Z.; Xu, J.; Liu, Z.; Tang, X.; Wang, X.; Chen, Y.; Zhang, Y.; et al. The potential impact of inflammation on the lipid paradox in patients with acute myocardial infarction: A multicenter study. BMC Med. 2024, 22, 599. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Martínez, I.; Thorén, M.; Matusevicius, M.; Cooray, C.; Zini, A.; Roffe, C.; Toni, D.; Tsivgoulis, G.; Ringleb, P.; Wahlgren, N.; et al. Association of cholesterol levels with hemorrhagic transformation and cerebral edema after reperfusion therapies. Eur. Stroke J. 2023, 8, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, Q.; Cheng, Y.; Wei, C.; Wu, Q.; Liu, M. Association between LDL-C/HDL-C ratio and Hemorrhagic Transformation in Acute Ischemic Stroke Patients (P1.9-036). Neurology 2019, 92, P1.9-036. [Google Scholar] [CrossRef]
- Thrift, A.; McNeil, J.; Donnan, G. Reduced frequency of high cholesterol levels among patients with intracerebral haemorrhage. J. Clin. Neurosci. 2002, 9, 376–380. [Google Scholar] [CrossRef]
- Engelter, S.T.; Soinne, L.; Ringleb, P.; Sarikaya, H.; Bordet, R.; Berrouschot, J.; Odier, C.; Arnold, M.; Ford, G.A.; Pezzini, A.; et al. IV thrombolysis and statins. Neurology 2011, 77, 888–895. [Google Scholar] [CrossRef]
- Geng, J.; Song, Y.; Mu, Z.; Xu, Q.; Shi, G.; Sun, Y.; Chen, Y.; Lin, Y.; Pan, Y.; Yu, L.; et al. Early Use of Statin in Patients Treated with Alteplase for Acute Ischemic Stroke. Acta Neurochir. Suppl. 2016, 121, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Mowla, A.; Shah, H.; Lail, N.S.; Vaughn, C.B.; Shirani, P.; Sawyer, R.N. Statins Use and Outcome of Acute Ischemic Stroke Patients after Systemic Thrombolysis. Cerebrovasc. Dis. 2020, 49, 503–508. [Google Scholar] [CrossRef]
- Miedema, I.; Uyttenboogaart, M.; Koopman, K.; De Keyser, J.; Luijckx, G.J. Statin use and functional outcome after tissue plasminogen activator treatment in acute ischaemic stroke. Cerebrovasc. Dis. 2010, 29, 263–267. [Google Scholar] [CrossRef]
- Bruning, T.; Al-Khaled, M. Do statins reduce the mortality rate in stroke patients treated with systemic thrombolysis in a 5-year. Neural Regen. Res. 2021, 16, 1807–1812. [Google Scholar] [CrossRef]
- Campos, M.; García-Bonilla, L.; Hernández-Guillamon, M.; Barceló, V.; Morancho, A.; Quintana, M.; Rubiera, M.; Rosell, A.; Montaner, J. Combining statins with tissue plasminogen activator treatment after experimental and human stroke: A safety study on hemorrhagic transformation. CNS Neurosci. Ther. 2013, 19, 863–870. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | Modifiable/ Non-Modifiable | Mechanism | Effect on HT/Recommendations |
---|---|---|---|
Age | Non-modifiable | Arteriosclerosis and microangiopathy interfere with coagulation. Comorbidities such as cerebral amyloid angiopathy or hypertensive microangiopathy further compromise vessel stability | Increases the risk of HT, particularly after Alteplase treatment [13,59]. |
Sex | Non-modifiable | It is believed that gender alone is not the determining factor, but rather the combination of several independent factors; for example, the degree of enrollment, women are less likely to be enrolled in trials for intracerebral hemorrhage. | The results are contradictory, but there may be a higher morbidity in women compared to men [60,61]. |
Arterial hypertension | Modifiable | Impaired cerebral autoregulation in ischemic tissue, making perfusion pressure-dependent. Exacerbates inflammation, induces vascular remodeling, and alters collateral flow and endothelial function. | BP < 180/105 mmHg throughout the initial 24 h period following thrombolytic therapy [62,63]. |
Diabetes/Hyperglycemia | Modifiable | Increased coagulability, hypoperfusion, and hypoxia of the arterial wall and increased permeability at the level of the BBB. | Most studies associate admission hyperglycemia, whether or not related to previously diagnosed diabetes, with the occurrence of HT, its severity, and short- or long-term outcomes [64,65,66,67,68,69]. |
Dyslipidemia | Modifiable | Cholesterol levels are known to play a key role in maintaining the stability of the microvasculature. | The findings remain conflicting, with studies showing that reduced cholesterol levels are associated with a higher risk of symptomatic bleeding and others showing no correlation. This aspect remains equally uncertain in the context of statin therapy [70,71,72,73]. |
Smoking | Modifiable | Cholinergic involvement, alterations in the coagulation cascade, and vascular dysfunction, leading to atherosclerosis. | Persistent smokers after an AIS face a higher risk of cardiovascular events and mortality [74,75]. |
Obesity | Modifiable | Obese patients have higher levels of multiple coagulation factors and also exhibit suboptimal responses to antithrombotic therapy, which could limit post-thrombolysis bleeding. Furthermore, obese patients show fewer cases of severe stroke or cardioembolic etiology. | The risk of HT was found to be lower in obese patients [61,76]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neacă, I.; Negroiu, C.E.; Tudorașcu, I.; Dănoiu, R.; Godeanu, S.; Dănoiu, S.; Toader, D.M. Cardiovascular Risk Factors Involved in Hemorrhagic Transformation After Intravenous Thrombolytic Therapy in Patients with Acute Ischemic Stroke. Int. J. Mol. Sci. 2025, 26, 10186. https://doi.org/10.3390/ijms262010186
Neacă I, Negroiu CE, Tudorașcu I, Dănoiu R, Godeanu S, Dănoiu S, Toader DM. Cardiovascular Risk Factors Involved in Hemorrhagic Transformation After Intravenous Thrombolytic Therapy in Patients with Acute Ischemic Stroke. International Journal of Molecular Sciences. 2025; 26(20):10186. https://doi.org/10.3390/ijms262010186
Chicago/Turabian StyleNeacă, Ileana, Cristina Elena Negroiu, Iulia Tudorașcu, Raluca Dănoiu, Sânziana Godeanu, Suzana Dănoiu, and Despina Manuela Toader. 2025. "Cardiovascular Risk Factors Involved in Hemorrhagic Transformation After Intravenous Thrombolytic Therapy in Patients with Acute Ischemic Stroke" International Journal of Molecular Sciences 26, no. 20: 10186. https://doi.org/10.3390/ijms262010186
APA StyleNeacă, I., Negroiu, C. E., Tudorașcu, I., Dănoiu, R., Godeanu, S., Dănoiu, S., & Toader, D. M. (2025). Cardiovascular Risk Factors Involved in Hemorrhagic Transformation After Intravenous Thrombolytic Therapy in Patients with Acute Ischemic Stroke. International Journal of Molecular Sciences, 26(20), 10186. https://doi.org/10.3390/ijms262010186