Bacillus subtilis Response to Mercury Toxicity: A Defense Mediated by Sulphur-Rich Molecules and Oxidative Prevention Systems
Abstract
1. Introduction
2. Results
2.1. Impact of Hg(II) on the Viability of Bacillus subtilis Strains Proficient and Deficient in Repair and Prevention Mechanism of ROS-Promoted DNA Damage
2.2. Mutagenic Effect of Hg(II) in Vegetative Cells of Wild Type Bacillus subtilis 168 and Mutant Strains Deficient in Different Stress Responses
2.3. Type of Mutations in Bacillus subtilis rpoB Induced by Hg(II) Ions
2.4. Differentially Expressed Genes in Bacillus subtilis Exposed to Hg(II) Ions
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Culture Conditions, and Reagents
4.2. Effect of Hg(II) Ions on Growth of Bacillus subtilis and Mutant Strains Deficient in Genes Related to Different Stress Responses
4.3. Analysis of Mutagenesis Induced by Hg(II) Ions
4.4. Analysis of Mutations Induced by Hg(II) Ions in Bacillus subtilis
4.5. RNA Seq Analysis
4.5.1. RNA Isolation, Data Processing, and Sequencing
4.5.2. Transcriptome Analysis
4.5.3. Differential Expression and Functional Analyses
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Garley, M.; Nikliński, J. Mercury Exposure and Health Effects: What Do We Really Know? Int. J. Mol. Sci. 2025, 26, 2326. [Google Scholar] [CrossRef]
- Ray, S.; Vashishth, R.; Mukherjee, A.G.; Gopalakrishnan, A.V.; Sabina, E.P. Mercury in the environment: Biogeochemical transformation, ecological impacts, human risks, and remediation strategies. Chemosphere 2025, 381, 144471. [Google Scholar] [CrossRef]
- Wu, Y.S.; Osman, A.I.; Hosny, M.; Elgarahy, A.M.; Eltaweil, A.S.; Rooney, D.W.; Chen, Z.; Rahim, N.S.; Sekar, M.; Gopinath, S.C.B.; et al. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega 2024, 9, 5100–5126. [Google Scholar] [CrossRef] [PubMed]
- Ojuederie, O.; Babalola, O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.; Rodriguez, E.; Mendes, R.J.; Mariz-Ponte, N.; Sario, S.; Lopes, J.C.; Ferreira De Oliveira, J.M.P.; Santos, C. Inorganic Hg Toxicity in Plants: A Comparison of Different Genotoxic Parameters. Plant Physiol. Biochem. 2018, 125, 247–254. [Google Scholar] [CrossRef] [PubMed]
- LaVoie, S.P.; Summers, A.O. Transcriptional Responses of Escherichia coli during Recovery from Inorganic or Organic Mercury Exposure. BMC Genom. 2018, 19, 52, Correction in BMC Genom. 2018, 19, 268. [Google Scholar] [CrossRef]
- Fanous, A.; Weiss, W.; Görg, A.; Jacob, F.; Parlar, H. A Proteome Analysis of the Cadmium and Mercury Response in Corynebacterium glutamicum. Proteomics 2008, 8, 4976–4986. [Google Scholar] [CrossRef]
- Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative Stress in Bacteria and Protein Damage by Reactive Oxygen Species. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2000, 3, 3–8. [Google Scholar] [CrossRef]
- Lushchak, V.I. Oxidative Stress and Mechanisms of Protection against It in Bacteria. Biochem. Biokhimiia 2001, 66, 476–489. [Google Scholar] [CrossRef]
- Baharoglu, Z.; Mazel, D. SOS, the Formidable Strategy of Bacteria against Aggressions. FEMS Microbiol. Rev. 2014, 38, 1126–1145. [Google Scholar] [CrossRef]
- Santos-Escobar, F.; Gutiérrez-Corona, J.F.; Pedraza-Reyes, M. Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage. Appl. Environ. Microbiol. 2014, 80, 5493–5502. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Maughan, H. The Spectrum of Spontaneous Rifampin Resistance Mutations in the rpoB Gene of Bacillus subtilis 168 Spores Differs from That of Vegetative Cells and Resembles That of Mycobacterium tuberculosis. J. Bacteriol. 2002, 184, 4936–4940. [Google Scholar] [CrossRef]
- Leehan, J.D.; Nicholson, W.L. The Spectrum of Spontaneous Rifampin Resistance Mutations in the Bacillus subtilis rpoB Gene Depends on the Growth Environment. Appl. Environ. Microbiol. 2021, 87, e01237-21. [Google Scholar] [CrossRef]
- Ingham, C.J.; Furneaux, P.A. Mutations in the β Subunit of the Bacillus subtilis RNA Polymerase That Confer Both Rifampicin Resistance and Hypersensitivity to NusG. Microbiology 2000, 146, 3041–3049. [Google Scholar] [CrossRef]
- Higgins, D.; Dworkin, J. Recent Progress in Bacillus subtilis Sporulation. FEMS Microbiol. Rev. 2012, 36, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Robleto, E.A.; Yasbin, R.; Ross, C.; Pedraza-Reyes, M. Stationary Phase Mutagenesis in B. subtilis: A Paradigm to Study Genetic Diversity Programs in Cells Under Stress. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Reyes, M.; Abundiz-Yañez, K.; Rangel-Mendoza, A.; Martínez, L.E.; Barajas-Ornelas, R.C.; Cuéllar-Cruz, M.; Leyva-Sánchez, H.C.; Ayala-García, V.M.; Valenzuela-García, L.I.; Robleto, E.A. Bacillus subtilis Stress-Associated Mutagenesis and Developmental DNA Repair. Microbiol. Mol. Biol. Rev. 2024, 88, e00158-23. [Google Scholar] [CrossRef] [PubMed]
- Fridovich, I. Superoxide Dismutases. J. Biol. Chem. 1989, 264, 7761–7764. [Google Scholar] [CrossRef]
- Newton, G.L.; Rawat, M.; La Clair, J.J.; Jothivasan, V.K.; Budiarto, T.; Hamilton, C.J.; Claiborne, A.; Helmann, J.D.; Fahey, R.C. Bacillithiol Is an Antioxidant Thiol Produced in Bacilli. Nat. Chem. Biol. 2009, 5, 625–627. [Google Scholar] [CrossRef]
- Fang, Z.; Dos Santos, P.C. Protective Role of Bacillithiol in Superoxide Stress and Fe–S Metabolism in Bacillus subtilis. MicrobiologyOpen 2015, 4, 616–631. [Google Scholar] [CrossRef]
- Crespo-López, M.E.; Macêdo, G.L.; Pereira, S.I.D.; Arrifano, G.P.F.; Picanço-Diniz, D.L.W.; Nascimento, J.L.M.D.; Herculano, A.M. Mercury and Human Genotoxicity: Critical Considerations and Possible Molecular Mechanisms. Pharmacol. Res. 2009, 60, 212–220. [Google Scholar] [CrossRef]
- Castro-Cerritos, K.V.; Yasbin, R.E.; Robleto, E.A.; Pedraza-Reyes, M. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. J. Bacteriol. 2017, 199, e00715-16. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kreutzer, D.A.; Essigmann, J.M. Mutagenicity and Repair of Oxidative DNA Damage: Insights from Studies Using Defined Lesions. Mutat. Res. Mol. Mech. Mutagen. 1998, 400, 99–115. [Google Scholar] [CrossRef]
- Valenzuela-García, L.I.; Ayala-García, V.M.; Regalado-García, A.G.; Setlow, P.; Pedraza-Reyes, M. Transcriptional Coupling (Mfd) and Damage Scanning (DisA) Coordinate Excision Repair Events for Efficient Bacillus subtilis Spore Outgrowth. Microbiol. Open 2018, 7, e00593. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, E.C.; Walker, G.C.; Siede, W.; Wood, R.D.; Schultz, R.A.; Ellenberger, T. DNA Repair and Mutagenesis; ASM Press: Washington, DC, USA, 2005; ISBN 978-1-68367-188-6. [Google Scholar]
- Ignatov, A.V.; Bondarenko, K.A.; Makarova, A.V. Non-Bulky Lesions in Human DNA: The Ways of Formation, Repair, and Replication. Acta Naturae 2017, 9, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.E.; Gómez, G.; Ramírez, N.; Franco, B.; Robleto, E.A.; Pedraza-Reyes, M. 8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in Bacillus subtilis. Antioxidants 2024, 13, 332. [Google Scholar] [CrossRef]
- Nies, D.H. Efflux-Mediated Heavy Metal Resistance in Prokaryotes. FEMS Microbiol. Rev. 2003, 27, 313–339. [Google Scholar] [CrossRef]
- Sato, T.; Kobayashi, Y. The Ars Operon in the Skin Element of Bacillus subtilis Confers Resistance to Arsenate and Arsenite. J. Bacteriol. 1998, 180, 1655–1661. [Google Scholar] [CrossRef]
- Moore, C.M.; Gaballa, A.; Hui, M.; Ye, R.W.; Helmann, J.D. Genetic and Physiological Responses of Bacillus subtilis to Metal Ion Stress. Mol. Microbiol. 2005, 57, 27–40. [Google Scholar] [CrossRef]
- Gaballa, A.; Cao, M.; Helmann, J.D. Two MerR Homologues That Affect Copper Induction of the Bacillus subtilis copZA Operon. Microbiology 2003, 149, 3413–3421. [Google Scholar] [CrossRef]
- LaVoie, S.P.; Mapolelo, D.T.; Cowart, D.M.; Polacco, B.J.; Johnson, M.K.; Scott, R.A.; Miller, S.M.; Summers, A.O. Organic and Inorganic Mercurials Have Distinct Effects on Cellular Thiols, Metal Homeostasis, and Fe-Binding Proteins in Escherichia Coli. JBIC J. Biol. Inorg. Chem. 2015, 20, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in Metal-Induced Oxidative Stress and Human Disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Keyer, K.; Imlay, J.A. Superoxide Accelerates DNA Damage by Elevating Free-Iron Levels. Proc. Natl. Acad. Sci. USA 1996, 93, 13635–13640. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Imlay, J.A. Silver (I), Mercury (II), Cadmium (II), and Zinc (II) Target Exposed Enzymic Iron-Sulfur Clusters When They Toxify Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 3614–3621. [Google Scholar] [CrossRef]
- Jomova, K.; Baros, S.; Valko, M. Redox Active Metal-Induced Oxidative Stress in Biological Systems. Transit. Met. Chem. 2012, 37, 127–134. [Google Scholar] [CrossRef]
- Bsat, N.; Herbig, A.; Casillas-Martinez, L.; Setlow, P.; Helmann, J.D. Bacillus subtilis Contains Multiple Fur Homologues: Identification of the Iron Uptake (Fur) and Peroxide Regulon (PerR) Repressors. Mol. Microbiol. 1998, 29, 189–198. [Google Scholar] [CrossRef]
- Cao, M.; Kobel, P.A.; Morshedi, M.M.; Wu, M.F.W.; Paddon, C.; Helmann, J.D. Defining the Bacillus subtilis σW Regulon: A Comparative Analysis of Promoter Consensus Search, Run-off Transcription/Macroarray Analysis (ROMA), and Transcriptional Profiling Approaches. J. Mol. Biol. 2002, 316, 443–457. [Google Scholar] [CrossRef]
- Zweers, J.C.; Nicolas, P.; Wiegert, T.; Van Dijl, J.M.; Denham, E.L. Definition of the σW Regulon of Bacillus subtilis Contains Multiple Fur Homologues: Identification of the Iron Uptake (Fur) and Peroxide Regulon (PerR) Repressors. in the Absence of Stress. PLoS ONE 2012, 7, e48471. [Google Scholar] [CrossRef]
- Yamada, Y.; Tikhonova, E.B.; Zgurskaya, H.I. YknWXYZ Is an Unusual Four-Component Transporter with a Role in Protection against Sporulation-Delaying-Protein-Induced Killing of Bacillus subtilis Contains Multiple Fur Homologues: Identification of the Iron Uptake (Fur) and Peroxide Regulon (PerR) Repressors. J. Bacteriol. 2012, 194, 4386–4394. [Google Scholar] [CrossRef]
- Willdigg, J.R.; Helmann, J.D. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front. Mol. Biosci. 2021, 8, 634438. [Google Scholar] [CrossRef]
- Huang, X.; Gaballa, A.; Cao, M.; Helmann, J.D. Identification of Target Promoters for the Bacillus subtilis Extracytoplasmic Function Sigma Factor, σW. Mol. Microbiol. 1999, 31, 361–371. [Google Scholar] [CrossRef]
- Devkota, S.R.; Kwon, E.; Ha, S.C.; Chang, H.W.; Kim, D.Y. Structural Insights into the Regulation of Bacillus subtilis SigW Activity by Anti-Sigma RsiW. PLoS ONE 2017, 12, e0174284. [Google Scholar] [CrossRef]
- Ellermeier, C.D.; Losick, R. Evidence for a Novel Protease Governing Regulated Intramembrane Proteolysis and Resistance to Antimicrobial Peptides in Bacillus subtilis. Genes Dev. 2006, 20, 1911–1922. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Wang, Z.; Chen, W.; Wang, H.; Wang, Y.; Liu, B. Resonance assignments of the cytoplasmic domain of ECF sigma factor W pathway protein YsdB from Bacillus subtilis. Biomol NMR Assign. 2021, 15, 103–106. [Google Scholar] [CrossRef]
- Heinrich, J.; Wiegert, T. YpdC Determines Site-1 Degradation in Regulated Intramembrane Proteolysis of the RsiW Anti-sigma Factor of Bacillus subtilis. Mol. Microbiol. 2006, 62, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Parks, J.M.; Smith, J.C. Modeling Mercury in Proteins. Methods Enzymol. 2016, 578, 103–122. [Google Scholar] [CrossRef]
- Manceau, A.; Bourdineaud, J.P.; Oliveira, R.B.; Sarrazin, S.L.F.; Krabbenhoft, D.P.; Eagles-Smith, C.A.; Ackerman, J.T.; Stewart, A.R.; Ward-Deitrich, C.; Del Castillo Busto, M.E.; et al. Demethylation of Methylmercury in Bird, Fish, and Earthworm. Environ. Sci. Technol. 2021, 55, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.A.; Catty, P.; Hazemann, J.L.; Michaud-Soret, I.; Gaillard, J.F. The role of cysteine and sulfide in the interplay between microbial Hg (ii) uptake and sulfur metabolism. Metallomics 2019, 11, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Casillas-Martinez, L.; Setlow, P. Alkyl Hydroperoxide Reductase, Catalase, MrgA, and Superoxide Dismutase Are Not Involved in Resistance of Bacillus subtilis Spores to Heat or Oxidizing Agents. J. Bacteriol. 1997, 179, 7420–7425. [Google Scholar] [CrossRef]
- Perkins, A.E.; Nicholson, W.L. Uncovering New Metabolic Capabilities of Bacillus subtilis Using Phenotype Profiling of Rifampin-Resistant rpoB Mutants. J. Bacteriol. 2008, 190, 807–814. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012; ISBN 978-1-936113-41-5. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Croux, C.; Filzmoser, P.; Oliveira, M.R. Algorithms for Projection–Pursuit Robust Principal Component Analysis. Chemom. Intell. Lab. Syst. 2007, 87, 218–225. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Wang, T.; Bonni, A.; Zhao, G. Robust Principal Component Analysis for Accurate Outlier Sample Detection in RNA-Seq Data. BMC Bioinform. 2020, 21, 269. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Lun, A.T.L.; Baldoni, P.L.; Smyth, G.K. edgeR v4: Powerful Differential Analysis of Sequencing Data with Expanded Functionality and Improved Support for Small Counts and Larger Datasets. Nucleic Acids Res. 2025, 53, gkaf018. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for Large-Scale Genome and Gene Function Analysis with the PANTHER Classification System (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef]
Strain | Mean RifR Mutation Frequency ± SD (RifR Per 109 Cells) − HgCl2 | Mean RifR Mutation Frequency ± SD (RifR Per 109 Cells) + HgCl2 | Relative Frequency |
---|---|---|---|
WT 168 | 7.16 ± 1.52 | 18.8 ± 0.89 | 2.62 |
ΔrecA | 14.26 ± 1.46 | 44.96 ± 2.87 | 3.15 |
ΔsigB | 14.74 ± 2.58 | 26.47 ± 2.55 | 1.79 |
ΔkatAkatB | 14.46 ± 1.56 | 29.46 ± 4.42 | 2.03 |
ΔsodA | 2310.37 ± 250.93 | 4008.2 ± 98.08 | 1.73 |
ΔGO (ΔytkDΔmutMΔyfhQ) | 3575.45 ± 355.144 | 5523.55 ± 426.86 | 1.54 |
Gene | Description | Function |
---|---|---|
tcyC | Cystine ABC transporter (ATP-binding protein) | Cysteine metabolism |
tcyB | Cystine ABC transporter (permease) | |
tcyP | (Sodium)-cystine symporter | |
tcyN | Sulfur-containing amino-acid ABC transporter (ATP-binding protein) | |
tcyM | Sulfur-containing amino acid ABC transporter (permease) | |
tcyL | Sulfur-containing amino acid ABC transporter (permease) | |
tcyK | Sulfur-containing amino acid ABC transporter binding lipoprotein | |
tcyJ | Sulfur containing amino acid ABC transporter binding lipoprotein | |
nrdI | Cofactor of ribonucleotide diphosphate reductase | Deoxyribonucleotide synthesis |
nrdE | Ribonucleoside-diphosphate reductase (major subunit) | |
nrdF | Ribonucleoside-diphosphate reductase (minor subunit) | |
ymaB | Putative cofactor involved in deoxyribonucleotide synthesis | |
ydgK | Putative efflux transporter | Membrane transport efflux |
copA | Copper transporter ATPase | |
arsC | Thioredoxin-coupled arsenate reductase; skin element | Arsenic resistance |
arsB | Arsenite efflux transporter; skin element | Arsenic resistance/transport efflux |
yrkH | Putative sulfur transferase/hydrolase | Biosynthesis of sulfur-containing compounds |
yrkF | Putative rhodanese-related sulfur transferase | |
yrkE | Putative protein involved in sulfur metabolism (DsrE-like) | |
ytnM | Putative transporter | Utilization of alternative sulfur sources |
Gene | Description | Function |
---|---|---|
feuV | Iron(III)-siderophore transporter (ATP binding component) | Iron metabolism |
feuC | Iron-uptake protein | |
ffoR | Fur-regulated NADPH: ferredoxin oxidoreductase | |
hmoA | Heme-degrading monooxygenase | |
sxzA | Xenosiderophore schizokinen (dihydroxamate) transporter (permease) | |
nifS | Desulfurase involved in iron-sulfur clusters for NAD biosynthesis | |
efeB | Peroxidase converting ferric iron into ferrous iron | |
efeM | Lipoprotein binding ferrous or ferric iron for transport | |
frxB | Desferrioxamine-and ferrichrome-binding transporter lipoprotein (shuttle system) | |
pbtO | Petrobactin iron-siderophore ABC transporter (permease) | Petrobactin transport |
pbtP | Petrobactin iron-siderophore ABC transporter (ATP-binding protein) | Petrobactin uptake |
pbtQ | Petrobactin iron-siderophore ABC transporter (binding lipoprotein) | |
fhuC | Ferrichrome ABC transporter (ATP-binding protein) | |
fhuG | Ferrichrome ABC transporter (permease) | Iron compound uptake |
yvaC | Putative integral inner membrane protein | Small multidrug resistance |
yvaD | Putative integral inner membrane protein | |
yvaE | Putative metabolite-efflux transporter | |
yvaF | Putative transcriptional regulator | |
yjoB | Informational ATPase possibly involved in protein degradation | Protein metabolism |
aeeB | L-Ala-D/L-Glu epimerase | |
fldN | Short-chain flavodoxin (acts in lipid desaturation) | Membrane lipid metabolism |
fldP | Short-chain flavodoxin | |
desE | Fatty acid desaturase | |
psmA | Sodium/proton antiporter subunit A | Membrane transport |
psmB | Sodium-proton two component antiporter subunit | |
dhbB | Isochorismatase (siderophore specific) | Bacillibactin synthesis |
dhbE | 2,3-dihydroxybenzoate-AMP ligase | |
dhbC | Isochorismate synthase (siderophore-specific) | |
dhbA | 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase | |
besA | Bacillibactin trilactone hydrolase | |
eesA | Iron-chelator (enterobactin family) esterase | |
btr | Transcriptional activator (AraC/XylS family) of synthesis and uptake of the siderophore bacillibactin | |
ahpC | Alkyl hydroperoxide reductase (small subunit) | Response to exogenous H2O2-induced stress |
Gene | Description | Function |
---|---|---|
yceC | Putative stress adaptation protein (tellurite resistance) | Tellurite resistance and response to ethanol-induced stress |
yceD | Putative stress adaptation protein (tellurite resistance) | |
yceE | Putative stress adaptation protein (tellurite resistance) | |
yceF | Putative stress adaptation transporter (tellurite resistance) | |
yceG | Putative toxic compound adaptation protein (tellurite resistance) | |
yceH | Putative reactive oxygen species resistance protein | |
ydbS | Resistance to heterologous antibiotics | Response to antibiotic-induced stress |
ydbT | Resistance to heterologous antibiotics | |
fosB | Magnesium-dependent bacillithiol-transferase (fosfomicin resistance) | |
liaH | Modulator of liaIHGFSR (yvqIHGFEC) operon expression | |
liaI | Membrane anchor for the phage-shock protein A homolog LiaH | |
pbpE | Penicillin-binding protein 4 | |
yvdT | Putative transcriptional regulator (TetR/AcrR family) | |
yvdQ | Conserved protein of unknown function | |
pspA | Phage shock protein A homolog regulator; prophage region 3 | Response to phage-induced stress |
ydjG | Putative phage replication protein; prophage region 3 | |
ydjH | Conserved hypothetical protein; prophage region 3 | |
ydjI | Putative phage protein | |
ydjJ | Putative membrane associated potassium channel; prophage region 3 | |
ydjP | Putative aminoacrylate hydrolase | |
yvlD | Putative integral phage holin-like membrane protein | |
yvlC | Membrane associated phage-like stress regulator, nisin resistance | |
yvlB | Conserved protein of unknown function, stress-related | |
yvlA | Conserved protein of unknown function | |
yeaA | Conserved hypothetical protein | Response to cell envelope stress |
spo0M | Protein involved in the control of the cell cycle as a function of the environment | |
floA | Flotillin-like protein involved in membrane lipid rafts | |
skiW | Subunit of permease exporting the starvation-induced killing protein | Starvation induced killing |
skiX | Subunit of efflux permease exporting the starvation-induced killing protein | |
skiY | Subunit of efflux permease exporting the starvation-induced killing protein (ATP-binding protein) | |
skiZ | Permease subunit exporting Sporulation-Delaying Protein | |
yteJ | Putative integral inner membrane protein | Membrane transport |
ythQ | Putative ABC transporter (permease) |
Strain | Genotype | Mutated Gene(s) and Function | Source/Reference |
---|---|---|---|
B. subtilis | |||
WT 168 PERM311 | trpC2 | Non-mutant parental strain | Lab. Stock Dr. Mario Pedraza Reyes |
PERM741 (ΔrecA) | trpC2ΔrecA::cat CmR | RecA protein, controls the SOS-transcriptional response which is triggered by DNA-damaging agents | Lab. Stock Dr. Mario Pedraza Reyes |
PERM342 (ΔsigB) | trpC2ΔsigB::cat CmR | Sigma B transcriptional factor, controls the general stress regulon | Lab. Stock Dr. Mario Pedraza Reyes |
PERM1245 (∆katAkatB) | trpC2ΔkatAkatB::cat CmR EriR | KatA and KatB catalases, antioxidant enzymes that catalyze decomposition of hydrogen peroxide (H2O2) into H2O and oxygen (O2) | Lab. Stock Dr. Mario Pedraza Reyes |
PERM434 (∆sodA) | trpC2ΔsodA::cat CmR | SodA superoxide dismutase, antioxidant enzyme which catalyzes dismutation of superoxide (O−2) anion radical into molecular oxygen (O2) and hydrogen peroxide (H2O2). | [50] (Casillas-Martínez & Setlow, 1997) |
PERM1136 (∆ytkD∆mutM∆yfhQ) | trpC2 ∆ytkD::neo ∆mutM::tet ∆yfhQ::eri NeoRTcREriR | DNA glycosylases MutM and YfhQ (E. coli MutY homologus), components of the base excision repair pathway. 8-oxo-dGTPase YtkD (E. coli MutT homologous) hydrolyzes triphosphate 8-oxo-dGTP. These three proteins are referred to as the oxidized guanine (GO) system | Lab. Stock Dr. Mario Pedraza Reyes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ortega, L.F.; Quiroz-Serrano, I.N.; Guzmán-Moreno, J.; Pedraza-Reyes, M.; Ramírez-Santoyo, R.M.; Vidales-Rodríguez, L.E. Bacillus subtilis Response to Mercury Toxicity: A Defense Mediated by Sulphur-Rich Molecules and Oxidative Prevention Systems. Int. J. Mol. Sci. 2025, 26, 10179. https://doi.org/10.3390/ijms262010179
García-Ortega LF, Quiroz-Serrano IN, Guzmán-Moreno J, Pedraza-Reyes M, Ramírez-Santoyo RM, Vidales-Rodríguez LE. Bacillus subtilis Response to Mercury Toxicity: A Defense Mediated by Sulphur-Rich Molecules and Oxidative Prevention Systems. International Journal of Molecular Sciences. 2025; 26(20):10179. https://doi.org/10.3390/ijms262010179
Chicago/Turabian StyleGarcía-Ortega, Luis Fernando, Iliana Noemí Quiroz-Serrano, Jesús Guzmán-Moreno, Mario Pedraza-Reyes, Rosa María Ramírez-Santoyo, and Luz Elena Vidales-Rodríguez. 2025. "Bacillus subtilis Response to Mercury Toxicity: A Defense Mediated by Sulphur-Rich Molecules and Oxidative Prevention Systems" International Journal of Molecular Sciences 26, no. 20: 10179. https://doi.org/10.3390/ijms262010179
APA StyleGarcía-Ortega, L. F., Quiroz-Serrano, I. N., Guzmán-Moreno, J., Pedraza-Reyes, M., Ramírez-Santoyo, R. M., & Vidales-Rodríguez, L. E. (2025). Bacillus subtilis Response to Mercury Toxicity: A Defense Mediated by Sulphur-Rich Molecules and Oxidative Prevention Systems. International Journal of Molecular Sciences, 26(20), 10179. https://doi.org/10.3390/ijms262010179