Lipid-Driven Immunometabolism in Mesenchymal Stromal Cells: A New Axis for Musculoskeletal Regeneration
Abstract
1. Introduction
2. Metabolic Demands in Skeletal Tissues
3. MSC Plasticity in Musculoskeletal Disease: Cellular Reprogramming Underlying Immunomodulatory Functions
4. Lipid Immunometabolism of MSC in Musculoskeletal Health
4.1. MSC Secretome, Lipidome and Bioactive Lipid Mediators in Regeneration
4.2. Key Lipid-Sensing Receptors in MSCs
4.2.1. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)
4.2.2. GPR120-Free FA Receptor 4
4.2.3. Toll-like Receptor 4 (TLR4)
5. Key Themes and Trends
5.1. Technological Innovations
5.2. Organoids, Organ-on-Chip, and Metabolic Precision
5.3. Combination Therapies: Lipids Meet Biomaterials and Extracellular Vesicles (EVs)
5.4. An Emerging Vision: Personalized Regeneration
6. Clinical Applications and Translational Perspectives
6.1. Translational Hurdles
6.2. Key Requirements for Clinical Translation
6.3. Vision of the Orthopedic Future: Towards Lipid-Guided Immunometabolism and Regenerative Therapies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| A2A/A2B | Adenosine A2A/A2B receptor |
| AA | Arachidonic acid |
| ADAMTS | A disintegrin and metalloproteinase with thrombospondin motifs |
| AMPK | Adenosine monophosphate-activated protein kinase |
| ATP | Adenosine triphosphate |
| BADGE | Bisphenol A diglycidyl ether |
| BNIP3/NIX | B-cell lymphoma 2 (BCL2) adenovirus E1B 19 kDa protein-interacting protein 3/BNIP3-like protein (BNIP3L) |
| BMP | Bone morphogenetic protein |
| CD36 | CD36 scavenger receptor (fatty-acid translocase) |
| CD39/CD73 | Ectonucleoside triphosphate diphosphohydrolase-1/5′-ectonucleotidase (adenosinergic axis) |
| CEPI | Coalition for Epidemic Preparedness Innovations |
| CIRM | California Institute for Regenerative Medicine |
| CO2 | Carbon dioxide |
| COX-2 | Cyclooxygenase-2 |
| CXCL | C-X-C motif chemokine ligand |
| DAMP | Damage-associated molecular patterns |
| DHA | Docosahexaenoic acid |
| DKK1 | Dickkopf-related protein 1 |
| DRP1 | Dynamin-related protein 1 |
| dsRNA | Double-stranded RNA |
| ECM | Extracellular matrix |
| EMA | European medicine agency |
| EPA | Eicosapentaenoic acid |
| ERK | Extracellular signal-regulated kinases |
| EIT Health | European Institute of Innovation & Technology Health |
| EVs | Extracellular vesicles |
| FA | Fatty acid |
| FAO | Fatty acid oxidation |
| FDA | U.S. Food and Drug Administration |
| G-CSF | Granulocyte colony-stimulating factor |
| GLUT1 | Glucose transporter 1 |
| GPR120 | G-protein–coupled receptors120 (free FA receptor 4) |
| GPRs | G-protein–coupled receptors |
| HIF | Hypoxia-inducible factor |
| HK2 | Hexokinase 2 |
| HLA-G | Human leukocyte antigen G |
| HMGB1 | High-mobility group box 1 |
| HSP | Heat shock protein(s) |
| H+ | Hydrogen ion |
| IDO | Indoleamine 2,3-dioxygenase |
| IFN-γ | Interferon-gamma |
| IL | Interleukin |
| ISCT | International Society for Cell & Gene Therapy |
| JAK–STAT | Janus kinase/signal transducer and activator of transcription pathway |
| LDHA | Lactate dehydrogenase A |
| LPS | Lipopolysaccharide |
| LRP | Low-density lipoprotein receptor-related protein |
| LTB4 | Leukotriene B4 |
| LXA4 | Lipoxin A4 |
| M1 | Classically activated (pro-inflammatory) macrophage phenotype |
| M2 | Alternatively activated (anti-inflammatory) macrophage phenotype |
| MAPK | Mitogen-activated protein kinase |
| MaR | Maresins |
| MaR1 | Maresin 1 |
| MCT4 | Monocarboxylate transporter 4 |
| MMP | Matrix metalloproteinase |
| MSC | Mesenchymal stromal cells |
| NAD+/NADH | Nicotinamide adenine dinucleotide (oxidized/reduced) |
| NETosis | Neutrophil extracellular trap–mediated cell death |
| NF-κB | Nuclear Factor kappa-B |
| NIH | National Institutes of Health |
| OA | Osteoarthritis |
| OP | Osteoporosis |
| OPG | Osteoprotegerin |
| OXPHOS | Oxidative phosphorylation |
| P2X | Purinergic P2X receptor (ligand-gated ion channel) |
| P2Y | Purinergic P2Y receptor (G-protein–coupled receptor) |
| PAMP | Pathogen-associated molecular patterns |
| PFKFB3 | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 |
| PGC -1α | Peroxisome proliferator-activated receptor-γ coactivator-1 alpha |
| PGE2 | Prostaglandin E2 |
| PI3K/AKT | Phosphoinositide 3-kinase/protein kinase B pathway |
| PINK1 | Phosphatase and TENsin homolog (PTEN)-induced kinase 1 |
| PDK1 | Pyruvate dehydrogenase kinase 1 |
| PD-L1 | Programmed death-ligand 1 |
| PPAR | Peroxisome proliferator-activated receptor |
| PTOA | Post-traumatic osteoarthritis |
| PUFAs | Polyunsaturated fatty acids |
| RAGE | Receptor for advanced glycation end products |
| PANKL | Receptor activator of nuclear factor κB ligand |
| ROS | Reactive oxygen species |
| RvD | Resolvins |
| RvD1 | Resolvin D1 |
| RvE1 | Resolvin E1 |
| S100A8/A9 | Calprotectin (S100 calcium-binding protein A8/A9) |
| SASP | Senescence-associated secretory phenotype |
| SFRPs | Secreted frizzled-related proteins |
| SIRT | Sirtuin |
| SMAD | Mothers against decapentaplegic homolog (SMAD) signaling proteins |
| SOST | Sclerostin |
| SOX9 | Sex-determining region Y(SRY)-box transcription factor 9 |
| SPMs | Specialized pro-resolving mediators |
| TGF-β | Transforming growth factor-beta |
| Th | Helper T cells |
| TNF-α | Tumor necrosis factor alpha |
| TSG-6 | Tumor necrosis factor-stimulated gene-6 |
| TLR | Toll-like receptor |
| Treg | Regulatory T cells |
| VEGF | Vascular endothelial growth factor |
| Wnt | Wingless/Integrated |
References
- Su, R.; Shao, Y.; Huang, M.; Liu, D.; Yu, H.; Qiu, Y. Immunometabolism in cancer: Basic mechanisms and new targeting strategy. Cell Death Discov. 2024, 10, 236. [Google Scholar] [CrossRef] [PubMed]
- DeBerge, M.; Chaudhary, R.; Schroth, S.; Thorp, E.B. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Transl. Sci. 2023, 8, 884–904. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur. J. Clin. Nutr. 2023, 77, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 2018, 128, 2657–2669. [Google Scholar] [CrossRef]
- Bodur, M.; Yilmaz, B.; Ağagündüz, D.; Ozogul, Y. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol. Nutr. Food Res. 2025, 69, e202400752. [Google Scholar] [CrossRef]
- Gilroy, D.W. Resolving inflammation. Nat. Rev. Immunol. 2021, 21, 620–621. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arter. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Berebichez-Fridman, R.; Gómez-García, R.; Granados-Montiel, J.; Berebichez-Fastlicht, E.; Olivos-Meza, A.; Granados, J.; Velasquillo, C.; Ibarra, C. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications. Stem Cells Int. 2017, 2017, 2638305. [Google Scholar] [CrossRef]
- Malige, A.; Gates, C.; Cook, J.L. Mesenchymal stem cells in orthopaedics: A systematic review of applications to practice. J. Orthop. 2024, 58, 1–9. [Google Scholar] [CrossRef]
- Trapana, J.; Weinerman, J.; Lee, D.; Sedani, A.; Constantinescu, D.; Best, T.M.; Hornicek, F.J., Jr.; Hare, J.M. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl. Med. 2024, 13, 959–978. [Google Scholar] [CrossRef]
- Brozovich, A.; Sinicrope, B.J.; Bauza, G.; Banche-Niclot, F.; Lintner, D.; Taraballi, F.; McCulloch, P.C. High Variability of Mesenchymal Stem Cells Obtained via Bone Marrow Aspirate Concentrate Compared With Traditional Bone Marrow Aspiration Technique. Orthop. J. Sports Med. 2021, 9, 23259671211058459. [Google Scholar] [CrossRef] [PubMed]
- Taraballi, F.; Pastò, A.; Bauza, G.; Varner, C.; Amadori, A.; Tasciotti, E. Immunomodulatory potential of mesenchymal stem cell role in diseases and therapies: A bioengineering prospective. J. Immunol. Regen. Med. 2019, 4, 100017. [Google Scholar] [CrossRef]
- Paradiso, F.; Lenna, S.; Isbell, R.; Garcia Garza, M.F.; Williams, M.; Varner, C.; McCulloch, P.C.; Taraballi, F. Immunosuppressive potential evaluation of synovial fluid mesenchymal stem cells grown on 3D scaffolds as an alternative source of MSCs for osteoarthritis cartilage studies. Front. Biomater. Sci. 2022, 1, 989708. [Google Scholar] [CrossRef]
- Bauza, G.; Pasto, A.; McCulloch, P.; Lintner, D.; Brozovich, A.; Banche-Niclot, F.; Khan, I.; Francis, L.W.; Tasciotti, E.; Taraballi, F. Improving the immunosuppressive potential of articular chondroprogenitors in a three-dimensional culture setting. Sci. Rep. 2020, 10, 16610. [Google Scholar] [CrossRef]
- Lenna, S.; Brozovich, A.; Hirase, T.; Paradiso, F.; Weiner, B.K.; Taraballi, F. Comparison Between Cancellous Trabecular and Cortical Specimens from Human Lumbar Spine Samples as an Alternative Source of Mesenchymal Stromal Cells. Stem Cells Dev. 2022, 31, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.E.; Banche Niclot, F.; Rota, S.; Lim, J.; Machado, J.; de Azevedo, R.; Castillo, K.; Adebiyi, S.; Sreenivasan, R.; Kota, D.; et al. Optimizing mesenchymal stem cell therapy: From isolation to GMP-compliant expansion for clinical application. BMC Mol. Cell Biol. 2025, 26, 15. [Google Scholar] [CrossRef]
- Karner, C.M.; Long, F. Glucose metabolism in bone. Bone 2018, 115, 2–7. [Google Scholar] [CrossRef]
- Lee, W.C.; Guntur, A.R.; Long, F.; Rosen, C.J. Energy Metabolism of the Osteoblast: Implications for Osteoporosis. Endocr. Rev. 2017, 38, 255–266. [Google Scholar] [CrossRef]
- Chen, J.; Tu, X.; Esen, E.; Joeng, K.S.; Lin, C.; Arbeit, J.M.; Rüegg, M.A.; Hall, M.N.; Ma, L.; Long, F. WNT7B promotes bone formation in part through mTORC1. PLoS Genet. 2014, 10, e1004145. [Google Scholar] [CrossRef]
- Esen, E.; Long, F. Aerobic glycolysis in osteoblasts. Curr. Osteoporos. Rep. 2014, 12, 433–438. [Google Scholar] [CrossRef]
- Rached, M.T.; Kode, A.; Silva, B.C.; Jung, D.Y.; Gray, S.; Ong, H.; Paik, J.H.; DePinho, R.A.; Kim, J.K.; Karsenty, G.; et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J. Clin. Invest. 2010, 120, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Chang, J.; Shao, L.; Han, L.; Iyer, S.; Manolagas, S.C.; O’Brien, C.A.; Jilka, R.L.; Zhou, D.; Almeida, M. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 2017, 16, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Lemma, S.; Sboarina, M.; Porporato, P.E.; Zini, N.; Sonveaux, P.; Di Pompo, G.; Baldini, N.; Avnet, S. Energy metabolism in osteoclast formation and activity. Int. J. Biochem. Cell Biol. 2016, 79, 168–180. [Google Scholar] [CrossRef]
- Ishii, K.; Fumoto, T.; Iwai, K.; Takeshita, S.; Ito, M.; Shimohata, N.; Aburatani, H.; Taketani, S.; Lelliott, C.J.; Vidal-Puig, A.; et al. Coordination of PGC-1β and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat. Med. 2009, 15, 259–266. [Google Scholar] [CrossRef]
- Park-Min, K.H.; Lim, E.; Lee, M.J.; Park, S.H.; Giannopoulou, E.; Yarilina, A.; van der Meulen, M.; Zhao, B.; Smithers, N.; Witherington, J.; et al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat. Commun. 2014, 5, 5418. [Google Scholar] [CrossRef]
- You, L.; Temiyasathit, S.; Lee, P.; Kim, C.H.; Tummala, P.; Yao, W.; Kingery, W.; Malone, A.M.; Kwon, R.Y.; Jacobs, C.R. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 2008, 42, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Shum, L.C.; White, N.S.; Mills, B.N.; Bentley, K.L.; Eliseev, R.A. Energy Metabolism in Mesenchymal Stem Cells During Osteogenic Differentiation. Stem Cells Dev. 2016, 25, 114–122. [Google Scholar] [CrossRef]
- Saito, M.; Marumo, K. Bone quality in diabetes. Front. Endocrinol 2013, 4, 72. [Google Scholar]
- Mobasheri, A.; Platt, N.; Thorpe, C.; Shakibaei, M. Regulation of 2-deoxy-D-glucose transport, lactate metabolism, and MMP-2 secretion by the hypoxia mimetic cobalt chloride in articular chondrocytes. Ann. N. Y. Acad. Sci. 2006, 1091, 83–93. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.; Liang, Y.; Wang, D.; Zhang, H. Focusing on the hypoxia-inducible factor pathway: Role, regulation, and therapy for osteoarthritis. Eur. J. Med. Res. 2022, 27, 288. [Google Scholar] [CrossRef]
- Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471–478. [Google Scholar] [CrossRef]
- Loeser, R.F. Aging and osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 492–496. [Google Scholar] [CrossRef]
- Van der Kraan, P.M.; Van den Berg, W.B. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 2012, 20, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Kim, J.; Ryu, J.H.; Oh, H.; Chun, C.H.; Kim, B.J.; Min, B.H.; Chun, J.S. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 2010, 16, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Arra, M.; Abu-Amer, Y. Cross-talk of inflammation and chondrocyte intracellular metabolism in osteoarthritis. Osteoarthr. Cartil. 2023, 31, 1012–1021. [Google Scholar] [CrossRef]
- Goldring, S.R.; Goldring, M.B. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res. 2004, 427, S27–S36. [Google Scholar] [CrossRef]
- Henrotin, Y.; Pesesse, L.; Sanchez, C. Subchondral bone and osteoarthritis: Biological and cellular aspects. Osteoporos. Int. 2012, 23 (Suppl. S8), 847–851. [Google Scholar] [CrossRef]
- Klein, T.J.; Malda, J.; Sah, R.L.; Hutmacher, D.W. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. Part B Rev. 2009, 15, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Amsar, R.M.; Wijaya, C.H.; Ana, I.D.; Hidajah, A.C.; Notobroto, H.B.; Kencana Wungu, T.D.; Barlian, A. Extracellular vesicles: A promising cell-free therapy for cartilage repair. Future Sci. OA 2022, 8, FSO774. [Google Scholar]
- Zhou, J.; Shi, Y. Mesenchymal stem/stromal cells (MSCs): Origin, immune regulation, and clinical applications. Cell. Mol. Immunol. 2023, 20, 555–557. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 2022, 18, 258–275. [Google Scholar] [CrossRef]
- Alivernini, S.; Firestein, G.S.; McInnes, I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022, 55, 2255–2270. [Google Scholar] [CrossRef]
- Huang, K.; Cai, H. The interplay between osteoarthritis and osteoporosis: Mechanisms, implications, and treatment considerations—A narrative review. Exp. Gerontol. 2024, 197, 112614. [Google Scholar] [CrossRef]
- Cuesta-Gomez, N.; Graham, G.J.; Campbell, J.D.M. Chemokines and their receptors: Predictors of the therapeutic potential of mesenchymal stromal cells. J. Transl. Med. 2021, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef]
- Ajona, D.; Ortiz-Espinosa, S.; Pio, R. Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Semin. Cell Dev. Biol. 2019, 85, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Miras-Portugal, M.T.; Marin Garcia, P.; Carrasquero, L.M.G.; Delicado, E.; Diaz-Hernandez, M.; Díaz-Hernandéz, J.; Diez-Zaera, M.; Fideu, M.D.; Gomez-Villafuertes, R.; Sánchez-Nogueiro, J.; et al. Physiological role of extracellular nucleotides at the central nervous system: Signalling through P2X and P2Y receptors. An. De La Real Acad. Nac. De Farm. 2007, 73, 1127–1157. [Google Scholar]
- Schmid, T.; Brüne, B. Prostanoids and Resolution of Inflammation—Beyond the Lipid-Mediator Class Switch. Front. Immunol. 2021, 12, 714042. [Google Scholar] [CrossRef] [PubMed]
- Rapp, A.E.; Zaucke, F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am. J. Physiol.-Cell Physiol. 2023, 324, C377–C394. [Google Scholar] [CrossRef] [PubMed]
- Gaber, T.; Strehl, C.; Buttgereit, F. Metabolic regulation of inflammation. Nat. Rev. Rheumatol. 2017, 13, 267–279. [Google Scholar] [CrossRef]
- Taheem, D.K.; Foyt, D.A.; Loaiza, S.; Ferreira, S.A.; Ilic, D.; Auner, H.W.; Grigoriadis, A.E.; Jell, G.; Gentleman, E. Differential Regulation of Human Bone Marrow Mesenchymal Stromal Cell Chondrogenesis by Hypoxia Inducible Factor-1α Hydroxylase Inhibitors. Stem Cells 2018, 36, 1380–1392. [Google Scholar] [CrossRef]
- Kierans, S.J.; Taylor, C.T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J. Physiol. 2021, 599, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.-Y.; Jung, J.K.; Kim, M.-Y.; Woo, S.R.; Jeong, J.M.; Park, E.R.; Kim, Y.M.; Park, J.J.; Kim, J.; Yun, M.; et al. NADH elevation during chronic hypoxia leads to VHL-mediated HIF-1α degradation via SIRT1 inhibition. Cell Biosci. 2023, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Long, H.; Hou, L.; Feng, B.; Ma, Z.; Wu, Y.; Zeng, Y.; Cai, J.; Zhang, D.W.; Zhao, G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 304. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; McIntyre, D.; Honess, D.; Hulikova, A.; Pacheco-Torres, J.; Cerdán, S.; Swietach, P.; Harris, A.L.; Griffiths, J.R. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br. J. Cancer 2018, 119, 622–630. [Google Scholar] [CrossRef]
- Wang, C.; Taylor, M.J.; Stafford, C.D.; Dang, D.S.; Matarneh, S.K.; Gerrard, D.E.; Tan, J. Analysis of phosphofructokinase-1 activity as affected by pH and ATP concentration. Sci. Rep. 2024, 14, 21192. [Google Scholar] [CrossRef]
- Jubrias, S.A.; Crowther, G.J.; Shankland, E.G.; Gronka, R.K.; Conley, K.E. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J. Physiol. 2003, 553 Pt 2, 589–599. [Google Scholar] [CrossRef]
- Xia, C.; Yin, S.; To, K.K.W.; Fu, L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol. Cancer 2023, 22, 44. [Google Scholar] [CrossRef]
- Rai, V.; Mathews, G.; Agrawal, D.K. Translational and Clinical Significance of DAMPs, PAMPs, and PRRs in Trauma-induced Inflammation. Arch. Clin. Biomed. Res. 2022, 6, 673–685. [Google Scholar] [CrossRef]
- Banche-Niclot, F.; Lim, J.; McCulloch, P.; Corradetti, B.; Taraballi, F. Mesenchymal Stromal Cell Immunomodulatory Potential for Orthopedic Applications can be fine-tuned via 3D nano-engineered Scaffolds. Curr. Stem Cell Rep. 2024, 10, 65–76. [Google Scholar] [CrossRef]
- Chang, C.; Yan, J.; Yao, Z.; Zhang, C.; Li, X.; Mao, H.Q. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv. Heal. Mater. 2021, 10, e2001689. [Google Scholar]
- Fontaine, M.J.; Shih, H.; Schäfer, R.; Pittenger, M.F. Unraveling the Mesenchymal Stromal Cells’ Paracrine Immunomodulatory Effects. Transfus. Med. Rev. 2016, 30, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Vorobjeva, N.V.; Chernyak, B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry 2020, 85, 1178–1190. [Google Scholar] [PubMed]
- Miron, R.J.; Bosshardt, D.D. OsteoMacs: Key players around bone biomaterials. Biomaterials 2016, 82, 1–19. [Google Scholar] [CrossRef]
- Weitzmann, M.N. The Role of Inflammatory Cytokines, the RANKL/OPG Axis, and the Immunoskeletal Interface in Physiological Bone Turnover and Osteoporosis. Scientifica 2013, 2013, 125705. [Google Scholar] [CrossRef]
- Walsh, M.C.; Choi, Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front. Immunol. 2014, 5, 511. [Google Scholar]
- Cheng, J.; Li, M.; Bai, R. The Wnt signaling cascade in the pathogenesis of osteoarthritis and related promising treatment strategies. Front. Physiol. 2022, 13, 954454. [Google Scholar] [CrossRef]
- Chae, W.J.; Bothwell, A.L.M. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol. 2018, 39, 830–847. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, J.; Gu, Z.; Zhang, J.; Chen, Y.; Liu, X. Mesenchymal stromal cell therapies: Immunomodulatory properties and clinical progress. Stem Cell Res. Ther. 2020, 11, 345. [Google Scholar] [CrossRef]
- Valencia, J.; Yáñez, R.M.; Muntión, S.; Fernández-García, M.; Martín-Rufino, J.D.; Zapata, A.G.; Bueren, J.A.; Vicente, Á.; Sánchez-Guijo, F. Improving the therapeutic profile of MSCs: Cytokine priming reduces donor-dependent heterogeneity and enhances their immunomodulatory capacity. Front. Immunol. 2025, 16, 1473788. [Google Scholar] [CrossRef]
- Lin, T.; Pajarinen, J.; Nabeshima, A.; Lu, L.; Nathan, K.; Jämsen, E.; Yao, Z.; Goodman, S.B. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res. Ther. 2017, 8, 277. [Google Scholar] [CrossRef]
- Bartosh, T.J.; Ylöstalo, J.H.; Mohammadipoor, A.; Bazhanov, N.; Coble, K.; Claypool, K.; Lee, R.H.; Choi, H.; Prockop, D.J. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. USA 2010, 107, 13724–13729. [Google Scholar]
- Ylostalo, J.H.; Bartosh, T.J.; Tiblow, A.; Prockop, D.J. Unique characteristics of human mesenchymal stromal/progenitor cells pre-activated in 3-dimensional cultures under different conditions. Cytotherapy 2014, 16, 1486–1500. [Google Scholar] [CrossRef]
- Kouroupis, D.; Correa, D. Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Front. Bioeng. Biotechnol. 2021, 9, 621748. [Google Scholar] [CrossRef]
- Taraballi, F.; Sushnitha, M.; Tsao, C.; Bauza, G.; Liverani, C.; Shi, A.; Tasciotti, E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Adv. Healthc. Mater. 2018, 7, 1800490. [Google Scholar] [CrossRef]
- Banche-Niclot, F.; Montalbano, G.; Fiorilli, S.; Vitale-Brovarone, C. PEG-Coated Large Mesoporous Silicas as Smart Platform for Protein Delivery and Their Use in a Collagen-Based Formulation for 3D Printing. Int. J. Mol. Sci. 2021, 22, 1718. [Google Scholar] [CrossRef]
- Xie, Y.; Hu, C.; Feng, Y.; Li, D.; Ai, T.; Huang, Y.; Chen, X.; Huang, L.; Tan, J. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen. Biomater. 2020, 7, 233–245. [Google Scholar] [CrossRef]
- Taraballi, F.; Bauza, G.; McCulloch, P.; Harris, J.; Tasciotti, E. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue. Stem Cells Transl. Med. 2017, 6, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
- Bauza-Mayol, G.; Quintela, M.; Brozovich, A.; Hopson, M.; Shaikh, S.; Cabrera, F.; Shi, A.; Banche-Niclot, F.; Paradiso, F.; Combellack, E.; et al. Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo. Adv. Healthc. Mater. 2022, 11, e2101127. [Google Scholar] [CrossRef] [PubMed]
- Corradetti, B.; Taraballi, F.; Minardi, S.; Van Eps, J.; Cabrera, F.; Francis, L.W.; Gazze, S.A.; Ferrari, M.; Weiner, B.K.; Tasciotti, E. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Stem Cells Transl. Med. 2016, 5, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Corradetti, B.; Taraballi, F.; Giretti, I.; Bauza, G.; Pistillo, R.S.; Banche Niclot, F.; Pandolfi, L.; Demarchi, D.; Tasciotti, E. Corrigendum: Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes. Front. Bioeng. Biotechnol. 2017, 5, 54, Correction in Front. Bioeng. Biotechnol. 2018, 5, 86. [Google Scholar] [CrossRef]
- Minardi, S.; Corradetti, B.; Taraballi, F.; Sandri, M.; Van Eps, J.; Cabrera, F.J.; Weiner, B.K.; Tampieri, A.; Tasciotti, E. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 2015, 62, 128–137. [Google Scholar] [CrossRef]
- Taraballi, F.; Corradetti, B.; Minardi, S.; Powel, S.; Cabrera, F.; Van Eps, J.L.; Weiner, B.K.; Tasciotti, E. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages. J. Tissue Eng. 2016, 7, 2041731415624667. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dai, H.; Li, J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J. Adv. Res. 2023, 45, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Casati, S.; Giannasi, C.; Niada, S.; Bergamaschi, R.F.; Orioli, M.; Brini, A.T. Bioactive Lipids in MSCs Biology: State of the Art and Role in Inflammation. Int. J. Mol. Sci. 2021, 22, 1481. [Google Scholar] [CrossRef]
- Clémot, M.; Sênos Demarco, R.; Jones, D.L. Lipid Mediated Regulation of Adult Stem Cell Behavior. Front. Cell Dev. Biol. 2020, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Lochner, M.; Berod, L.; Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015, 36, 81–91. [Google Scholar] [CrossRef]
- Yan, J.; Horng, T. Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol. 2020, 30, 979–989. [Google Scholar] [CrossRef]
- Campos, A.M.; Maciel, E.; Moreira, A.S.; Sousa, B.; Melo, T.; Domingues, P.; Curado, L.; Antunes, B.; Domingues, M.R.; Santos, F. Lipidomics of Mesenchymal Stromal Cells: Understanding the Adaptation of Phospholipid Profile in Response to Pro-Inflammatory Cytokines. J. Cell Physiol. 2016, 231, 1024–1032. [Google Scholar] [CrossRef]
- Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clin. Immunol. 2006, 119, 229–240. [Google Scholar] [CrossRef]
- Romano, M.; Patruno, S.; Pomilio, A.; Recchiuti, A. Proresolving Lipid Mediators and Receptors in Stem Cell Biology: Concise Review. Stem Cells Transl. Med. 2019, 8, 992–998. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Dalli, J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin. Immunol. 2015, 27, 200–215. [Google Scholar] [CrossRef]
- Haworth, O.; Cernadas, M.; Yang, R.; Serhan, C.N. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat. Immunol. 2008, 9, 873–879. [Google Scholar] [CrossRef]
- El Kholy, K.; Freire, M.; Chen, T.; Van Dyke, T.E. Resolvin E1 Promotes Bone Preservation Under Inflammatory Conditions. Front. Immunol. 2018, 9, 1300. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.G.; Fagundes, C.T.; Amaral, F.A.; Cisalpino, D.; Sousa, L.P.; Vieira, A.T.; Pinho, V.; Nicoli, J.R.; Vieira, L.Q.; Fierro, I.M.; et al. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. J. Immunol. 2007, 179, 8533–8543. [Google Scholar] [CrossRef] [PubMed]
- Nishi, A.; Ohbuchi, K.; Kaifuchi, N.; Shimobori, C.; Kushida, H.; Yamamoto, M.; Kita, Y.; Tokuoka, S.M.; Yachie, A.; Matsuoka, Y.; et al. LimeMap: A comprehensive map of lipid mediator metabolic pathways. Npj Syst. Biol. Appl. 2021, 7, 6, Erratum in Npj Syst. Biol. Appl. 2021, 7, 16. https://doi.org/10.1038/s41540-021-00174-w. [Google Scholar] [CrossRef]
- Serhan, C.N. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annu. Rev. Immunol. 2007, 25, 101–137. [Google Scholar] [CrossRef]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; da Costa Souza, F.; Dalli, J.; Durand, T.; Galano, J.M.; Lein, P.J.; et al. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef]
- AlZahrani, S.; Shinwari, Z.; Alaiya, A.; Al-Kahtani, A. Impact of Resolvin-E1 and Maresin-1 on Bone Marrow Stem Cell Osteogenesis under Inflammatory Stress. Cells 2024, 13, 932. [Google Scholar] [CrossRef]
- Pinto, N.; Klein, Y.; David, E.; Polak, D.; Steinberg, D.; Mizrahi, G.; Khoury, Y.; Barenholz, Y.; Chaushu, S. Resolvin D1 improves allograft osteointegration and directly enhances osteoblasts differentiation. Front. Immunol. 2023, 14, 1086930. [Google Scholar] [CrossRef]
- Leite, C.B.G.; Fricke, H.P.; Tavares, L.P.; Nshimiyimana, R.; Mekhail, J.; Kilgallen, E.; Killick, F.; Whalen, J.D.; Lehoczky, J.A.; Serhan, C.N.; et al. Maresin 1-LGR6 axis mitigates inflammation and posttraumatic osteoarthritis after transection of the anterior cruciate ligament in mice. Osteoarthr. Cartil. 2025, 33, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Möller, I.; Rodas, G.; Villalón, J.M.; Rodas, J.A.; Angulo, R.; Martínez, N.; Vergés, J. Randomized, double-blind, placebo-controlled study to evaluate the effect of treatment with an SPMs-enriched oil on chronic pain and inflammation, functionality, and quality of life in patients with symptomatic knee osteoarthritis: GAUDI study. J. Transl. Med. 2023, 21, 423. [Google Scholar] [CrossRef] [PubMed]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive lipids, inflammation and chronic diseases. Adv. Drug Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef]
- Das, U.N. Ageing: Is there a role for arachidonic acid and other bioactive lipids? A review. J. Adv. Res. 2018, 11, 67–79. [Google Scholar] [CrossRef]
- Fang, X.; Abbott, J.; Cheng, L.; Colby, J.K.; Lee, J.W.; Levy, B.D.; Matthay, M.A. Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. J. Immunol. 2015, 195, 875–881. [Google Scholar] [CrossRef]
- Campos, J.; Sampaio-Marques, B.; Santos, D.; Barata-Antunes, S.; Ribeiro, M.; Serra, S.C.; Pinho, T.S.; Canto-Gomes, J.; Marote, A.; Cortez, M.; et al. Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile. Tissue Eng. Regen. Med. 2025, 22, 113–128. [Google Scholar] [CrossRef]
- Huang, D.; Shen, H.; Xie, F.; Hu, D.; Jin, Q.; Hu, Y.; Zhong, T. Role of mesenchymal stem cell-derived exosomes in the regeneration of different tissues. J. Biol. Eng. 2024, 18, 36. [Google Scholar] [CrossRef]
- Livshits, G.; Kalinkovich, A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci. 2022, 306, 120847. [Google Scholar] [CrossRef]
- Kim, N.; Shin, H.Y. Deciphering the Potential Role of Specialized Pro-Resolving Mediators in Obesity-Associated Metabolic Disorders. Int. J. Mol. Sci. 2024, 25, 9598. [Google Scholar] [CrossRef] [PubMed]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021, 114, 154338. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Zhang, X.; Zhu, C.; Tang, X.; Yu, F.; Shang, G.W.; Cai, X. Molecular Mechanisms of PPAR-γ Governing MSC Osteogenic and Adipogenic Differentiation. Curr. Stem Cell Res. Ther. 2016, 11, 255–264. [Google Scholar] [CrossRef]
- Yuan, N.; Li, J.; Li, M.; Ju, W.; Ge, Z.; Fan, L.; Wang, K. BADGE, a synthetic antagonist for PPARγ, prevents steroid-related osteonecrosis in a rabbit model. BMC Musculoskelet. Disord. 2018, 19, 129. [Google Scholar] [CrossRef] [PubMed]
- Magadum, A.; Engel, F.B. PPARβ/δ: Linking Metabolism to Regeneration. Int. J. Mol. Sci. 2018, 19, 2013. [Google Scholar] [CrossRef] [PubMed]
- Luz-Crawford, P.; Ipseiz, N.; Espinosa-Carrasco, G.; Caicedo, A.; Tejedor, G.; Toupet, K.; Loriau, J.; Scholtysek, C.; Stoll, C.; Khoury, M.; et al. PPARβ/δ directs the therapeutic potential of mesenchymal stem cells in arthritis. Ann. Rheum. Dis. 2016, 75, 2166–2174. [Google Scholar] [CrossRef]
- Contreras-Lopez, R.A.; Elizondo-Vega, R.; Torres, M.J.; Vega-Letter, A.M.; Luque-Campos, N.; Paredes-Martinez, M.J.; Pradenas, C.; Tejedor, G.; Oyarce, K.; Salgado, M.; et al. PPARβ/δ-dependent MSC metabolism determines their immunoregulatory properties. Sci. Rep. 2020, 10, 11423. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Luo, S.; Zhan, Y.; Lu, Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J. Autoimmun. 2020, 113, 102510. [Google Scholar] [CrossRef]
- Saito, S.; Cao, D.-Y.; Bernstein, E.A.; Shibata, T.; Jones, A.E.; Rios, A.; Hoshi, A.O.; Stotland, A.B.; Nishi, E.E.; Van Eyk, J.E.; et al. Peroxisome proliferator-activated receptor alpha is an essential factor in enhanced macrophage immune function induced by angiotensin-converting enzyme. Cell. Mol. Immunol. 2025, 22, 243–259. [Google Scholar] [CrossRef]
- da Rocha Junior, L.F.; Dantas, A.T.; Duarte, A.L.P.; de Melo Rego, M.J.B.; Pitta, I.d.R.; Pitta, M.G.d.R. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us? PPAR Res. 2013, 2013, 519724. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Tsai, Y.-S.; Lin, S.-C.; Liao, N.S.; Jan, M.S.; Liang, C.T.; Hsu, S.W.; Chen, W.C.; Sung, J.M.; Maeda, N.; et al. Quantitative PPARγ expression affects the balance between tolerance and immunity. Sci. Rep. 2016, 6, 26646. [Google Scholar] [CrossRef]
- Korbecki, J.; Bobiński, R.; Dutka, M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm. Res. 2019, 68, 443–458. [Google Scholar] [CrossRef]
- Singh, A.; Chaudhary, R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int. Immunopharmacol. 2025, 155, 114616. [Google Scholar] [CrossRef] [PubMed]
- Heck, B.E.; Park, J.J.; Makani, V.; Kim, E.-C.; Kim, D.H. PPAR-δ Agonist with Mesenchymal Stem Cells Induces Type II Collagen-Producing Chondrocytes in Human Arthritic Synovial Fluid. Cell Transpl. 2017, 26, 1405–1417. [Google Scholar] [CrossRef]
- Guicheux, J. Enhancing the Therapeutic Effect of MSC in Osteoarthritis: Role of PPAR β/δ (PPAROA). Agence Nationale de la Recherche: Paris, France. 2019. Available online: https://anr.fr/Project-ANR-18-CE18-0010 (accessed on 15 October 2025).
- Tian, G.; Yin, H.; Zheng, J.; Yu, R.; Ding, Z.; Yan, Z.; Tang, Y.; Wu, J.; Ning, C.; Yuan, X.; et al. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact. Mater. 2024, 41, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Yi, N.; Li, D.; Xu, C.; Yin, G.-R.; Zhuang, C.; Wang, Y.-J.; Ni, S. PPARγ regulates osteoarthritis chondrocytes apoptosis through caspase-3 dependent mitochondrial pathway. Sci. Rep. 2024, 14, 11237, Correction in Sci Rep. 2024, 14, 13263. https://doi.org/10.1038/s41598-024-64106-4. [Google Scholar]
- Xue, X.; Dai, T.; Chen, J.; Xu, Y.; Yang, Z.; Huang, J.; Xu, W.; Li, S.; Meng, Q. PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. J. Orthop. Surg. Res. 2023, 18, 620. [Google Scholar] [CrossRef]
- Kikuchi, K.; Shen, J.; Brophy, R.H.; Shen, J.; O’Keefe, R.J.; Clohisy, J.C. The Otto Aufranc Award: DNMT3A-PPARγ Signaling Is a Key Epigenetic Mechanism of Hip Osteoarthritis Disease: A Potential Therapeutic Target. J. Arthroplast. 2025, 40, S9–S16. [Google Scholar] [CrossRef]
- Song, T.; Yang, Y.; Zhou, Y.; Wei, H.; Peng, J. GPR120: A critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue. Cell Mol. Life Sci. 2017, 74, 2723–2733. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zhang, Z. Recent Advance in Regulatory Effect of GRP120 on Bone Metabolism. Aging Dis. 2023, 14, 1714–1727. [Google Scholar] [CrossRef]
- Ahn, S.H.; Park, S.-Y.; Baek, J.-E.; Lee, S.-Y.; Baek, W.-Y.; Lee, S.-Y.; Lee, Y.-S.; Yoo, H.J.; Kim, H.; Lee, S.H.; et al. Free Fatty Acid Receptor 4 (GPR120) Stimulates Bone Formation and Suppresses Bone Resorption in the Presence of Elevated n-3 Fatty Acid Levels. Endocrinology 2016, 157, 2621–2635. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D.; Ho, K.W.; Lin, S.; Suen, W.C.-W.; Zhang, H.; Zha, Z.; Li, G.; Leung, P.S. GPR120 is an important inflammatory regulator in the development of osteoarthritis. Arthritis Res. Ther. 2018, 20, 163. [Google Scholar] [CrossRef]
- Abshirini, M.; Ilesanmi-Oyelere, B.L.; Kruger, M.C. Potential modulatory mechanisms of action by long-chain polyunsaturated fatty acids on bone cell and chondrocyte metabolism. Prog. Lipid Res. 2021, 83, 101113. [Google Scholar] [CrossRef]
- Karlsen, T.A.; Brinchmann, J.E. Liposome delivery of microRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. Mol. Ther. 2013, 21, 1169–1181. [Google Scholar] [CrossRef]
- Karakuła-Juchnowicz, H.; Róg, J.; Juchnowicz, D.; Morylowska-Topolska, J. GPR120: Mechanism of action, role and potential for medical applications. Postep. Hig. Med. Dosw. (Online) 2017, 71, 942–953. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; Jie, Q.; Lu, W.-G.; Wang, L.; Li, X.-J.; Sun, Z.; Hu, Y.-Q.; Chen, L.; Liu, B.-H.; et al. GPR120: A bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMMSCs. Sci. Rep. 2015, 5, 14080, Correction in Sci. Rep. 2015, 5, 17127. https://doi.org/10.1038/s41598-020-73528-9. [Google Scholar]
- Koga, Y.; Tsurumaki, H.; Aoki-Saito, H.; Sato, M.; Yatomi, M.; Takehara, K.; Hisada, T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int. J. Mol. Sci. 2019, 20, 1346. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- Im, D.-S. Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur. J. Pharmacol. 2016, 785, 36–43. [Google Scholar] [CrossRef]
- Gao, B.; Han, Y.H.; Wang, L.; Lin, Y.J.; Sun, Z.; Lu, W.G.; Hu, Y.Q.; Li, J.Q.; Lin, X.S.; Liu, B.H.; et al. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Cell Death Dis. 2016, 7, e2235. [Google Scholar] [CrossRef]
- Nicholas, D.A.; Zhang, K.; Hung, C.; Glasgow, S.; Aruni, A.W.; Unternaehrer, J.; Payne, K.J.; Langridge, W.H.R.; Leon, M.D. Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS ONE 2017, 12, e0176793. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.; Chen, S. Endogenous toll-like receptor ligands and their biological significance. J. Cell Mol. Med. 2010, 14, 2592–2603. [Google Scholar] [CrossRef]
- Huang, S.; Rutkowsky, J.M.; Snodgrass, R.G.; Ono-Moore, K.D.; Schneider, D.A.; Newman, J.W.; Adams, S.H.; Hwang, D.H. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways [S]. J. Lipid Res. 2012, 53, 2002–2013. [Google Scholar] [CrossRef]
- Piccinini, A.M.; Midwood, K.S. DAMPening inflammation by modulating TLR signalling. Mediat. Inflamm. 2010, 2010, 672395. [Google Scholar] [CrossRef]
- Kaundal, U.; Rakha, A. Differential effects of TLR3 and TLR4 activation on MSC-mediated immune regulation. Biochem. Biophys. Rep. 2024, 39, 101809. [Google Scholar] [CrossRef]
- Lancaster, G.I.; Langley, K.G.; Berglund, N.A.; Kammoun, H.L.; Reibe, S.; Estevez, E.; Weir, J.; Mellett, N.A.; Pernes, G.; Conway, J.R.W.; et al. Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metab. 2018, 27, 1096–1110.e5. [Google Scholar] [CrossRef]
- He, X.; Wang, H.; Jin, T.; Xu, Y.; Mei, L.; Yang, J. TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling. PLoS ONE 2016, 11, e0149876. [Google Scholar] [CrossRef]
- Khodabandehloo, F.; Aflatoonian, R.; Zandieh, Z.; Rajaei, F.; Sayahpour, F.-A.; Nassiri-Asl, M.; Eslaminejad, M.B. Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells. J. Cell Mol. Med. 2021, 25, 5138–5149. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.; Zeng, W.N.; Zeng, Q.; Zhang, X. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Front. Cell Dev. Biol. 2023, 11, 1277686. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Almeida, P.P.; Mafra, D.; Stockler-Pinto, M.B. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: Pathways involved and future perspectives. Nutr. Res. 2022, 107, 96–116. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Jordan, J.L.; Van der Windt, D.A.; Hill, J.C.; Foster, N.E.; Protheroe, J. Effective treatment options for musculoskeletal pain in primary care: A systematic overview of current evidence. PLoS ONE 2017, 12, e0178621. [Google Scholar] [CrossRef]
- Lal, S.; Gunji, S.; Ahluwalia, P.; Kolhe, R.; Bollag, W.B.; Hill, W.D.; McGee-Lawrence, M.E.; Isales, C.M.; Fulzele, S. Lipid metabolism in age-related musculoskeletal disorders: Insights into sarcopenia and osteoporosis. BMC Biol. 2025, 23, 265. [Google Scholar] [CrossRef]
- Daniel, M.; Brotto, L.; Huang, J.; Awad, K.; Brotto, M. Lipid Mapping of Lipid Signaling Mediators in Skeletal Muscle. Physiology 2024, 39, 1801. [Google Scholar] [CrossRef]
- Zandl-Lang, M.; Plecko, B.; Köfeler, H. Lipidomics—Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. Int. J. Mol. Sci. 2023, 24, 1709. [Google Scholar] [CrossRef]
- Zimmermann, J.A.; Lucht, K.; Stecher, M.; Badhan, C.; Glaser, K.M.; Epple, M.W.; Koch, L.R.; Deboutte, W.; Manke, T.; Ebnet, K.; et al. Functional multi-organelle units control inflammatory lipid metabolism of macrophages. Nat. Cell Biol. 2024, 26, 1261–1273. [Google Scholar] [CrossRef]
- Han, X.; Qiu, Y.; Zhang, B.; Huang, Y.; Wang, Y.; Feng, P.; Gao, X.; Zhu, Q.; Liao, M.; Hu, Y.; et al. Advances in Organ-on-a-chip Technologies for Biomedical Research and Applications. Mater. Lab. 2025, 4, 240006. [Google Scholar]
- Hu, Y.; Zhang, H.; Wang, S.; Cao, L.; Zhou, F.; Jing, Y.; Su, J. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact. Mater. 2023, 25, 29–41. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Liu, R.; Wang, W.; Zhang, D.; Jiang, Q. Cartilage-on-a-chip with magneto-mechanical transformation for osteoarthritis recruitment. Bioact. Mater. 2024, 33, 61–68. [Google Scholar] [CrossRef]
- Chen, Y.; Douanne, N.; Wu, T.; Kaur, I.; Tsering, T.; Erzingatzian, A.; Nadeau, A.; Juncker, D.; Nerguizian, V.; Burnier, J.V. Leveraging nature’s nanocarriers: Translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. Sci. Adv. 2025, 11, eads5249. [Google Scholar] [CrossRef]
- Pereira, A.B.V.; Terroso, M.S.; Gonçalves, H.; Catita, J.; Santos, D.; Baptista, R.M.F.; Monteiro, F.J.; Lopes, C.M.; Lúcio, M.; Ferraz, M.P. Hybrid nano-scaffolds loaded with resveratrol and Omega-3 fatty Acids: An innovative antimicrobial strategy against biofilm. Int. J. Pharm. 2025, 680, 125784. [Google Scholar] [CrossRef]
- Thumbooru, S.N.; Ahmed, S.S.; Hari, B.; Hazzah, H.A.; Abdallah, O.Y. Formulation, Characterization and Optimization of Plga-Chitosan-Loaded Fatty Acid Scaffolds for the Treatment of Diabetic Wounds. Int. J. Appl. Pharm. 2024, 16, 282–291. [Google Scholar] [CrossRef]
- Kalinec, G.M.; Gao, L.; Cohn, W.; Whitelegge, J.P.; Faull, K.F.; Kalinec, F. Extracellular Vesicles From Auditory Cells as Nanocarriers for Anti-inflammatory Drugs and Pro-resolving Mediators. Front. Cell. Neurosci. 2019, 13, 530. [Google Scholar] [CrossRef]
- Lattanzi, W.; Ripoli, C.; Greco, V.; Barba, M.; Iavarone, F.; Minucci, A.; Urbani, A.; Grassi, C.; Parolini, G. Basic and Preclinical Research for Personalized Medicine. J. Pers. Med. 2021, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ji, X.; Li, B. Advancing personalized, predictive, and preventive medicine in bladder cancer: A multi-omics and machine learning approach for novel prognostic modeling, immune profiling, and therapeutic target discovery. Front. Immunol. 2025, 16, 1572034. [Google Scholar] [CrossRef]
- Yu, H.; Yang, S.; Jiang, T.; Li, T.; Duan, H.; Li, M. Repair mechanisms of bone system tissues based on comprehensive perspective of multi-omics. Cell Biol. Toxicol. 2025, 41, 45. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021, 14, 24. [Google Scholar] [CrossRef]
- Chapman, J.H.; Ghosh, D.; Attari, S.; Ude, C.C.; Laurencin, C.T. Animal Models of Osteoarthritis: Updated Models and Outcome Measures 2016–2023. Regen. Eng. Transl. Med. 2024, 10, 127–146. [Google Scholar] [CrossRef]
- Yuan, L.; Verhoeven, A.; Blomberg, N.; van Eyk, H.J.; Bizino, M.B.; Rensen, P.C.N.; Jazet, I.M.; Lamb, H.J.; Rabelink, T.J.; Giera, M.; et al. Ethnic Disparities in Lipid Metabolism and Clinical Outcomes between Dutch South Asians and Dutch White Caucasians with Type 2 Diabetes Mellitus. Metabolites 2024, 14, 33. [Google Scholar] [CrossRef]
- Buckley, C.D.; Gilroy, D.W.; Serhan, C.N. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 2014, 40, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Mastrolia, I.; Foppiani, E.M.; Murgia, A.; Candini, O.; Samarelli, A.V.; Grisendi, G.; Veronedi, E.; Horwitz, E.M.; Dominici, M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl. Med. 2019, 8, 1135–1148. [Google Scholar] [CrossRef]
- Rinaldi, A.; Caraffi, R.; Grazioli, M.V.; Oddone, N.; Giardino, L.; Tosi, G.; Vandelli, M.A.; Calzà, L.; Ruozi, B.; Duskey, J.T. Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines. Polymers 2022, 14, 687. [Google Scholar] [CrossRef] [PubMed]
- Angelova, M.I.; Bitbol, A.-F.; Seigneuret, M.; Staneva, G.; Kodama, A.; Sakuma, Y.; Kawakatsu, T.; Imai, M.; Puff, N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2018, 1860, 2042–2063. [Google Scholar] [CrossRef]

| Regulator/Pathway | Core Role | Post-Traumatic Osteoarthritis (PTOA) Signature | Osteoporosis (OP) Signature | Therapeutic Leverage Points |
|---|---|---|---|---|
| Lipid mediators: PGE2 (AA → COX-2) | Context-dependent immunosuppression. [75,80,92] | Often ↑ with TNF-α/IFN-γ; helps curb synovitis by suppressing Th1/Th17; inhibit T cell and skew M2 macrophages. Excess may be catabolic. [35,75] | Supports anti-inflammatory milieu yet requires dosing control for bone remodeling. High systemic may impair bone. [75] | Time/dose-controlled COX-2/PGE2 tuning. [92] |
| ω-3 PUFA (DHA/EPA) | Increases biosynthetic/metabolic activity; enriches therapeutic secretome. [96] | Enhances immunosuppressive and regenerative potency in inflamed joints. [96] | Helps correct chronic inflammation that accelerates bone loss. [97] | Ex-vivo DHA/EPA priming; systemic supplementation (pilot human data). [91,96] |
| SPMs (RvE1, RvD1, MaR1, lipoxins) | Pro-resolving, pro-repair. [85,86,87] | M1→M2, Th17→Treg; intra-articular SPMs tone protects cartilage and subchondral bone; MaR1 prevents PTOA in models. [90] | Counteracts low-grade inflammation; can reduce osteoclastogenesis and support osteoblasts. [97] | ω-3/SPM supplementation or delivery (free, biomaterial or EV-loaded). [85,86,87,91] |
| PPARγ | Anti-inflammatory lipid-sensing transcriptional control. [99,105,106,107,108] | Overactivation may blunt osteochondral repair. [113] | ↑ PPARγ drives MSC adipogenesis at expense of osteogenesis; bone loss. [100,101] | Selective PPARγ antagonists in OP. [101] |
| PPARβ/δ | Chondroprotective lipid-sensing transcriptional control. [109] | Modulation can lessen joint inflammation and improve MSC chondrogenesis; loss-of-function enhances MSC immunosuppression via glycolytic shift. [110,111,112,113,114,115,116] | Indirect support of osteogenesis via oxidative metabolism. [109] | Context-specific agonism/antagonism depending on cartilage-immune targets. [114,115,116] |
| GPR120 (DHA/EPA receptor) | Anti-inflammatory signaling; MSC fate control toward osteogenesis. [121,122,123,126,127] | Activation reduces NF-κB in chondrocytes and macrophages; preserves cartilage. [120] | Promotes osteogenesis and restrains adipogenesis; improves bone microarchitecture. [119,125] | Ex-vivo MSC priming with DHA/EPA or GPR120 agonists. [117,118,119,125] |
| TLR4 (DAMP/PAMP sensor; saturated FA-responsive) | Inflammatory toggle. [129,130,131,132,133] | Chronic activation sustains synovitis and impairs regeneration. [133,137] | Chronic activation skews marrow niche toward osteoclastogenesis. [134] | Antagonize TLR4 (e.g., TAK-242, Eritoran in preclinical); prefer TLR3 licensing for MSC-2 anti-inflammatory phenotype. [133,138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velur, V.; McCulloch, P.C.; Taraballi, F.; Banche-Niclot, F. Lipid-Driven Immunometabolism in Mesenchymal Stromal Cells: A New Axis for Musculoskeletal Regeneration. Int. J. Mol. Sci. 2025, 26, 10117. https://doi.org/10.3390/ijms262010117
Velur V, McCulloch PC, Taraballi F, Banche-Niclot F. Lipid-Driven Immunometabolism in Mesenchymal Stromal Cells: A New Axis for Musculoskeletal Regeneration. International Journal of Molecular Sciences. 2025; 26(20):10117. https://doi.org/10.3390/ijms262010117
Chicago/Turabian StyleVelur, Vibha, Patrick C. McCulloch, Francesca Taraballi, and Federica Banche-Niclot. 2025. "Lipid-Driven Immunometabolism in Mesenchymal Stromal Cells: A New Axis for Musculoskeletal Regeneration" International Journal of Molecular Sciences 26, no. 20: 10117. https://doi.org/10.3390/ijms262010117
APA StyleVelur, V., McCulloch, P. C., Taraballi, F., & Banche-Niclot, F. (2025). Lipid-Driven Immunometabolism in Mesenchymal Stromal Cells: A New Axis for Musculoskeletal Regeneration. International Journal of Molecular Sciences, 26(20), 10117. https://doi.org/10.3390/ijms262010117

