The Evolving Role of FDG–PET in Behavioral Variant Frontotemporal Dementia: Current Applications and Future Opportunities
Abstract
1. Introduction
2. Methods
3. Results
3.1. The Established Role of 18F FDG–PET SCAN as a Diagnostic Tool for bvFTD
3.2. Novel Applications of 18F FDG–PET Scan in bvFTD
3.2.1. Early Detection of Preclinical bvFTD in Asymptomatic Mutation Carriers
3.2.2. Metabolic Brain Networks as a Novel Biomarker
3.3. Differentiating bvFTD from Primary Psychiatric Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boeve, B.F. Behavioral Variant Frontotemporal Dementia. Continuum 2022, 28, 702–725. [Google Scholar] [CrossRef]
- Johnson, J.K.; Diehl, J.; Mendez, M.F.; Neuhaus, J.; Shapira, J.S.; Forman, M.; Chute, D.J.; Roberson, E.D.; Pace-Savitsky, C.; Neumann, M.; et al. Frontotemporal lobar degeneration: Demographic characteristics of 353 patients. Arch. Neurol. 2005, 62, 925–930. [Google Scholar] [CrossRef]
- Olney, N.T.; Spina, S.; Miller, B.L. Frontotemporal Dementia. Neurol. Clin. 2017, 35, 339–374. [Google Scholar] [CrossRef] [PubMed]
- Coyle-Gilchrist, I.T.; Dick, K.M.; Patterson, K.; Vázquez Rodríquez, P.; Wehmann, E.; Wilcox, A.; Lansdall, C.J.; Dawson, K.E.; Wiggins, J.; Mead, S.; et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016, 86, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.D.; Guerreiro, R.; Vandrovcova, J.; Uphill, J.; Reiman, D.; Beck, J.; Isaacs, A.M.; Authier, A.; Ferrari, R.; Fox, N.C.; et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009, 73, 1451–1456. [Google Scholar] [CrossRef]
- Rademakers, R.; Neumann, M.; Mackenzie, I.R. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 2012, 8, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Woolley, J.D.; Khan, B.K.; Murthy, N.K.; Miller, B.L.; Rankin, K.P. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: Rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J. Clin. Psychiatry 2011, 72, 126–133. [Google Scholar] [CrossRef]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.P.; Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011, 134 Pt 9, 2456–2477. [Google Scholar] [CrossRef]
- Soucy, J.P.; Bartha, R.; Bocti, C.; Borrie, M.; Burhan, A.M.; Laforce, R.; Rosa-Neto, P. Clinical applications of neuroimaging in patients with Alzheimer’s disease: A review from the Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia 2012. Alzheimer’s Res. Ther. 2013, 5 (Suppl. S1), S3. [Google Scholar] [CrossRef]
- Kerklaan, B.J.; van Berckel, B.N.; Herholz, K.; Dols, A.; van der Flier, W.M.; Scheltens, P.; Pijnenburg, Y.A.L. The added value of 18-fluorodeoxyglucose-positron emission tomography in the diagnosis of the behavioral variant of frontotemporal dementia. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 607–613. [Google Scholar] [CrossRef]
- Mosconi, L.; Tsui, W.H.; Herholz, K.; Pupi, A.; Drzezga, A.; Lucignani, G.; Reiman, E.M.; Holthoff, V.; Kalbe, E.; Sorbi, S.; et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J. Nucl. Med. 2008, 49, 390–398. [Google Scholar] [CrossRef]
- Tai, Y.F.; Piccini, P. Applications of positron emission tomography (PET) in neurology. J. Neurol. Neurosurg. Psychiatry 2004, 75, 669–676. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Djang, D.S.; Herholz, K.; Anzai, Y.; Minoshima, S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: A review of the recent literature. J. Nucl. Med. 2012, 53, 59–71. [Google Scholar] [CrossRef]
- Filippi, M.; Agosta, F.; Barkhof, F.; Dubois, B.; Fox, N.C.; Frisoni, G.B.; Jack, C.R.; Jahannsen, P.; Miller, B.L.; Nestor, P.J.; et al. EFNS task force: The use of neuroimaging in the diagnosis of dementia. Eur. J. Neurol. 2012, 19, 1487–1501. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.J.; Miller, B.L. Behavior and treatment in frontotemporal dementia. Neurology 2001, 56 (Suppl. S4), S46–S51. [Google Scholar] [CrossRef]
- Diehl, J.; Grimmer, T.; Drzezga, A.; Riemenschneider, M.; Förstl, H.; Kurz, A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol. Aging 2004, 25, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, M.; Anchisi, D.; Pelati, O.; Zuffi, M.; Matarrese, M.; Moresco, R.M.; Fazio, F.; Perani, D. Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann. Neurol. 2005, 57, 216–225. [Google Scholar] [CrossRef]
- Jeong, Y.; Cho, S.S.; Park, J.M.; Kang, S.J.; Lee, J.S.; Kang, E.; Na, D.L.; Kim, S.E. 18F-FDG PET findings in frontotemporal dementia: An SPM analysis of 29 patients. J. Nucl. Med. 2005, 46, 233–239. [Google Scholar] [PubMed]
- Womack, K.B.; Diaz-Arrastia, R.; Aizenstein, H.J.; Arnold, S.E.; Barbas, N.R.; Boeve, B.F.; Clark, C.M.; DeCarli, C.S.; Jagust, W.J.; Leverenz, J.B.; et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch. Neurol. 2011, 68, 329–337. [Google Scholar] [CrossRef]
- Cerami, C.; Dodich, A.; Lettieri, G.; Iannaccone, S.; Magnani, G.; Marcone, A.; Gianolli, L.; Cappa, S.F.; Perani, D. Different FDG-PET metabolic patterns at single-subject level in the behavioral variant of fronto-temporal dementia. Cortex 2016, 83, 101–112. [Google Scholar] [CrossRef]
- Kipps, C.M.; Hodges, J.R.; Fryer, T.D.; Nestor, P.J. Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: Refining the clinical phenotype. Brain 2009, 132 Pt 9, 2566–2578. [Google Scholar] [CrossRef]
- Foster, N.L.; Heidebrink, J.L.; Clark, C.M.; Jagust, W.J.; Arnold, S.E.; Barbas, N.R.; DeCarli, C.S.; Turner, R.S.; Koeppe, R.A.; Higdon, R.; et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 2007, 130 Pt 10, 2616–2635. [Google Scholar] [CrossRef]
- Solje, E.; Aaltokallio, H.; Koivumaa-Honkanen, H.; Suhonen, N.M.; Moilanen, V.; Kiviharju, A.; Traynor, B.; Tienari, P.J.; Hartikainen, P.; Remes, A.M. The Phenotype of the C9ORF72 Expansion Carriers According to Revised Criteria for bvFTD. PLoS ONE 2015, 10, e0131817. [Google Scholar] [CrossRef] [PubMed]
- Cagnin, A.; Pigato, G.; Pettenuzzo, I.; Zorzi, G.; Roiter, B.; Anglani, M.G.; Bussè, C.; Mozzetta, S.; Gabelli, C.; Campi, C.; et al. Data-driven analysis of regional brain metabolism in behavioral frontotemporal dementia and late-onset primary psychiatric diseases with frontal lobe syndrome: A PET/MRI study. Neurobiol. Aging 2024, 137, 47–54. [Google Scholar] [CrossRef]
- Nobili, F.; Arbizu, J.; Bouwman, F.; Drzezga, A.; Agosta, F.; Nestor, P.; Walker, Z.; Boccardi, M. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain (18) F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur. J. Neurol. 2018, 25, 1201–1217. [Google Scholar] [CrossRef] [PubMed]
- Nestor, P.J.; Altomare, D.; Festari, C.; Drzezga, A.; Rivolta, J.; Walker, Z.; Bouwman, F.; Orini, S.; Law, I.; Agosta, F.; et al. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1509–1525. [Google Scholar] [CrossRef]
- Poljansky, S.; Ibach, B.; Hirschberger, B.; Männer, P.; Klünemann, H.; Hajak, G.; Marienhagen, J. A visual [18F]FDG-PET rating scale for the differential diagnosis of frontotemporal lobar degeneration. Eur. Arch. Psychiatry Clin. Neurosci. 2011, 261, 433–446. [Google Scholar] [CrossRef]
- Rabinovici, G.D.; Rosen, H.J.; Alkalay, A.; Kornak, J.; Furst, A.J.; Agarwal, N.; Mormino, E.C.; O’Neil, J.P.; Janabi, M.; Karydas, A.; et al. Amyloid vs. FDG-PET in the differential diagnosis of AD and FTLD. Neurology 2011, 77, 2034–2042. [Google Scholar] [CrossRef]
- Claassen, D.O.; Parisi, J.E.; Giannini, C.; Boeve, B.F.; Dickson, D.W.; Josephs, K.A. Frontotemporal dementia mimicking dementia with Lewy bodies. Cogn. Behav. Neurol. 2008, 21, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.; Kemp, P.; Booij, J.; Costa, D.C.; Padayachee, S.; Lee, L.; Barber, C.; Carter, J.; Walker, Z. Differentiation of frontotemporal dementia from dementia with Lewy bodies using FP-CIT SPECT. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1063–1070. [Google Scholar] [CrossRef]
- Deters, K.D.; Risacher, S.L.; Farlow, M.R.; Unverzagt, F.W.; Kareken, D.A.; Hutchins, G.D.; Yoder, K.K.; Murrell, J.R.; Spina, S.; Epperson, F.; et al. Cerebral hypometabolism and grey matter density in MAPT intron 10 +3 mutation carriers. Am. J. Neurodegener. Dis. 2014, 3, 103–114. [Google Scholar]
- Clarke, M.T.M.; St-Onge, F.; Beauregard, J.M.; Bocchetta, M.; Todd, E.; Cash, D.M.; Rohrer, J.D.; Laforce, R. Early anterior cingulate involvement is seen in presymptomatic MAPT P301L mutation carriers. Alzheimer’s Res. Ther. 2021, 13, 42. [Google Scholar] [CrossRef]
- Liu, L.; Chu, M.; Nie, B.; Liu, L.; Xie, K.; Cui, Y.; Kong, Y.; Chen, Z.; Nan, H.; Chen, K.; et al. Reconfigured metabolism brain network in asymptomatic microtubule-associated protein tau mutation carriers: A graph theoretical analysis. Alzheimer’s Res. Ther. 2022, 14, 52. [Google Scholar] [CrossRef]
- Chu, M.; Jiang, D.; Liu, L.; Nie, B.; Cui, B.; Wang, Y.; Rosa-Neto, P.; Wu, L. Altered Anterior Insular Metabolic Connectivity in Asymptomatic MAPT P301L Carriers. J. Alzheimer’s Dis. 2023, 93, 1369–1380. [Google Scholar] [CrossRef]
- Jacova, C.; Hsiung, G.Y.; Tawankanjanachot, I.; Dinelle, K.; McCormick, S.; Gonzalez, M.; Lee, H.; Sengdy, P.; Bouchard-Kerr, P.; Dinelle, K.; et al. Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers. Neurology 2013, 81, 1322–1331. [Google Scholar] [CrossRef]
- Caroppo, P.; Habert, M.O.; Durrleman, S.; Funkiewiez, A.; Perlbarg, V.; Hahn, V.; Bertin, H.; Gaubert, M.; Routier, A.; Hannequin, D.; et al. Lateral Temporal Lobe: An Early Imaging Marker of the Presymptomatic GRN Disease? J. Alzheimer’s Dis. 2015, 47, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Saracino, D.; Sellami, L.; Boniface, H.; Houot, M.; Pélégrini-Issac, M.; Funkiewiez, A.; Rinaldi, D.; Locatelli, M.; Azuar, C.; Causse-Lemercier, V.; et al. Brain Metabolic Profile in Presymptomatic GRN Carriers Throughout a 5-Year Follow-up. Neurology 2023, 100, e396–e407. [Google Scholar] [CrossRef]
- Popuri, K.; Beg, M.F.; Lee, H.; Balachandar, R.; Wang, L.; Sossi, V.; Jacova, C.; Baker, M.; Shahinfard, E.; Pademakers, R.; et al. FDG-PET in presymptomatic C9orf72 mutation carriers. NeuroImage Clin. 2021, 31, 102687. [Google Scholar] [CrossRef]
- De Vocht, J.; Blommaert, J.; Devrome, M.; Radwan, A.; Van Weehaeghe, D.; De Schaepdryver, M.; Ceccarini, J.; Rezaei, A.; Schramm, G.; van Aalst, J.; et al. Use of Multimodal Imaging and Clinical Biomarkers in Presymptomatic Carriers of C9orf72 Repeat Expansion. JAMA Neurol. 2020, 77, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Titov, D.; Diehl-Schmid, J.; Shi, K.; Perneczky, R.; Zou, N.; Grimmer, T.; Li, J.; Drzezga, A.; Yakushev, I. Metabolic connectivity for differential diagnosis of dementing disorders. J. Cereb. Blood Flow Metab. 2017, 37, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Agosta, F.; Scola, E.; Canu, E.; Magnani, G.; Marcone, A.; Valsasina, P.; Caso, F.; Copetti, M.; Comi, G.; et al. Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 2013, 49, 2389–2401. [Google Scholar] [CrossRef]
- Schimmelpfennig, J.; Topczewski, J.; Zajkowski, W.; Jankowiak-Siuda, K. The role of the salience network in cognitive and affective deficits. Front. Hum. Neurosci. 2023, 17, 1133367. [Google Scholar] [CrossRef] [PubMed]
- Ripp, I.; Stadhouders, T.; Savio, A.; Goldhardt, O.; Cabello, J.; Calhoun, V.; Riedl, V.; Hedderich, D.; Diehl-Schmid, J.; Grimmer, T.; et al. Integrity of Neurocognitive Networks in Dementing Disorders as Measured with Simultaneous PET/Functional MRI. J. Nucl. Med. 2020, 61, 1341–1347. [Google Scholar] [CrossRef]
- Malpetti, M.; Carli, G.; Sala, A.; Cerami, C.; Marcone, A.; Iannaccone, S.; Magnani, G.; Perani, D. Variant-specific vulnerability in metabolic connectivity and resting-state networks in behavioural variant of frontotemporal dementia. Cortex 2019, 120, 483–497. [Google Scholar] [CrossRef]
- Rus, T.; Perovnik, M.; Vo, A.; Nguyen, N.; Tang, C.; Jamšek, J.; Popović, K.Š.; Grimmer, T.; Yakushev, I.; Diehl-Schmid, J.; et al. Disease specific and nonspecific metabolic brain networks in behavioral variant of frontotemporal dementia. Hum. Brain Mapp. 2023, 44, 1079–1093. [Google Scholar] [CrossRef]
- Nazem, A.; Tang, C.C.; Spetsieris, P.; Dresel, C.; Gordon, M.L.; Diehl-Schmid, J.; Grimmer, T.; Yakushev, I.; Mattis, P.J.; Ma, Y.; et al. A multivariate metabolic imaging marker for behavioral variant frontotemporal dementia. Alzheimer’s Dement. 2018, 10, 583–594. [Google Scholar] [CrossRef]
- Khokhar, S.K.; Kumar, M.; Arshad, F.; Goyal, S.; Tiwari, M.; Thanissery, N.; Ramakrishnan, S.; Nagaraj, C.; Kashyap, R.; Mangalore, S.; et al. Multiplex connectomics reveal altered networks in frontotemporal dementia: A multisite study. Netw. Neurosci. 2025, 9, 615–630. [Google Scholar] [CrossRef]
- Lanata, S.C.; Miller, B.L. The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry. J. Neurol. Neurosurg. Psychiatry 2016, 87, 501–511. [Google Scholar] [CrossRef]
- Ducharme, S.; Price, B.H.; Larvie, M.; Dougherty, D.D.; Dickerson, B.C. Clinical Approach to the Differential Diagnosis Between Behavioral Variant Frontotemporal Dementia and Primary Psychiatric Disorders. Am. J. Psychiatry 2015, 172, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Tsoukra, P.; Velakoulis, D.; Wibawa, P.; Malpas, C.B.; Walterfang, M.; Evans, A.; Farrand, S.; Kelso, W.; Eratne, D.; Loi, S.M. The Diagnostic Challenge of Young-Onset Dementia Syndromes and Primary Psychiatric Diseases: Results From a Retrospective 20-Year Cross-Sectional Study. J. Neuropsychiatry Clin. Neurosci. 2022, 34, 44–52. [Google Scholar] [CrossRef]
- Zapata-Restrepo, L.; Rivas, J.; Miranda, C.; Miller, B.L.; Ibanez, A.; Allen, I.E.; Possin, K. The Psychiatric Misdiagnosis of Behavioral Variant Frontotemporal Dementia in a Colombian Sample. Front. Neurol. 2021, 12, 729381. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, D.; de Vugt, M.E.; Bakker, C.; Pijnenburg, Y.A.; Vernooij-Dassen, M.J.; Koopmans, R.T.; Verhey, F.R.J. Time to diagnosis in young-onset dementia as compared with late-onset dementia. Psychol. Med. 2013, 43, 423–432. [Google Scholar] [CrossRef]
- de Boer, S.C.M.; Gossink, F.; Krudop, W.; Vijverberg, E.; Schouws, S.; Reus, L.M.; Pijnenburg, Y.A.L.; Dols, A. Diagnostic Instability Over Time in the Late-Onset Frontal Lobe Syndrome: When Can We Say it’s FTD? Am. J. Geriatr. Psychiatry 2023, 31, 679–690. [Google Scholar] [CrossRef]
- Ducharme, S.; Dols, A.; Laforce, R.; Devenney, E.; Kumfor, F.; van den Stock, J.; Dallaire-Théroux, C.; Seelaar, H.; Gossink, F.; Vijverberg, E.; et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 2020, 143, 1632–1650. [Google Scholar] [CrossRef]
- van Engelen, M.E.; Verfaillie, S.C.J.; Dols, A.; Oudega, M.L.; Boellaard, R.; Golla, S.S.V.; den Hollander, M.; Ossenkoppele, R.; Scheltens, P.; van Berckel, B.N.M.; et al. Altered brain metabolism in frontotemporal dementia and psychiatric disorders: Involvement of the anterior cingulate cortex. EJNMMI Res. 2023, 13, 71. [Google Scholar] [CrossRef]
- Devenney, E.; Swinn, T.; Mioshi, E.; Hornberger, M.; Dawson, K.E.; Mead, S.; Rowe, J.B.; Hodges, J.R. The behavioural variant frontotemporal dementia phenocopy syndrome is a distinct entity—evidence from a longitudinal study. BMC Neurol. 2018, 18, 56. [Google Scholar] [CrossRef]
- Eratne, D.; Loi, S.M.; Walia, N.; Farrand, S.; Li, Q.X.; Varghese, S.; Walterfang, M.; Evans, A.; Mocellin, R.; Dhiman, K.; et al. A pilot study of the utility of cerebrospinal fluid neurofilament light chain in differentiating neurodegenerative from psychiatric disorders: A ‘C-reactive protein’ for psychiatrists and neurologists? Aust. N. Z. J. Psychiatry 2020, 54, 57–67. [Google Scholar] [CrossRef]
- Vijverberg, E.G.; Dols, A.; Krudop, W.A.; Del Campo Milan, M.; Kerssens, C.J.; Gossink, F.; Prins, N.D.; Stek, M.L.; Scheltens, P.; Teunissen, C.E.; et al. Cerebrospinal fluid biomarker examination as a tool to discriminate behavioral variant frontotemporal dementia from primary psychiatric disorders. Alzheimer’s Dement. 2017, 7, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Katisko, K.; Cajanus, A.; Jääskeläinen, O.; Kontkanen, A.; Hartikainen, P.; Korhonen, V.E.; Helisalmi, S.; Haapasalo, A.; Koivumaa-Honkanen, H.; Herukka, S.-K.; et al. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J. Neurol. 2020, 267, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, S.; Bajestan, S.; Dickerson, B.C.; Voon, V. Psychiatric Presentations of C9orf72 Mutation: What Are the Diagnostic Implications for Clinicians? J. Neuropsychiatry Clin. Neurosci. 2017, 29, 195–205. [Google Scholar] [CrossRef]
- Vijverberg, E.G.; Wattjes, M.P.; Dols, A.; Krudop, W.A.; Möller, C.; Peters, A.; Kerssens, C.J.; Gossink, F.; Prins, N.D.; Stek, M.L.; et al. Diagnostic Accuracy of MRI and Additional [18F]FDG-PET for Behavioral Variant Frontotemporal Dementia in Patients with Late Onset Behavioral Changes. J. Alzheimer’s Dis. 2016, 53, 1287–1297. [Google Scholar] [CrossRef]
- Hellwig, S.; Frings, L.; Heibel, M.; Schroeter, N.; Blazhenets, G.; Domschke, K.; Brumberg, J.; Meyer, P.T. [(18)F]Fluorodeoxyglucose position emission tomography for differential diagnosis of depressive cognitive impairment: Incremental value compared with clinical diagnosis. Br. J. Psychiatry 2025, 1–8. [Google Scholar] [CrossRef]
- Neary, D.; Snowden, J.S.; Gustafson, L.; Passant, U.; Stuss, D.; Black, S.; Freedman, M.; Kertesz, A.; Robert, P.H.; Albert, M.; et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology 1998, 51, 1546–1554. [Google Scholar] [CrossRef]
- Delvecchio, G.; Mandolini, G.M.; Arighi, A.; Prunas, C.; Mauri, C.M.; Pietroboni, A.M.; Marotta, G.; Cinnante, C.M.; Triulzi, F.M.; Galimberti, D.; et al. Structural and metabolic cerebral alterations between elderly bipolar disorder and behavioural variant frontotemporal dementia: A combined MRI-PET study. Aust. N. Z. J. Psychiatry 2019, 53, 413–423. [Google Scholar] [CrossRef]
- Ishii, K.; Sakamoto, S.; Sasaki, M.; Kitagaki, H.; Yamaji, S.; Hashimoto, M.; Imamura, T.; Shimomura, T.; Hirono, N.; Mori, E. Cerebral glucose metabolism in patients with frontotemporal dementia. J. Nucl. Med. 1998, 39, 1875–1878. [Google Scholar] [PubMed]
- Xia, Y.; Lu, S.; Wen, L.; Eberl, S.; Fulham, M.; Feng, D.D. Automated identification of dementia using FDG-PET imaging. BioMed Res. Int. 2014, 2014, 421743. [Google Scholar] [CrossRef]
- Gjerum, L.; Frederiksen, K.S.; Henriksen, O.M.; Law, I.; Bruun, M.; Simonsen, A.H.; Mecocci, P.; Baroni, M.; Dottorini, M.E.; Koikkalainen, J.; et al. Evaluating 2-[(18)F]FDG-PET in differential diagnosis of dementia using a data-driven decision model. NeuroImage Clin. 2020, 27, 102267. [Google Scholar] [CrossRef] [PubMed]
- Perovnik, M.; Vo, A.; Nguyen, N.; Jamšek, J.; Rus, T.; Tang, C.C.; Trošt, M.; Eidelberg, D. Automated differential diagnosis of dementia syndromes using FDG PET and machine learning. Front. Aging Neurosci. 2022, 14, 1005731. [Google Scholar] [CrossRef] [PubMed]
- Barnard, L.; Botha, H.; Corriveau-Lecavalier, N.; Graff-Radford, J.; Dicks, E.; Gogineni, V.; Zhang, G.; Burkett, B.J.; Johnson, D.R.; Huls, S.J.; et al. An FDG-PET-Based Machine Learning Framework to Support Neurologic Decision-Making in Alzheimer Disease and Related Disorders. Neurology 2025, 105, e213831. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidis, S.; Konstantinidou, N.; Giannakis, A.; Sioka, C.; Ioannidis, P. The Evolving Role of FDG–PET in Behavioral Variant Frontotemporal Dementia: Current Applications and Future Opportunities. Int. J. Mol. Sci. 2025, 26, 10090. https://doi.org/10.3390/ijms262010090
Ioannidis S, Konstantinidou N, Giannakis A, Sioka C, Ioannidis P. The Evolving Role of FDG–PET in Behavioral Variant Frontotemporal Dementia: Current Applications and Future Opportunities. International Journal of Molecular Sciences. 2025; 26(20):10090. https://doi.org/10.3390/ijms262010090
Chicago/Turabian StyleIoannidis, Serafeim, Natalia Konstantinidou, Alexandros Giannakis, Chrissa Sioka, and Panagiotis Ioannidis. 2025. "The Evolving Role of FDG–PET in Behavioral Variant Frontotemporal Dementia: Current Applications and Future Opportunities" International Journal of Molecular Sciences 26, no. 20: 10090. https://doi.org/10.3390/ijms262010090
APA StyleIoannidis, S., Konstantinidou, N., Giannakis, A., Sioka, C., & Ioannidis, P. (2025). The Evolving Role of FDG–PET in Behavioral Variant Frontotemporal Dementia: Current Applications and Future Opportunities. International Journal of Molecular Sciences, 26(20), 10090. https://doi.org/10.3390/ijms262010090