Next Article in Journal
Application of Modulators of Ca2+-Activated Big-Conductance Potassium Channels Against Cd2+-Induced Cytotoxicity: A Study on Two Rat Cell Lines, PC12 and AS-30D
Previous Article in Journal
The Anti-Apoptotic Effect of C-Type Natriuretic Peptide and the Regulation of NPPC in Porcine Ovarian Granulosa Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Precision Therapeutics Through Bioactive Compounds: Metabolic Reprogramming, Omics Integration, and Drug Repurposing Strategies

by
Michele Costanzo
1,2,* and
Giovanni N. Roviello
3,*
1
Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
2
CEINGE—Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
3
CNR Institute of Biostructures and Bioimaging, Via Tommaso De Amicis 95, 80145 Naples, Italy
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(20), 10047; https://doi.org/10.3390/ijms262010047
Submission received: 11 October 2025 / Accepted: 13 October 2025 / Published: 15 October 2025
Bioactive compounds, whether derived from nature or synthetically produced, continue to redefine the landscape of therapeutic innovation. Integrating bioactive compounds with omics technologies [1,2] and metabolic profiling [3] unlocks transformative insights for precision medicine [4], drug repurposing [5], and systems-level therapeutic innovation. Remarkably, the pursuit of cutting-edge therapies for socially impactful diseases, especially neurodegenerative pathologies [6,7], centers on molecular platforms that integrate both natural and synthetic compounds, ranging from phytomolecules, amino acids, and peptides to synthetic heteroaromatic compounds [8,9,10,11]. Their ability to modulate molecular pathways, restore metabolic balance, and interact with complex biological systems positions them as key agents in the interest of precision medicine. The Topic “Bioactive Compounds and Therapeutics: Molecular Aspects, Metabolic Profiles, and Omics Studies” (https://www.mdpi.com/topics/LL4H8331Z3 accessed on 1 October 2025) brings together a diverse collection of 23 studies that explore the therapeutic potential of bioactive molecules through the lens of molecular biology, metabolic profiling, and omics technologies (Table 1). Natural products such as ursolic acid (Figure 1), rosemary extract, and hemp seed oil demonstrate promising effects on immune regulation, lipid metabolism, and adipogenesis [12,13].
Synthetic derivatives like halogenated boroxine [14] and novel quinazoline compounds reveal targeted actions on cancer cell autophagy and skin barrier function. The repositioning of existing drugs, exemplified by moxidectin’s antimalarial activity and GHF-201′s autophagic activation [15] in glycogenosis, underscores the value of drug repurposing in rare and infectious diseases. Several studies delve into the gut–brain axis [16,17,18,19,20,21,22], microbiota modulation, and metabolic syndrome, highlighting the systemic impact of bioactive agents. For instance, dietary methionine restriction [23] and algal fiber-rich formulas show metabolic improvements in animal models, while GPR40/GPR120 agonists [24] alleviate inflammation-linked periodontitis. The integration of omics approaches, such as glycan microarrays [25,26,27,28], metabolomic signatures in colitis [29], and proteomic insights into antibody secretion [30], provides a systems-level understanding of therapeutic mechanisms in some disease conditions. Research into bioactive compounds continues to evolve beyond traditional boundaries, encompassing not only human health but also environmental and structural biology. In particular, investigations into plant stress responses [31,32,33], telomere biology [34,35], and drug pharmacokinetics [36,37,38,39,40,41] exemplify this expanded scope, revealing how bioactivity influences diverse biological systems across species and contexts. These studies underscore the interconnectedness of molecular mechanisms that govern resilience, aging, and therapeutic efficacy.
Together, these insights illuminate the path from molecular understanding to clinical relevance by bridging bioactivity with omics technologies and metabolic profiling, thereby fostering a deeper understanding of how therapeutic agents can be harnessed for targeted, effective, and personalized interventions across a wide spectrum of biological systems, disease models, and therapeutic contexts, ultimately advancing precision medicine through integrative approaches that combine molecular characterization, functional analysis, and translational application.

Author Contributions

Conceptualization, M.C. and G.N.R.; writing—review and editing, M.C. and G.N.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Vailati-Riboni, M.; Palombo, V.; Loor, J.J. What are omics sciences? In Periparturient Diseases of Dairy Cows: A Systems Biology Approach; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–7. [Google Scholar]
  2. Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
  3. Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global metabolic profiling procedures for urine using UPLC–MS. Nat. Protoc. 2010, 5, 1005–1018. [Google Scholar] [CrossRef]
  4. Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef]
  5. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
  6. Vicidomini, C.; Roviello, G.N. Therapeutic Convergence in Neurodegeneration: Natural Products, Drug Repurposing, and Biomolecular Targets. Biomolecules 2025, 15, 1333. [Google Scholar] [CrossRef] [PubMed]
  7. Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef] [PubMed]
  8. Simonyan, H.; Palumbo, R.; Vicidomini, C.; Scognamiglio, P.L.; Petrosyan, S.; Sahakyan, L.; Melikyan, G.; Saghyan, A.; Roviello, G.N. Binding of G-quadruplex DNA and serum albumins by synthetic non-proteinogenic amino acids: Implications for c-Myc-related anticancer activity and drug delivery. Mol. Ther. Nucleic Acids 2025, 36, 102478. [Google Scholar] [CrossRef]
  9. Mittova, V.; Pirtskhalava, M.; Tsetskhladze, Z.R.; Makalatia, K.; Loladze, A.; Bebiashvili, I.; Barblishvili, T.; Gogoladze, A.; Roviello, G.N. Antioxidant Potential and Antibacterial Activities of Caucasian Endemic Plants Sempervivum transcaucasicum and Paeonia daurica subsp. mlokosewitschii Extracts and Molecular In Silico Mechanism Insights. J. Xenobiotics 2025, 15, 109. [Google Scholar] [CrossRef]
  10. Ferrara, B.T.; Thompson, E.P.; Roviello, G.N.; Gale, T.F. C-Terminal Analogues of Camostat Retain TMPRSS2 Protease Inhibition: New Synthetic Directions for Antiviral Repurposing of Guanidinium-Based Drugs in Respiratory Infections. Int. J. Mol. Sci. 2025, 26, 6761. [Google Scholar] [CrossRef]
  11. Roviello, G.N.; Roviello, G.; Musumeci, D.; Capasso, D.; Di Gaetano, S.; Costanzo, M.; Pedone, C. Synthesis and supramolecular assembly of 1, 3-bis (1′-uracilyl)-2-propanone. RSC Adv. 2014, 4, 28691–28698. [Google Scholar] [CrossRef]
  12. Hinney, B.; Wiedermann, S.; Kaiser, W.; Krücken, J.; Joachim, A. Eprinomectin and moxidectin resistance of trichostrongyloids on a goat farm in Austria. Pathogens 2022, 11, 498. [Google Scholar] [CrossRef]
  13. Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic acid and its derivatives as bioactive agents. Molecules 2019, 24, 2751. [Google Scholar] [CrossRef]
  14. Hadzic, M.; Pojskic, L.; Lojo-Kadric, N.; Haveric, A.; Ramic, J.; Galic, B.; Haveric, S. Novel boron-containing compound, halogenated boroxine, induces selective cytotoxicity through apoptosis triggering in UT-7 leukemia. J. Biochem. Mol. Toxicol. 2022, 36, e23005. [Google Scholar] [CrossRef]
  15. Mishra, K.; Sweetat, S.; Baraghithy, S.; Sprecher, U.; Marisat, M.; Bastu, S.; Glickstein, H.; Tam, J.; Rosenmann, H.; Weil, M. The Autophagic Activator GHF-201 Can Alleviate Pathology in a Mouse Model and in Patient Fibroblasts of Type III Glycogenosis. Biomolecules 2024, 14, 893. [Google Scholar] [CrossRef]
  16. Bercik, P.; Collins, S.; Verdu, E. Microbes and the gut-brain axis. Neurogastroenterol. Motil. 2012, 24, 405–413. [Google Scholar] [CrossRef]
  17. Chen, X.; D’Souza, R.; Hong, S.-T. The role of gut microbiota in the gut-brain axis: Current challenges and perspectives. Protein Cell 2013, 4, 403–414. [Google Scholar] [CrossRef] [PubMed]
  18. Kraimi, N.; Ross, T.; Pujo, J.; De Palma, G. The gut microbiome in disorders of gut–brain interaction. Gut Microbes 2024, 16, 2360233. [Google Scholar] [CrossRef] [PubMed]
  19. Mayer, E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef] [PubMed]
  20. Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The Microbiota–Gut–Brain Axis in Psychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 11245. [Google Scholar] [CrossRef]
  21. Doroszkiewicz, J.; Groblewska, M.; Mroczko, B. The Role of Gut Microbiota and Gut–Brain Interplay in Selected Diseases of the Central Nervous System. Int. J. Mol. Sci. 2021, 22, 10028. [Google Scholar] [CrossRef]
  22. Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022, 10, 436. [Google Scholar] [CrossRef]
  23. Orgeron, M.L.; Stone, K.P.; Wanders, D.; Cortez, C.C.; van Nancy, T.; Gettys, T.W. The Impact of Dietary Methionine Restriction on Biomarkers of Metabolic Health. In Glucose Homeostatis and the Pathogenesis of Diabetes Mellitus; Elsevier: Amsterdam, The Netherlands, 2014; pp. 351–376. [Google Scholar]
  24. Bianchini, G.; Nigro, C.; Sirico, A.; Novelli, R.; Prevenzano, I.; Miele, C.; Beguinot, F.; Aramini, A. A new synthetic dual agonist of GPR120/GPR40 induces GLP-1 secretion and improves glucose homeostasis in mice. Biomed. Pharmacother. 2021, 139, 111613. [Google Scholar] [CrossRef] [PubMed]
  25. Rillahan, C.D.; Paulson, J.C. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 2011, 80, 797–823. [Google Scholar] [CrossRef]
  26. Kim, Y.; Hyun, J.Y.; Shin, I. Glycan microarrays from construction to applications. Chem. Soc. Rev. 2022, 51, 8276–8299. [Google Scholar] [CrossRef] [PubMed]
  27. Heimburg-Molinaro, J.; Song, X.; Smith, D.F.; Cummings, R.D. Preparation and analysis of glycan microarrays. Curr. Protoc. Protein Sci. 2011, 64, 12.10.1–12.10.29. [Google Scholar] [CrossRef] [PubMed]
  28. Gao, C.; Wei, M.; McKitrick, T.R.; McQuillan, A.M.; Heimburg-Molinaro, J.; Cummings, R.D. Glycan microarrays as chemical tools for identifying glycan recognition by immune proteins. Front. Chem. 2019, 7, 833. [Google Scholar] [CrossRef]
  29. Liu, M.; Guo, S.; Wang, L. Systematic review of metabolomic alterations in ulcerative colitis: Unveiling key metabolic signatures and pathways. Ther. Adv. Gastroenterol. 2024, 17, 17562848241239580. [Google Scholar] [CrossRef]
  30. Xu, N.; Ou, J.; Si, Y.; Goh, K.Y.; Flanigan, D.D.; Han, X.; Yang, Y.; Yang, S.-T.; Zhou, L.; Liu, X.M. Proteomics insight into the production of monoclonal antibody. Biochem. Eng. J. 2019, 145, 177–185. [Google Scholar] [CrossRef]
  31. Shulaev, V.; Cortes, D.; Miller, G.; Mittler, R. Metabolomics for plant stress response. Physiol. Plant. 2008, 132, 199–208. [Google Scholar] [CrossRef]
  32. Sunkar, R.; Li, Y.-F.; Jagadeeswaran, G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012, 17, 196–203. [Google Scholar] [CrossRef]
  33. Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
  34. Oeseburg, H.; De Boer, R.A.; Van Gilst, W.H.; Van Der Harst, P. Telomere biology in healthy aging and disease. Pflügers Arch.-Eur. J. Physiol. 2010, 459, 259–268. [Google Scholar] [CrossRef]
  35. Xu, L.; Li, S.; Stohr, B.A. The role of telomere biology in cancer. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 49–78. [Google Scholar] [CrossRef]
  36. Ruiz-Garcia, A.; Bermejo, M.; Moss, A.; Casabo, V.G. Pharmacokinetics in drug discovery. J. Pharm. Sci. 2008, 97, 654–690. [Google Scholar] [CrossRef] [PubMed]
  37. Benedetti, M.S.; Whomsley, R.; Poggesi, I.; Cawello, W.; Mathy, F.-X.; Delporte, M.-L.; Papeleu, P.; Watelet, J.-B. Drug metabolism and pharmacokinetics. Drug Metab. Rev. 2009, 41, 344–390. [Google Scholar] [CrossRef] [PubMed]
  38. Coelho, M.M.; Fernandes, C.; Remião, F.; Tiritan, M.E. Enantioselectivity in Drug Pharmacokinetics and Toxicity: Pharmacological Relevance and Analytical Methods. Molecules 2021, 26, 3113. [Google Scholar] [CrossRef] [PubMed]
  39. Dobrek, L. Chronopharmacology in Therapeutic Drug Monitoring—Dependencies between the Rhythmics of Pharmacokinetic Processes and Drug Concentration in Blood. Pharmaceutics 2021, 13, 1915. [Google Scholar] [CrossRef]
  40. Karaźniewicz-Łada, M.; Główka, A.K.; Mikulska, A.A.; Główka, F.K. Pharmacokinetic Drug–Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients. Int. J. Mol. Sci. 2021, 22, 9582. [Google Scholar] [CrossRef]
  41. Rombolà, L.; Scuteri, D.; Marilisa, S.; Watanabe, C.; Morrone, L.A.; Bagetta, G.; Corasaniti, M.T. Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life 2020, 10, 106. [Google Scholar] [CrossRef]
Figure 1. Structural representations of ursolic acid and moxidectin [12,13]. Moxidectin is a macrocyclic lactone with antiparasitic activity. Ursolic acid is a triterpenoid known for its anti-inflammatory and anticancer effects.
Figure 1. Structural representations of ursolic acid and moxidectin [12,13]. Moxidectin is a macrocyclic lactone with antiparasitic activity. Ursolic acid is a triterpenoid known for its anti-inflammatory and anticancer effects.
Ijms 26 10047 g001
Table 1. Summary of the research collection on bioactive compounds.
Table 1. Summary of the research collection on bioactive compounds.
CategoryExamplesTherapeutic Focus
Natural ProductsUrsolic acid, rosemary extract, hemp seed oilImmune regulation, lipid metabolism, adipogenesis
Synthetic DerivativesHalogenated boroxine, quinazoline compoundsCancer cell autophagy, skin barrier function
Drug RepurposingMoxidectin, GHF-201Antimalarial activity, autophagic activation in glycogenosis
Metabolic ModulatorsMethionine restriction, algal fiber-rich formulas, GPR40/GPR120 agonistsGut health, metabolic syndrome, inflammation-linked periodontitis
Omics-Based ApproachesGlycan microarrays, metabolomic and proteomic signaturesSystems-level understanding of therapeutic mechanisms
Other InvestigationsPlant stress responses, telomere biology, drug pharmacokineticsEnvironmental biology, structural biology, molecular profiling
Methodologies UsedIn vitro assays, in vivo models, in silico simulationsMultidisciplinary exploration from molecular insight to clinical relevance
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Costanzo, M.; Roviello, G.N. Precision Therapeutics Through Bioactive Compounds: Metabolic Reprogramming, Omics Integration, and Drug Repurposing Strategies. Int. J. Mol. Sci. 2025, 26, 10047. https://doi.org/10.3390/ijms262010047

AMA Style

Costanzo M, Roviello GN. Precision Therapeutics Through Bioactive Compounds: Metabolic Reprogramming, Omics Integration, and Drug Repurposing Strategies. International Journal of Molecular Sciences. 2025; 26(20):10047. https://doi.org/10.3390/ijms262010047

Chicago/Turabian Style

Costanzo, Michele, and Giovanni N. Roviello. 2025. "Precision Therapeutics Through Bioactive Compounds: Metabolic Reprogramming, Omics Integration, and Drug Repurposing Strategies" International Journal of Molecular Sciences 26, no. 20: 10047. https://doi.org/10.3390/ijms262010047

APA Style

Costanzo, M., & Roviello, G. N. (2025). Precision Therapeutics Through Bioactive Compounds: Metabolic Reprogramming, Omics Integration, and Drug Repurposing Strategies. International Journal of Molecular Sciences, 26(20), 10047. https://doi.org/10.3390/ijms262010047

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop