Progress of AI-Driven Drug–Target Interaction Prediction and Lead Optimization
Abstract
1. Introduction
| Small Molecule | Company | Target | Stage | Indication |
|---|---|---|---|---|
| REC-1245 [34] | Recursion | RBM39 | Phase 1 | Biomarker-enriched solid Tumors and lymphoma |
| REC-3565 [34] | Recursion | MALT1 | Phase 1 | B-Cell Malignancies |
| REC-4539 [34] | Recursion | LSD1 | Phase 1/2 | Small-Cell Lung Cancer |
| REC-4881 [34] | Recursion | MEK Inhibitor | Phase 2 | Familial adenomatous polyposis |
| REC-3964 [34] | Recursion | Selective C. diff Toxin Inhibitor | Phase 2 | Clostridioides difficile Infection |
| REC-7735 [34] | Recursion | PI3Kα H1047R | Preclinical | HER2−HR+ Breast cancer |
| REV102 [34] | Recursion | ENPP1 | Candidate profiling | Hypophosphatasia |
| ISM-6631 [35] | Insilico Medicine | Pan-TEAD | Phase 1 | Mesothelioma, and Solid Tumors |
| ISM-3412 [35] | Insilico Medicine | MAT2A | Phase 1 | MTAP−/− Cancers |
| INS018-055 [35] | Insilico Medicine | TNIK | Phase 2a | IPF |
| ISM-3091 [35] | Insilico Medicine | USP1 | Phase 1 | BRCA mutant cancer |
| ISM-8207 [35] | Insilico Medicine | QPCTL | Phase 1 | Solid Tumors |
| ISM-5043 [35] | Insilico Medicine | KAT6 | Phase 1 | Breast cancer |
| ISM-5939 [35] | Insilico Medicine | ENPP1 | IND Clearance | Solid Tumors |
| ISM-5411 [35] | Insilico Medicine | PHD | Phase 1 | IBD/Anemia of CKD |
| ISM-3312 [35] | Insilico Medicine | 3CLpro | Phase 1 | COVID-19 |
| RLY-4008 [36] | Relay Therapeutics | FGFR2 | Phase 1/2 | FGFR2-altered cholangiocarcinoma |
| RLY-8161 [36] | Relay Therapeutics | NRAS | Preclinical | Solid Tumors |
| RLY-2608 [36] | Relay Therapeutics | PI3Kα | Phase 1/2 | Advanced Breast Cancer |
| EXS4318 [37] | Exscientia | PKC-theta | Phase 1 | Inflammatory and immunologic diseases |
| GTAEXS617 [37] | Exscientia | CDK7 | Phase 1/2 | Solid Tumors |
| SIGX-1094 [38] | Signet Therapeutics | FAK | Phase 1/2 | Solid Tumors |
| BG-89894 [39] | BeiGene | Mat2A | Phase 1 | Advanced Solid Tumors |
| H002 [40] | RedCloud Bio | EGFR | Phase 1 | Non-Small Cell Lung Cancer |
| AC0682 [41] | Accutar Biotech | ER Degrader | Phase 1 | Breast Cancer |
| AC0682 [41] | Accutar Biotech | ER Degrader | Phase 1 | Breast Cancer |
| AC0176 [41] | Accutar Biotech | AR Degrader | Phase 1 | Prostate Cancer |
| AC0676 [41] | Accutar Biotech | BTK Degrader | Phase 1 | Hematology Oncology Indications |
| MDR-001 [42] | MindRank | GLP-1 | Phase 1/2 | Obesity/Type 2 Diabetes Mellitus |
| DF-006 [43] | Drug Farm | ALPK1 | Phase 1 | Hepatitis B/Hepatocellular cancer |
| LAM-001 [44] | OrphAI Therapeutics | mTOR | Phase 2 | PH/BOS |
| HLX-1502 [45] | Healx | N/A b | Phase 2 | Neurofibromatosis Type 1 |
| BGE-105 [46] | BioAge | APJ agonist | Phase 2 | Obesity/Type 2 diabetes |
| BXCL501 [47] | BioXcel Therapeutics | alpha-2 adrenergic | Phase 2/3 | Neurological Disorders |
| EVX-01 [48] | Evaxion Biotech | N/A b | Phase 2 | Metastatic melanoma |
| EVX-02 [48] | Evaxion Biotech | N/A b | Phase 1 | Adjuvant melanoma |
2. AI Technology
| Model | Core Mechanism | Advantages | Disadvantages | Drug Discovery Applications |
|---|---|---|---|---|
| CNNs | Convolution-pooling stack [88] | Convolutional layers extract local features; pooling layers reduce dimensionality [89] | Relies on local receptive fields; struggles with global dependencies | Cellular morphology analysis, drug–drug interaction prediction [90] |
| RNNs | Recurrent connections | Process sequential data via cyclic connections [73,91,92,93] | Gradient vanishing/explosion; weak long-range dependency handling | SMILES-based molecular generation [94] |
| GNNs | Graph convolution | Aggregate neighborhood information through graph message-passing [95,96,97,98,99,100,101] | High computational complexity; hyperparameter sensitivity | Solubility prediction, binding affinity calculation [51,102,103] |
| Transformers | Self-attention mechanism [104] | Capture global dependencies via self-attention mechanisms [105,106] | High memory consumption; prone to overfitting on small datasets | Derivative design, multimodal data integration [69,107] |
| GANs | Generator-discriminator adversarial | Adversarial training between generator and discriminator | Training instability, mode collapse risk | Novel chemical entity synthesis [71] |
| VAEs | Encoder–decoder latent space | Compress molecular features via encoder–decoder architecture | Blurry generated samples, limited diversity | Targeted drug design [78] |
| LLMs | Multi-layer Transformer [108,109] | Multimodal Transformer-based joint reasoning | High training cost, requires domain-specific fine-tuning | Literature knowledge-driven molecular optimization [110] |

3. Applications in New Drug Development
3.1. Applications in Tertiary Structure of Target Proteins
3.2. Applications in Target Identification
3.3. Applications in Drug–Target Interaction Prediction
3.4. Applications in Virtual Screening of Lead Compounds
| No. | Model Name | Framework Description | Web |
|---|---|---|---|
| 1 | Chemprop | A deep learning package implementing Directed Message Passing Neural Networks (D-MPNNs) for molecular property prediction. It efficiently predicts physicochemical properties (such as logP, reaction barriers) and bioactivity, enabling rapid ADME/efficacy assessment in lead-compound screening to guide candidate optimization and reduce experimental cost [102]. | https://github.com/chemprop/chemprop (accessed on 20 August 2025) |
| 2 | iPADD | Screening molecular fingerprint features through feature selection strategies to predict the activity of anti-diabetic compounds using an XGBoost model [164]. | https://github.com/llllxw/iPADD/blob/main/README.md (accessed on 20 August 2025) |
| 3 | DRUMLR | An ensemble machine learning framework leverages proteomic and phosphoproteomic data to rank over 400 anticancer drugs by efficacy, enabling rapid prioritization of high-potential leads [165]. | https://github.com/CutillasLab/DRUMLR (accessed on 20 August 2025) |
| 4 | ActFound | A meta-learning and pairwise-learning bioactivity model that rapidly adapts to small assay datasets to predict relative activity differences with high precision, requiring minimal fine-tuning [166]. | https://github.com/BFeng14/ActFound (accessed on 20 August 2025) |
| 5 | TOML-BERT | This dual-level pretrained model combines self-supervised learning on molecular structures with domain-knowledge transfer using pseudo-labels. It integrates atomic and molecular-level tasks to achieve state-of-the-art ADMET prediction accuracy across ten drug datasets, especially when labeled data is scarc [167]. | https://github.com/yanjing-duan/TOML-BERT (accessed on 20 August 2025) |
| 6 | FP-GNN | A hybrid GNN model that fuses molecular-graph structural information with fingerprint-based substructure features, markedly improving prediction accuracy for molecular properties [168]. | https://github.com/idrugLab/FP-GNN (accessed on 20 August 2025) |
| 7 | ChemBERTa2 | A model pretrained on chemical molecular structures (SMILES) that efficiently predicts a wide range of physicochemical and bioactivity properties [169]. | https://github.com/miservilla/ChemBERTa (accessed on 20 August 2025) |
| 8 | Uni-Mol | This 3D molecular deep-learning framework is pretrained on extensive datasets of small molecules and protein binding pockets. It can directly predict molecular physicochemical properties, generate accurate 3D conformations, and simulate drug-target binding modes [170]. | https://github.com/deepmodeling/Uni-Mol/tree/main/unimol (accessed on 20 August 2025) |
| 9 | SPMM | A multimodal molecular model that jointly learns from both structural representations and associated properties, enabling bidirectional prediction and generation [171]. | https://github.com/jinhojsk515/SPMM/ (accessed on 20 August 2025) |
| 10 | MoLFormer | An efficient Transformer model pretrained on large-scale chemical SMILES datasets, capable of accurately predicting molecular properties to aid both drug discovery and materials design [172]. | https://github.com/IBM/molformer (accessed on 20 August 2025) |
3.5. Application in the Generation of Lead Compounds
3.6. Applications in Synthesis Prediction in Drug Discovery
| No. | Model Name | Framework Description | Web |
|---|---|---|---|
| 1 | GSETransformer | An integrated model that combines graph neural networks and sequence processing to predict biosynthetic pathways of natural products. It accelerates route design in drug development and provides a visual interface that supports research workflow efficiency [206]. | https://github.com/momozhangcn/GSETRetro (accessed on 20 August 2025) |
| 2 | Molecular Transformer | An attention-based model that unifies reaction prediction and retrosynthetic analysis for drug molecules. It maintains strong accuracy on novel compounds and serves as an effective tool for planning pharmaceutical syntheses [207]. | https://github.com/pschwllr/MolecularTransformer (accessed on 20 August 2025) |
| 3 | DeepSA | A deep-learning chemical language model that predicts synthetic accessibility from molecular structure. It prioritizes easily synthesizable compounds and reduces both development time and cost [22]. | https://github.com/Shihang-Wang-58/DeepSA (accessed on 20 August 2025) |
| 4 | Retro-MTGR | A multitask learning framework that uses molecular structure features to predict key bond disconnections and leaving groups in single-step retrosynthesis. It provides an efficient tool for planning synthetic routes [208]. | https://github.com/zpczaizheli/Retro-MTGR (accessed on 20 August 2025) |
| 5 | LocalRetro | A retrosynthesis prediction model that integrates local molecular structure analysis with global attention mechanisms. It accurately designs synthetic routes for a broad range of drug-like molecules [209]. | https://github.com/kaist-amsg/LocalRetro (accessed on 20 August 2025) |
| 6 | RetroTRAE | An atom-environment-aware model that predicts reactants directly for single-step retrosynthesis. It learns chemical fragment patterns and achieves 61.6% accuracy on benchmark datasets, surpassing SMILES-based methods [210]. | https://github.com/knu-lcbc/RetroTRAE (accessed on 20 August 2025) |
| 7 | ReroSub | An end-to-end retrosynthesis model that automatically identifies conserved molecular substructures to simplify reaction prediction. It improves accuracy by over 5% compared with template-based approaches and removes the need for predefined reaction templates [211]. | https://github.com/fangleigit/RetroSub (accessed on 20 August 2025) |
| 8 | G2GT | A hybrid framework combining graph networks and Transformer architectures in an encoder–decoder design. It uses self-training to predict required reactants for a target molecule and guides retrosynthetic route construction with high precision [212]. | https://github.com/ZaiyunLin/G2GT_2 (accessed on 20 August 2025) |
| 9 | MolecularGET | A fusion model that combines graph neural networks with Transformer encoders to integrate structural and sequential chemical information. It enhances retrosynthesis prediction accuracy and accelerates route design [213]. | https://github.com/papercodekl/MolecularGET (accessed on 20 August 2025) |
| 10 | Graph2SMILES | A template-free neural model that predicts reactants or products directly from molecular graphs. It improves the accuracy of both retrosynthesis and forward reaction prediction without complex preprocessing [214]. | https://github.com/coleygroup/Graph2SMILES (accessed on 20 August 2025) |
| 11 | Graph2Edits | An edit-based architecture that applies stepwise graph modifications to infer feasible reactants from products. It achieves 55.1% accuracy in single-step prediction and performs well in complex multi-center transformations [208]. | https://github.com/Jamson-Zhong/Graph2Edits (accessed on 20 August 2025) |
| 12 | RetroPrime | A two-stage Transformer model that first decomposes a target molecule and then generates plausible reactant sets. It improves retrosynthesis accuracy while increasing diversity and chemical feasibility of predicted routes [215]. | https://github.com/wangxr0526/RetroPrime (accessed on 20 August 2025) |
| 13 | RAscore | A machine learning classifier that estimates synthetic accessibility scores for molecules. It enables large-scale prescreening to enrich chemical libraries with easily synthesizable compounds [202]. | https://github.com/reymond-group/Rascore (accessed on 20 August 2025) |
| 14 | T5Chem | A sequence-to-sequence model based on SMILES representation that unifies multiple chemistry tasks, including reaction prediction, retrosynthesis, classification, and yield estimation. It also supports model interpretability studies [204]. | https://github.com/HelloJocelynLu/t5chem (accessed on 20 August 2025) |
| 15 | GraphRXN | A graph neural network framework that analyzes 2D molecular structures of reactants and products to predict reaction outcomes. It demonstrates strong performance when trained with high-throughput experimental data [205]. | https://github.com/jidushanbojue/GraphRXN (accessed on 20 August 2025) |
| 16 | Geometric deep learning | A 3D-geometry-based framework that integrates structural information with high-throughput experimentation to predict late-stage functionalization outcomes such as yield and regioselectivity. It accelerates physicochemical property optimization for complex drug candidates [203]. | https://github.com/ETHmodlab/lsfml (accessed on 20 August 2025) |
3.7. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Prediction in Drug Discovery
4. Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, Y.L.; Yoo, H.S.; Hwang, J. Artificial intelligence-based decision support model for new drug development planning. Expert Syst. Appl. 2022, 198, 116825. [Google Scholar] [CrossRef] [PubMed]
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA 2020, 323, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 2016, 15, 817–818. [Google Scholar] [CrossRef]
- Dowden, H.; Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 2019, 18, 495–496. [Google Scholar] [CrossRef]
- Smietana, K.; Siatkowski, M.; Møller, M. Trends in clinical success rates. Nat. Rev. Drug Discov. 2016, 15, 379–380. [Google Scholar] [CrossRef]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Biotechnology Innovation Organization; Informa Pharma Intelligence; Quantitative Life Sciences Advisors. Clinical Development Success Rates and Contributing Factors 2011–2020. 2021. Available online: https://www.bio.org/clinical-development-success-rates-and-contributing-factors-2011-2020 (accessed on 20 February 2025).
- Peng, C.; Zhao, S.; Tang, L.; Wang, K.; Wang, Y.; Ding, L. A simplified and reliable LC-tandem mass spectrometry method for determination of ulipristal acetate in human plasma and its application to a pharmacokinetic study in healthy Chinese volunteers. Biomed. Chromatogr. 2020, 34, e4908. [Google Scholar] [CrossRef]
- Lyu, J.; Wang, S.; Balius, T.E.; Singh, I.; Levit, A.; Moroz, Y.S.; O’Meara, M.J.; Che, T.; Algaa, E.; Tolmachova, K.; et al. Ultra-large library docking for discovering new chemotypes. Nature 2019, 566, 224–229. [Google Scholar] [CrossRef]
- Talukder, M.E.K.; Atif, M.F.; Siddiquee, N.H.; Rahman, S.; Rafi, N.I.; Israt, S.; Shahir, N.F.; Islam, M.T.; Samad, A.; Wani, T.A.; et al. Molecular docking, QSAR, and simulation analyses of EGFR-targeting phytochemicals in non-small cell lung cancer. J. Mol. Struct. 2025, 1321, 139924. [Google Scholar] [CrossRef]
- Kaur, N.; Gupta, S.; Pal, J.; Bansal, Y.; Bansal, G. Design of BBB permeable BACE-1 inhibitor as potential drug candidate for Alzheimer disease: 2D-QSAR, molecular docking, ADMET, molecular dynamics, MMGBSA. Comput. Biol. Chem. 2025, 116, 108371. [Google Scholar] [CrossRef]
- Souza, A.S.; Amorim, V.M.F.; Soares, E.P.; de Souza, R.F.; Guzzo, C.R. Antagonistic Trends Between Binding Affinity and Drug-Likeness in SARS-CoV-2 Mpro Inhibitors Revealed by Machine Learning. Viruses 2025, 17, 935. [Google Scholar] [CrossRef]
- Maliyakkal, N.; Kumar, S.; Bhowmik, R.; Vishwakarma, H.C.; Yadav, P.; Mathew, B. Two-dimensional QSAR-driven virtual screening for potential therapeutics against Trypanosoma cruzi. Front. Chem. 2025, 13, 1600945. [Google Scholar] [CrossRef] [PubMed]
- Pun, F.W.; Ozerov, I.V.; Zhavoronkov, A. AI-powered therapeutic target discovery. Trends Pharmacol. Sci. 2023, 44, 561–572. [Google Scholar] [CrossRef]
- Cassan, O.; Lèbre, S.; Martin, A. Inferring and analyzing gene regulatory networks from multi-factorial expression data: A complete and interactive suite. BMC Genom. 2021, 22, 387. [Google Scholar] [CrossRef] [PubMed]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- Zhuo, C.; Gao, J.; Li, A.; Liu, X.; Zhao, Y. A Machine Learning Method for RNA–Small Molecule Binding Preference Prediction. J. Chem. Inf. Model. 2024, 64, 7386–7397. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Tang, D.; He, L.; Lin, S.; Lei, J.H.; Sun, H.; Xu, X.; Deng, C.-X. Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation. Pharmacol. Res. 2023, 194, 106830. [Google Scholar] [CrossRef]
- He, D.; Liu, Q.; Mi, Y.; Meng, Q.; Xu, L.; Hou, C.; Wang, J.; Li, N.; Liu, Y.; Chai, H.; et al. De Novo Generation and Identification of Novel Compounds with Drug Efficacy Based on Machine Learning. Adv. Sci. 2024, 11, 2307245. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xu, T.; Yu, Y.; Zhao, P.; Chen, X.; Han, J.; Xie, Z.; Li, H.; Zhong, W.; Wong, K.-C.; et al. A dual diffusion model enables 3D molecule generation and lead optimization based on target pockets. Nat. Commun. 2024, 15, 2657. [Google Scholar] [CrossRef]
- Zhou, G.; Rusnac, D.-V.; Park, H.; Canzani, D.; Nguyen, H.M.; Stewart, L.; Bush, M.F.; Nguyen, P.T.; Wulff, H.; Yarov-Yarovoy, V.; et al. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat. Commun. 2024, 15, 7761. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Li, F.; Bai, F. DeepSA: A deep-learning driven predictor of compound synthesis accessibility. J. Cheminform. 2023, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Struble, T.J.; Alvarez, J.C.; Brown, S.P.; Chytil, M.; Cisar, J.; DesJarlais, R.L.; Engkvist, O.; Frank, S.A.; Greve, D.R.; Griffin, D.J.; et al. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis. J. Med. Chem. 2020, 63, 8667–8682. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wang, N.; Zhou, J.; Ouyang, D. Organic crystal structure prediction via coupled generative adversarial networks and graph convolutional networks. Innovation 2024, 5, 100562. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, Y.-M.; Wang, X.; Liu, X.; Zhang, X.; Li, Y.; Lv, Q.; Chen, C.Y.-C.; Shen, L. Scalable crystal structure relaxation using an iteration-free deep generative model with uncertainty quantification. Nat. Commun. 2024, 15, 8148. [Google Scholar] [CrossRef]
- Ryan, K.; Lengyel, J.; Shatruk, M. Crystal Structure Prediction via Deep Learning. J. Am. Chem. Soc. 2018, 140, 10158–10168. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Aliper, A.; Chen, J.; Zhao, H.; Rao, S.; Kuppe, C.; Ozerov, I.V.; Zhang, M.; Witte, K.; Kruse, C.; et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat. Biotechnol. 2025, 43, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.; Zheng, E.J.; Valeri, J.A.; Donghia, N.M.; Anahtar, M.N.; Omori, S.; Li, A.; Cubillos-Ruiz, A.; Krishnan, A.; Jin, W.; et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 2024, 626, 177. [Google Scholar] [CrossRef]
- Nobel Prize in Chemistry 2024. Available online: https://www.nature.com/collections/edjcfdihdi (accessed on 16 December 2024).
- Van de Sande, B.; Lee, J.S.; Mutasa-Gottgens, E.; Naughton, B.; Bacon, W.; Manning, J.; Wang, Y.; Pollard, J.; Mendez, M.; Hill, J.; et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 2023, 22, 496–520. [Google Scholar] [CrossRef]
- Yang, F.; Wang, W.; Wang, F.; Fang, Y.; Tang, D.; Huang, J.; Lu, H.; Yao, J. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 2022, 4, 852–866. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Ma, A.; Wang, Q.-E.; Liu, B.; Li, L.; Xu, D.; Ma, Q. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat. Commun. 2022, 13, 6494. [Google Scholar] [CrossRef]
- Hou, R.; Xie, C.; Gui, Y.; Li, G.; Li, X. Machine-Learning-Based Data Analysis Method for Cell-Based Selection of DNA-Encoded Libraries. ACS Omega 2023, 8, 19057–19071. [Google Scholar] [CrossRef] [PubMed]
- Recursion. Recursion’s Drug Pipeline. Available online: https://www.recursion.com/pipeline (accessed on 20 February 2025).
- Insilico Medicine. Insilico Medicine’s Drug Pipeline. Available online: https://insilico.com/ (accessed on 20 February 2025).
- Relay Therapeutics. Relay Therapeutics’s Drug Pipeline. Available online: https://relaytx.com/pipeline/ (accessed on 20 February 2025).
- Exscientia. Exscientia’s Drug Pipeline. Available online: https://www.exscientia.com/pipeline/ (accessed on 20 February 2025).
- Signet Therapeutics. Signet Therapeutics’ Drug Pipeline. Available online: https://www.signettx.com/about/ (accessed on 20 February 2025).
- BeiGene. BeiGene’s Drug Pipeline. Available online: https://www.beonemedicines.com.cn/science/pipeline/ (accessed on 20 February 2025).
- RedCloud Bio. RedCloud Bio’s Drug Pipeline. Available online: http://www.redcloudbio.com/en/h-col-105.html (accessed on 20 February 2025).
- Accutar Biotech. Accutar Biotech’s Drug Pipeline. Available online: https://www.accutarbio.com/workflow/ (accessed on 20 February 2025).
- MindRank. MindRank’s Drug Pipeline. Available online: https://www.mindrank.ai/zh-CN/pipeline (accessed on 20 February 2025).
- Drug Farm. Drug Farm’s Drug Pipeline. Available online: https://www.drug-farm.com/pipeline (accessed on 20 February 2025).
- OrphAI Therapeutics. OrphAI Therapeutics’s Drug Pipline. Available online: https://www.orphai-therapeutics.com/pipeline (accessed on 20 February 2025).
- Healx. Healx’s Drug Pipeline. Available online: https://healx.ai/pipeline/ (accessed on 20 February 2025).
- BioAge. BioAge’s Drug Pipeline. Available online: https://bioagelabs.com/apj (accessed on 20 February 2025).
- BioXcel Therapeutics. BioXcel Therapeutics’s Drug Pipeline. Available online: https://www.bioxceltherapeutics.com/our-pipeline/ (accessed on 20 February 2025).
- Evaxion Biotech. Evaxion Biotech’s Drug Pipeline. Available online: https://evaxion.ai/pipeline (accessed on 20 February 2025).
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackerman, Z.; et al. A deep learning approach to antibiotic discovery. Cell 2020, 180, 688–702. [Google Scholar] [CrossRef]
- Arab, I.; Egghe, K.; Laukens, K.; Chen, K.; Barakat, K.; Bittremieux, W. Benchmarking of Small Molecule Feature Representations for hERG, Nav1.5, and Cav1.2 Cardiotoxicity Prediction. J. Chem. Inf. Model. 2024, 64, 2515–2527. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, N.; Gehlot, A. Application of artificial intelligence in drug design: A review. Comput. Biol. Med. 2024, 179, 108810. [Google Scholar] [CrossRef]
- Glielmo, A.; Husic, B.E.; Rodriguez, A.; Clementi, C.; Noé, F.; Laio, A. Unsupervised Learning Methods for Molecular Simulation Data. Chem. Rev. 2021, 121, 9722–9758. [Google Scholar] [CrossRef]
- Cihan Sorkun, M.; Mullaj, D.; Koelman, J.M.V.A.; Er, S. ChemPlot, a Python Library for Chemical Space Visualization. Chem. –Methods 2022, 2, e202200005. [Google Scholar] [CrossRef]
- van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef]
- Niu, Q.; Li, H.; Tong, L.; Liu, S.; Zong, W.; Zhang, S.; Tian, S.; Wang, J.; Liu, J.; Li, B.; et al. TCMFP: A novel herbal formula prediction method based on network target’s score integrated with semi-supervised learning genetic algorithms. Brief. Bioinform. 2023, 24, bbad102. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lu, L.; Li, J.; Jiang, J.; Zhang, J.; Zhou, S.; Wen, H.; Cai, H.; Luo, X.; Li, Z.; et al. Synthetically Feasible De Novo Molecular Design of Leads Based on a Reinforcement Learning Model: AI-Assisted Discovery of an Anti-IBD Lead Targeting CXCR4. J. Med. Chem. 2024, 67, 10057–10075. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Z.; Chang, J.; Yu, B. Thinking on the Use of Artificial Intelligence in Drug Discovery. J. Med. Chem. 2025, 68, 4996–4999. [Google Scholar] [CrossRef] [PubMed]
- Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement Learning, Fast and Slow. Trends Cogn. Sci. 2019, 23, 408–422. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tu, S.; Xu, L. Multilevel Attention Network with Semi-supervised Domain Adaptation for Drug-Target Prediction. Proc. AAAI Conf. Artif. Intell. 2024, 38, 329–337. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Kusumoto, D.; Seki, T.; Sawada, H.; Kunitomi, A.; Katsuki, T.; Kimura, M.; Ito, S.; Komuro, J.; Hashimoto, H.; Fukuda, K.; et al. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat. Commun. 2021, 12, 257. [Google Scholar] [CrossRef]
- Grebner, C.; Matter, H.; Plowright, A.T.; Hessler, G. Automated De Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn? J. Med. Chem. 2020, 63, 8809–8823. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zeng, X.; Li, Y.; Li, P.; Ye, X.; Sakurai, T. Molecular language models: RNNs or transformer? Brief. Funct. Genom. 2023, 22, 392–400. [Google Scholar] [CrossRef]
- Shor, B.; Schneidman-Duhovny, D. DockFormer: Efficient Multi-Modal Receptor-Ligand Interaction Prediction using Pair Transformer. bioRxiv 2024. [Google Scholar] [CrossRef]
- Su, X.; Hu, P.; You, Z.-H.; Yu, P.S.; Hu, L. Dual-Channel Learning Framework for Drug-Drug Interaction Prediction via Relation-Aware Heterogeneous Graph Transformer. Proc. AAAI Conf. Artif. Intell. 2024, 38, 249–256. [Google Scholar] [CrossRef]
- Teng, S.; Yin, C.; Wang, Y.; Chen, X.; Yan, Z.; Cui, L.; Wei, L. MolFPG: Multi-level fingerprint-based Graph Transformer for accurate and robust drug toxicity prediction. Comput. Biol. Med. 2023, 164, 106904. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.-W.; Chen, D.; Liu, J. TopoFormer: Multiscale Topology-enabled Structure-to-Sequence Transformer for Protein-Ligand Interaction Predictions. Nat. Mach. Intell. 2024, 6, 799–810. [Google Scholar]
- Jiang, L.; Jiang, C.; Yu, X.; Fu, R.; Jin, S.; Liu, X. DeepTTA: A transformer-based model for predicting cancer drug response. Brief. Bioinform. 2022, 23, bbac100. [Google Scholar] [CrossRef]
- Zhang, O.; Lin, H.; Zhang, H.; Zhao, H.; Huang, Y.; Hsieh, C.-Y.; Pan, P.; Hou, T. Deep Lead Optimization: Leveraging Generative AI for Structural Modification. J. Am. Chem. Soc. 2024, 146, 31357–31370. [Google Scholar] [CrossRef]
- Wang, F.; Feng, X.; Kong, R.; Chang, S.; Wang, F.; Feng, X.; Kong, R.; Chang, S. Generating new protein sequences by using dense network and attention mechanism. Math. Biosci. Eng. 2023, 20, 4178–4197. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, F.; Luo, Y.; Kang, S.-g.; Tang, J.; Lightstone, F.C.; Fang, E.F.; Cornell, W.; Nussinov, R.; Cheng, F. Deep generative molecular design reshapes drug discovery. Cell Rep. Med. 2022, 3, 100794. [Google Scholar] [CrossRef]
- Guimaraes, G.L.; Sanchez-Lengeling, B.; Outeiral, C.; Farias, P.L.C.; Aspuru-Guzik, A. Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models. arXiv 2017, arXiv:1705.10843. [Google Scholar]
- Hu, C.; Li, S.; Yang, C.; Chen, J.; Xiong, Y.; Fan, G.; Liu, H.; Hong, L. ScaffoldGVAE: Scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks. J. Cheminform. 2023, 15, 91. [Google Scholar] [CrossRef]
- Wang, M.; Hsieh, C.-Y.; Wang, J.; Wang, D.; Weng, G.; Shen, C.; Yao, X.; Bing, Z.; Li, H.; Cao, D.; et al. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design. J. Med. Chem. 2022, 65, 9478–9492. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Liu, X.; Tan, X.; Li, X.; Jiang, J.; Xiong, Z.; Xu, T.; Jiang, H.; Qiao, N.; Zheng, M. Generative Models for De Novo Drug Design. J. Med. Chem. 2021, 64, 14011–14027. [Google Scholar] [CrossRef] [PubMed]
- Ragoza, M.; Masuda, T.; Koes, D.R. Generating 3D molecules conditional on receptor binding sites with deep generative models. Chem. Sci. 2022, 13, 2701–2713. [Google Scholar] [CrossRef]
- Skalic, M.; Jiménez, J.; Sabbadin, D.; De Fabritiis, G. Shape-Based Generative Modeling for de Novo Drug Design. J. Chem. Inf. Model. 2019, 59, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- DeepSeek-AI; Guo, D.; Yang, D.; Zhang, H.; Song, J.-M.; Zhang, R.; Xu, R.; Zhu, Q.; Ma, S.; Wang, P.; et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv 2025, arXiv:abs/2501.12948. [Google Scholar]
- Anthropic, S. Model Card Addendum: Claude 3.5 Haiku and Upgraded Claude 3.5 Sonnet. 2024. Available online: https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf (accessed on 20 February 2025).
- Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.; Letman, A.; Mathur, A.; Schelten, A.; Yang, A.; Fan, A.; et al. The Llama 3 Herd of Models. arXiv 2024, arXiv:2407.21783. [Google Scholar] [CrossRef]
- El-Kishky, A.; Wei, A.; Saraiva, A.; Minaev, B.; Selsam, D.; Dohan, D.; Song, F.; Lightman, H.; Clavera, I.; Pachocki, J.W.; et al. Competitive Programming with Large Reasoning Models. arXiv 2025, arXiv:2502.06807. [Google Scholar]
- Lin, A.; Ye, J.; Qi, C.; Zhu, L.; Mou, W.; Gan, W.; Zeng, D.; Tang, B.; Xiao, M.; Chu, G.; et al. Bridging artificial intelligence and biological sciences: A comprehensive review of large language models in bioinformatics. Brief. Bioinform. 2025, 26, bbaf357. [Google Scholar] [CrossRef]
- Wu, Z.; Ramsundar, B.; Feinberg, E.N.; Gomes, J.; Geniesse, C.; Pappu, A.S.; Leswing, K.; Pande, V. MoleculeNet: A benchmark for molecular machine learning. Chem. Sci. 2018, 9, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Fu, T.; Gao, W.; Zhao, Y.; Roohani, Y.; Leskovec, J.; Coley, C.W.; Xiao, C.; Sun, J.; Zitnik, M. Artificial intelligence foundation for therapeutic science. Nat. Chem. Biol. 2022, 18, 1033–1036. [Google Scholar] [CrossRef]
- Xu, L.-C.; Tang, M.-J.; An, J.; Cao, F.; Qi, Y. A unified pre-trained deep learning framework for cross-task reaction performance prediction and synthesis planning. Nat. Mach. Intell. 2025, 7, 1561–1571. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Dou, B.; Zhu, Z.; Merkurjev, E.; Ke, L.; Chen, L.; Jiang, J.; Zhu, Y.; Liu, J.; Zhang, B.; Wei, G.-W. Machine Learning Methods for Small Data Challenges in Molecular Science. Chem. Rev. 2023, 123, 8736–8780. [Google Scholar] [CrossRef]
- Asfand-e-yar, M.; Hashir, Q.; Shah, A.A.; Malik, H.A.M.; Alourani, A.; Khalil, W. Multimodal CNN-DDI: Using multimodal CNN for drug to drug interaction associated events. Sci. Rep. 2024, 14, 4076. [Google Scholar] [CrossRef]
- Chen, S.; Li, T.; Yang, L.; Zhai, F.; Jiang, X.; Xiang, R.; Ling, G. Artificial intelligence-driven prediction of multiple drug interactions. Brief. Bioinform. 2022, 23, bbac427. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Carvalho, F.G.; Ribeiro, B.; Arrais, J.P. Predicting drug activity against cancer through genomic profiles and SMILES. Artif. Intell. Med. 2024, 150, 102820. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Isigkeit, L.; Hörmann, T.; Schallmayer, E.; Scholz, K.; Lillich, F.F.; Ehrler, J.H.M.; Hufnagel, B.; Büchner, J.; Marschner, J.A.; Pabel, J.; et al. Automated design of multi-target ligands by generative deep learning. Nat. Commun. 2024, 15, 7946. [Google Scholar] [CrossRef]
- Huang, K.; Chandak, P.; Wang, Q.; Havaldar, S.; Vaid, A.; Leskovec, J.; Nadkarni, G.N.; Glicksberg, B.S.; Gehlenborg, N.; Zitnik, M. A foundation model for clinician-centered drug repurposing. Nat. Med. 2024, 30, 3601–3613. [Google Scholar] [CrossRef]
- Lim, J.; Ryu, S.; Park, K.; Choe, Y.J.; Ham, J.; Kim, W.Y. Predicting Drug–Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation. J. Chem. Inf. Model. 2019, 59, 3981–3988. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.Y.; Leung, C.K.; Hu, P. iNGNN-DTI: Prediction of drug–target interaction with interpretable nested graph neural network and pretrained molecule models. Bioinformatics 2024, 40, btae135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, L.; Zhong, F.; Wang, D.; Jiang, J.; Zhang, S.; Jiang, H.; Zheng, M.; Li, X. Graph neural network approaches for drug-target interactions. Curr. Opin. Struct. Biol. 2022, 73, 102327. [Google Scholar] [CrossRef]
- Ng, S.S.S.; Lu, Y. Evaluating the Use of Graph Neural Networks and Transfer Learning for Oral Bioavailability Prediction. J. Chem. Inf. Model. 2023, 63, 5035–5044. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, W.; Zhao, L.; Chen, C.Y.-C. MGraphDTA: Deep multiscale graph neural network for explainable drug–target binding affinity prediction. Chem. Sci. 2022, 13, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hua, L.; Ma, Z.; Hu, W.; Liu, Y.; Zhu, J. Conformalized Graph Learning for Molecular ADMET Property Prediction and Reliable Uncertainty Quantification. J. Chem. Inf. Model. 2024, 64, 8705–8717. [Google Scholar] [CrossRef]
- Heid, E.; Greenman, K.P.; Chung, Y.; Li, S.-C.; Graff, D.E.; Vermeire, F.H.; Wu, H.; Green, W.H.; McGill, C.J. Chemprop: A Machine Learning Package for Chemical Property Prediction. J. Chem. Inf. Model. 2024, 64, 9–17. [Google Scholar] [CrossRef]
- Bai, P.; Miljković, F.; John, B.; Lu, H. Interpretable bilinear attention network with domain adaptation improves drug–target prediction. Nat. Mach. Intell. 2023, 5, 126–136. [Google Scholar] [CrossRef]
- Vaswani, A. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035 (accessed on 15 February 2025).
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Mao, J.; Wang, J.; Zeb, A.; Cho, K.-H.; Jin, H.; Kim, J.; Lee, O.; Wang, Y.; No, K.T. Transformer-Based Molecular Generative Model for Antiviral Drug Design. J. Chem. Inf. Model. 2024, 64, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- OpenAi; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; et al. GPT-4 Technical Report. arXiv 2024, arXiv:2303.08774. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; p. 159. [Google Scholar]
- Liu, S.; Wang, J.; Yang, Y.; Wang, C.; Liu, L.; Guo, H.; Xiao, C. Chatgpt-powered conversational drug editing using retrieval and domain feedback. arXiv 2023, arXiv:2305.18090. [Google Scholar]
- Greenblatt, J.F.; Alberts, B.M.; Krogan, N.J. Discovery and significance of protein-protein interactions in health and disease. Cell 2024, 187, 6501–6517. [Google Scholar] [CrossRef]
- Lim, Y.; Tamayo-Orrego, L.; Schmid, E.; Tarnauskaite, Z.; Kochenova, O.V.; Gruar, R.; Muramatsu, S.; Lynch, L.; Schlie, A.V.; Carroll, P.L.; et al. In silico protein interaction screening uncovers DONSON’s role in replication initiation. Science 2023, 381, eadi3448. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Díaz-Holguín, A.; Saarinen, M.; Vo, D.D.; Sturchio, A.; Branzell, N.; Cabeza de Vaca, I.; Hu, H.; Mitjavila-Domènech, N.; Lindqvist, A.; Baranczewski, P.; et al. AlphaFold accelerated discovery of psychotropic agonists targeting the trace amine–associated receptor 1. Sci. Adv. 2024, 10, eadn1524. [Google Scholar] [CrossRef]
- Bernatavicius, A.; Šícho, M.; Janssen, A.P.A.; Hassen, A.K.; Preuss, M.; van Westen, G.J.P. AlphaFold Meets De Novo Drug Design: Leveraging Structural Protein Information in Multitarget Molecular Generative Models. J. Chem. Inf. Model. 2024, 64, 8113–8122. [Google Scholar] [CrossRef]
- Ren, F.; Ding, X.; Zheng, M.; Korzinkin, M.; Cai, X.; Zhu, W.; Mantsyzov, A.; Aliper, A.; Aladinskiy, V.; Cao, Z.; et al. AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci. 2023, 14, 1443–1452. [Google Scholar] [CrossRef]
- Michaud, J.M.; Madani, A.; Fraser, J.S. A language model beats alphafold2 on orphans. Nat. Biotechnol. 2022, 40, 1576–1577. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022, 50, D1398–D1407. [Google Scholar] [CrossRef]
- Finan, C.; Gaulton, A.; Kruger, F.A.; Lumbers, R.T.; Shah, T.; Engmann, J.; Galver, L.; Kelley, R.; Karlsson, A.; Santos, R.; et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 2017, 9, eaag1166. [Google Scholar] [CrossRef] [PubMed]
- Kana, O.; Brylinski, M. Elucidating the druggability of the human proteome with eFindSite. J. Comput. Aided Mol. Des. 2019, 33, 509–519. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Xie, Y.; Jiang, H.; Guo, J.; Wang, Y.; Peng, Z.; Hu, M.; Wang, M.; Wang, J.; et al. Deacetylation induced nuclear condensation of HP1gamma promotes multiple myeloma drug resistance. Nat. Commun. 2023, 14, 1290. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Chen, L.; Liu, S.; Ma, J.; Cao, Z.; Li, Q. DUT enhances drug resistance to proteasome inhibitors via promoting mitochondrial function in multiple myeloma. Carcinogenesis 2022, 43, 1030–1038. [Google Scholar] [CrossRef]
- Qi, T.F.; Tang, F.; Yin, J.; Miao, W.; Wang, Y. Parallel-reaction monitoring revealed altered expression of a number of epitranscriptomic reader, writer, and eraser proteins accompanied with colorectal cancer metastasis. Proteomics 2023, 23, e2200059. [Google Scholar] [CrossRef] [PubMed]
- Nidhi, S.; Anand, U.; Oleksak, P.; Tripathi, P.; Lal, J.A.; Thomas, G.; Kuca, K.; Tripathi, V. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int. J. Mol. Sci. 2021, 22, 3327. [Google Scholar] [CrossRef]
- Ramkumar, P.; Abarientos, A.B.; Tian, R.; Seyler, M.; Leong, J.T.; Chen, M.; Choudhry, P.; Hechler, T.; Shah, N.; Wong, S.W.; et al. CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Adv. 2020, 4, 2899–2911. [Google Scholar] [CrossRef]
- Raivola, J.; Dini, A.; Karvonen, H.; Piki, E.; Salokas, K.; Niininen, W.; Kaleva, L.; Zhang, K.; Arjama, M.; Gudoityte, G.; et al. Multiomics characterization implicates PTK7 in ovarian cancer EMT and cell plasticity and offers strategies for therapeutic intervention. Cell Death Dis. 2022, 13, 714. [Google Scholar] [CrossRef]
- Gulfidan, G.; Soylu, M.; Demirel, D.; Erdonmez, H.B.C.; Beklen, H.; Ozbek Sarica, P.; Arga, K.Y.; Turanli, B. Systems biomarkers for papillary thyroid cancer prognosis and treatment through multi-omics networks. Arch Biochem. Biophys. 2022, 715, 109085. [Google Scholar] [CrossRef] [PubMed]
- Assum, I.; Krause, J.; Scheinhardt, M.O.; Muller, C.; Hammer, E.; Borschel, C.S.; Volker, U.; Conradi, L.; Geelhoed, B.; Zeller, T.; et al. Tissue-specific multi-omics analysis of atrial fibrillation. Nat. Commun. 2022, 13, 441. [Google Scholar] [CrossRef]
- Abell, N.S.; DeGorter, M.K.; Gloudemans, M.J.; Greenwald, E.; Smith, K.S.; He, Z.; Montgomery, S.B. Multiple causal variants underlie genetic associations in humans. Science 2022, 375, 1247–1254. [Google Scholar] [CrossRef]
- Namba, S.; Konuma, T.; Wu, K.H.; Zhou, W.; Global Biobank Meta-analysis, I.; Okada, Y. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genom. 2022, 2, 100190. [Google Scholar] [CrossRef]
- Deelen, J.; Evans, D.S.; Arking, D.E.; Tesi, N.; Nygaard, M.; Liu, X.; Wojczynski, M.K.; Biggs, M.L.; van der Spek, A.; Atzmon, G.; et al. Publisher Correction: A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 2021, 12, 2463. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug. Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Lo, Y.C.; Senese, S.; Damoiseaux, R.; Torres, J.Z. 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping. ACS Chem. Biol. 2016, 11, 2244–2253. [Google Scholar] [CrossRef]
- Wolber, G.; Seidel, T.; Bendix, F.; Langer, T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today 2008, 13, 23–29. [Google Scholar] [CrossRef]
- Mamoshina, P.; Volosnikova, M.; Ozerov, I.V.; Putin, E.; Skibina, E.; Cortese, F.; Zhavoronkov, A. Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification. Front. Genet. 2018, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Theodoris, C.V.; Xiao, L.; Chopra, A.; Chaffin, M.D.; Al Sayed, Z.R.; Hill, M.C.; Mantineo, H.; Brydon, E.M.; Zeng, Z.; Liu, X.S.; et al. Transfer learning enables predictions in network biology. Nature 2023, 618, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Fan, R.; Cui, C.; Cui, Q. Comprehensive prediction and analysis of human protein essentiality based on a pretrained large language model. Nat. Comput. Sci. 2025, 5, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cooper-Knock, J.; Weimer, A.K.; Shi, M.; Moll, T.; Marshall, J.N.G.; Harvey, C.; Nezhad, H.G.; Franklin, J.; Souza, C.D.S.; et al. Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron 2022, 110, 992–1008.e11. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, S.; Lu, W.; Liu, Z.; Huang, J.; Zhou, Y.; Fang, J.; Huang, Y.; Guo, H.; Li, L.; et al. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci. 2020, 11, 1775–1797. [Google Scholar] [CrossRef]
- Zhou, L.; Lian, G.; Zhou, T.; Cai, Z.; Yang, S.; Li, W.; Cheng, L.; Ye, Y.; He, M.; Lu, J.; et al. Palmitoylation of GPX4 via the targetable ZDHHC8 determines ferroptosis sensitivity and antitumor immunity. Nat. Cancer 2025, 6, 768–785. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, K.; Repasky, M.P.; Leswing, K.; Abel, R.; Shoichet, B.K.; Jerome, S.V. Efficient Exploration of Chemical Space with Docking and Deep Learning. J. Chem. Theory Comput. 2021, 17, 7106–7119. [Google Scholar] [CrossRef]
- Singh, R.; Sledzieski, S.; Bryson, B.; Cowen, L.; Berger, B. Contrastive learning in protein language space predicts interactions between drugs and protein targets. Proc. Natl. Acad. Sci. USA 2023, 120, e2220778120. [Google Scholar] [CrossRef]
- Schade, A.E.; Perurena, N.; Yang, Y.; Rodriguez, C.L.; Krishnan, A.; Gardner, A.; Loi, P.; Xu, Y.; Nguyen, V.T.M.; Mastellone, G.M.; et al. AKT and EZH2 inhibitors kill TNBCs by hijacking mechanisms of involution. Nature 2024, 635, 755–763. [Google Scholar] [CrossRef]
- Gentile, F.; Yaacoub, J.C.; Gleave, J.; Fernandez, M.; Ton, A.T.; Ban, F.; Stern, A.; Cherkasov, A. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat. Protoc. 2022, 17, 672–697. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.; Agarwal, R.; Baker, M.B.; Baudry, J.; Bhowmik, D.; Boehm, S.; Byler, K.G.; Chen, S.Y.; Coates, L.; Cooper, C.J.; et al. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. J. Chem. Inf. Model. 2020, 60, 5832–5852. [Google Scholar] [CrossRef] [PubMed]
- Puszkarska, A.M.; Taddese, B.; Revell, J.; Davies, G.; Field, J.; Hornigold, D.C.; Buchanan, A.; Vaughan, T.J.; Colwell, L.J. Machine learning designs new GCGR/GLP-1R dual agonists with enhanced biological potency. Nat. Chem. 2024, 16, 1436–1444. [Google Scholar] [CrossRef]
- Trinh, T.C.; Falson, P.; Tran-Nguyen, V.K.; Boumendjel, A. Ligand-Based Drug Discovery Leveraging State-of-the-Art Machine Learning Methodologies Exemplified by Cdr1 Inhibitor Prediction. J. Chem. Inf. Model. 2025, 65, 4027–4042. [Google Scholar] [CrossRef]
- Hansson, F.G.; Madsen, N.G.; Hansen, L.G.; Jakociunas, T.; Lengger, B.; Keasling, J.D.; Jensen, M.K.; Acevedo-Rocha, C.G.; Jensen, E.D. Labels as a feature: Network homophily for systematically annotating human GPCR drug-target interactions. Nat. Commun. 2025, 16, 4121. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, H.; Li, Y.Y.; Sun, Y.; Deng, C.; Lac, L.; Davis, R.; Cardona, S.T.; Hu, P. GraphBAN: An inductive graph-based approach for enhanced prediction of compound-protein interactions. Nat. Commun. 2025, 16, 2541. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Song, G.; Zhu, H.; Lei, C.; Sun, X.; Wang, K.; Qin, L.; Chen, Y.; Tang, J.; Li, M. DTIAM: A unified framework for predicting drug-target interactions, binding affinities and drug mechanisms. Nat. Commun. 2025, 16, 2548. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Yan, X.; Wang, L.; Qiu, J.; Yao, X.; Liu, H. A Specialized and Enhanced Deep Generation Model for Active Molecular Design Targeting Kinases Guided by Affinity Prediction Models and Reinforcement Learning. J. Chem. Inf. Model. 2025, 65, 3294–3308. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Zuo, Y.; Deng, Z.; Pan, X.; Shen, H.B.; Choi, K.S.; Yu, D.J. MINDG: A drug-target interaction prediction method based on an integrated learning algorithm. Bioinformatics 2024, 40, btae147. [Google Scholar] [CrossRef]
- Moon, S.; Hwang, S.-Y.; Lim, J.; Kim, W.Y. PIGNet2: A versatile deep learning-based protein–ligand interaction prediction model for binding affinity scoring and virtual screening. Digit. Discov. 2024, 3, 287–299. [Google Scholar] [CrossRef]
- Cai, H.; Shen, C.; Jian, T.; Zhang, X.; Chen, T.; Han, X.; Yang, Z.; Dang, W.; Hsieh, C.Y.; Kang, Y.; et al. CarsiDock: A deep learning paradigm for accurate protein-ligand docking and screening based on large-scale pre-training. Chem. Sci. 2024, 15, 1449–1471. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Stokes, J.M.; Eastman, R.T.; Itkin, Z.; Zakharov, A.V.; Collins, J.J.; Jaakkola, T.S.; Barzilay, R. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2105070118. [Google Scholar] [CrossRef]
- Liu, G.; Catacutan, D.B.; Rathod, K.; Swanson, K.; Jin, W.; Mohammed, J.C.; Chiappino-Pepe, A.; Syed, S.A.; Fragis, M.; Rachwalski, K.; et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 2023, 19, 1342–1350. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, X.; Lu, X.; Zhao, L.; Zeng, Q.; Chen, F.; Zhang, Z.; Xu, M.; Feng, S.; Fan, T.; et al. A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori. Signal Transduct. Target. Ther. 2024, 9, 183. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-W.; Shi, T.-Y.; Gao, D.; Ma, C.-Y.; Lin, H.; Yan, D.; Deng, K.-J. iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms. J. Chem. Inf. Model. 2023, 63, 4960–4969. [Google Scholar] [CrossRef]
- Gerdes, H.; Casado, P.; Dokal, A.; Hijazi, M.; Akhtar, N.; Osuntola, R.; Rajeeve, V.; Fitzgibbon, J.; Travers, J.; Britton, D.; et al. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat. Commun. 2021, 12, 1850. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Liu, Z.; Huang, N.; Xiao, Z.; Zhang, H.; Mirzoyan, S.; Xu, H.; Hao, J.; Xu, Y.; Zhang, M.; et al. A bioactivity foundation model using pairwise meta-learning. Nat. Mach. Intell. 2024, 6, 962–974. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, X.; Zeng, X.; Wang, W.; Deng, Y.; Cao, D. Enhancing Molecular Property Prediction through Task-Oriented Transfer Learning: Integrating Universal Structural Insights and Domain-Specific Knowledge. J. Med. Chem. 2024, 67, 9575–9586. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, H.; Zhao, D.; Wu, J.; Wang, L. FP-GNN: A versatile deep learning architecture for enhanced molecular property prediction. Brief. Bioinform. 2022, 23, bbac408. [Google Scholar] [CrossRef]
- Ahmad, W.; Simon, E.; Chithrananda, S.; Grand, G.; Ramsundar, B. Chemberta-2: Towards chemical foundation models. arXiv 2022, arXiv:2209.01712. [Google Scholar] [CrossRef]
- Zhou, G.; Gao, Z.; Ding, Q.; Zheng, H.; Xu, H.; Wei, Z.; Zhang, L.; Ke, G. Uni-mol: A universal 3d molecular representation learning framework. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Chang, J.; Ye, J.C. Bidirectional generation of structure and properties through a single molecular foundation model. Nat. Commun. 2024, 15, 2323. [Google Scholar] [CrossRef]
- Ross, J.; Belgodere, B.; Chenthamarakshan, V.; Padhi, I.; Mroueh, Y.; Das, P. Large-scale chemical language representations capture molecular structure and properties. Nat. Mach. Intell. 2022, 4, 1256–1264. [Google Scholar] [CrossRef]
- Virshup, A.M.; Contreras-García, J.; Wipf, P.; Yang, W.; Beratan, D.N. Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds. J. Am. Chem. Soc. 2013, 135, 7296–7303. [Google Scholar] [CrossRef]
- Polishchuk, P.G.; Madzhidov, T.I.; Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput.-Aided Mol. Des. 2013, 27, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Tropsha, A.; Isayev, O.; Varnek, A.; Schneider, G.; Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov. 2024, 23, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Martins, L.; Cino, E.A.; Ferreira, R.S. PyAutoFEP: An Automated Free Energy Perturbation Workflow for GROMACS Integrating Enhanced Sampling Methods. J. Chem. Theory Comput. 2021, 17, 4262–4273. [Google Scholar] [CrossRef]
- Schneuing, A.; Harris, C.; Du, Y.; Didi, K.; Jamasb, A.; Igashov, I.; Du, W.; Gomes, C.; Blundell, T.L.; Lio, P.; et al. Structure-based drug design with equivariant diffusion models. Nat. Comput. Sci. 2024, 4, 899–909. [Google Scholar] [CrossRef]
- Li, P.; Zhang, K.; Liu, T.; Lu, R.; Chen, Y.; Yao, X.; Gao, L.; Zeng, X. A deep learning approach for rational ligand generation with toxicity control via reactive building blocks. Nat. Comput. Sci. 2024, 4, 851–864. [Google Scholar] [CrossRef]
- Hu, Q.; Sun, C.; He, H.; Xu, J.; Liu, D.; Zhang, W.; Shi, S.; Zhang, K.; Li, H. Target-aware 3D molecular generation based on guided equivariant diffusion. Nat. Commun. 2025, 16, 7928. [Google Scholar] [CrossRef]
- Godinez, W.J.; Ma, E.J.; Chao, A.T.; Pei, L.; Skewes-Cox, P.; Canham, S.M.; Jenkins, J.L.; Young, J.M.; Martin, E.J.; Guiguemde, W.A. Design of potent antimalarials with generative chemistry. Nat. Mach. Intell. 2022, 4, 180–186. [Google Scholar] [CrossRef]
- Swanson, K.; Liu, G.; Catacutan, D.B.; Arnold, A.; Zou, J.; Stokes, J.M. Generative AI for designing and validating easily synthesizable and structurally novel antibiotics. Nat. Mach. Intell. 2024, 6, 338–353. [Google Scholar] [CrossRef]
- Wu, K.; Xia, Y.; Deng, P.; Liu, R.; Zhang, Y.; Guo, H.; Cui, Y.; Pei, Q.; Wu, L.; Xie, S.; et al. TamGen: Drug design with target-aware molecule generation through a chemical language model. Nat. Commun. 2024, 15, 9360. [Google Scholar] [CrossRef]
- Skinnider, M.A.; Stacey, R.G.; Wishart, D.S.; Foster, L.J. Chemical language models enable navigation in sparsely populated chemical space. Nat. Mach. Intell. 2021, 3, 759–770. [Google Scholar] [CrossRef]
- Flam-Shepherd, D.; Zhu, K.; Aspuru-Guzik, A. Language models can learn complex molecular distributions. Nat. Commun. 2022, 13, 3293. [Google Scholar] [CrossRef]
- Grisoni, F. Chemical language models for de novo drug design: Challenges and opportunities. Curr. Opin. Struct. Biol. 2023, 79, 102527. [Google Scholar] [CrossRef]
- Tong, X.; Qu, N.; Kong, X.; Ni, S.; Zhou, J.; Wang, K.; Zhang, L.; Wen, Y.; Shi, J.; Zhang, S.; et al. Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery. Nat. Commun. 2024, 15, 5378. [Google Scholar] [CrossRef]
- Tan, Y.; Dai, L.; Huang, W.; Guo, Y.; Zheng, S.; Lei, J.; Chen, H.; Yang, Y. DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design. J. Chem. Inf. Model. 2022, 62, 5907–5917. [Google Scholar] [CrossRef]
- Guo, J.; Knuth, F.; Margreitter, C.; Janet, J.P.; Papadopoulos, K.; Engkvist, O.; Patronov, A. Link-INVENT: Generative linker design with reinforcement learning. Digit. Discov. 2023, 2, 392–408. [Google Scholar] [CrossRef]
- Zheng, S.; Lei, Z.; Ai, H.; Chen, H.; Deng, D.; Yang, Y. Deep scaffold hopping with multimodal transformer neural networks. J. Cheminform. 2021, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Bagal, V.; Aggarwal, R.; Vinod, P.K.; Priyakumar, U.D. MolGPT: Molecular Generation Using a Transformer-Decoder Model. J. Chem. Inf. Model. 2022, 62, 2064–2076. [Google Scholar] [CrossRef] [PubMed]
- Arus-Pous, J.; Patronov, A.; Bjerrum, E.J.; Tyrchan, C.; Reymond, J.L.; Chen, H.; Engkvist, O. SMILES-based deep generative scaffold decorator for de-novo drug design. J. Cheminform. 2020, 12, 38. [Google Scholar] [CrossRef]
- Langevin, M.; Minoux, H.; Levesque, M.; Bianciotto, M. Scaffold-Constrained Molecular Generation. J. Chem. Inf. Model. 2020, 60, 5637–5646. [Google Scholar] [CrossRef]
- Fialkova, V.; Zhao, J.; Papadopoulos, K.; Engkvist, O.; Bjerrum, E.J.; Kogej, T.; Patronov, A. LibINVENT: Reaction-based Generative Scaffold Decoration for in Silico Library Design. J. Chem. Inf. Model. 2022, 62, 2046–2063. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, S.; Lei, J.; Yang, Y. DiffDec: Structure-Aware Scaffold Decoration with an End-to-End Diffusion Model. J. Chem. Inf. Model. 2024, 64, 2554–2564. [Google Scholar] [CrossRef]
- Green, H.; Koes, D.R.; Durrant, J.D. DeepFrag: A deep convolutional neural network for fragment-based lead optimization. Chem. Sci. 2021, 12, 8036–8047. [Google Scholar] [CrossRef]
- Hadfield, T.E.; Imrie, F.; Merritt, A.; Birchall, K.; Deane, C.M. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration. J. Chem. Inf. Model. 2022, 62, 2280–2292. [Google Scholar] [CrossRef] [PubMed]
- Imrie, F.; Hadfield, T.E.; Bradley, A.R.; Deane, C.M. Deep generative design with 3D pharmacophoric constraints. Chem. Sci. 2021, 12, 14577–14589. [Google Scholar] [CrossRef]
- Liu, X.; Ye, K.; van Vlijmen, H.W.T.; AP, I.J.; van Westen, G.J.P. DrugEx v3: Scaffold-constrained drug design with graph transformer-based reinforcement learning. J. Cheminform. 2023, 15, 24. [Google Scholar] [CrossRef]
- Loeffler, H.H.; He, J.; Tibo, A.; Janet, J.P.; Voronov, A.; Mervin, L.H.; Engkvist, O. Reinvent 4: Modern AI-driven generative molecule design. J. Cheminform. 2024, 16, 20. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Wang, J.; Zhang, O.; Du, H.; Jiang, D.; Wu, Z.; Deng, Y.; Kang, Y.; Pan, P.; et al. ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning. Nat. Commun. 2024, 15, 10127. [Google Scholar] [CrossRef]
- Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.; Chadimová, V.; Bjerrum, E.J.; Engkvist, O.; Reymond, J.-L. Retrosynthetic accessibility score (RAscore)—rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chem. Sci. 2021, 12, 3339–3349. [Google Scholar] [CrossRef]
- Nippa, D.F.; Atz, K.; Hohler, R.; Muller, A.T.; Marx, A.; Bartelmus, C.; Wuitschik, G.; Marzuoli, I.; Jost, V.; Wolfard, J.; et al. Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning. Nat. Chem. 2024, 16, 239–248. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y. Unified Deep Learning Model for Multitask Reaction Predictions with Explanation. J. Chem. Inf. Model. 2022, 62, 1376–1387. [Google Scholar] [CrossRef]
- Li, B.; Su, S.; Zhu, C.; Lin, J.; Hu, X.; Su, L.; Yu, Z.; Liao, K.; Chen, H. A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data. J. Cheminform 2023, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Zhang, M.; Song, Y.; Chang, S.; Tian, J.; Zeng, H.; Ji, H. Graph-sequence enhanced transformer for template-free prediction of natural product biosynthesis. Patterns 2025, 6, 101259. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.A.; Yang, Q.; Sresht, V.; Bolgar, P.; Hou, X.; Klug-McLeod, J.L.; Butler, C.R. Molecular Transformer unifies reaction prediction and retrosynthesis across pharma chemical space. Chem. Commun. 2019, 55, 12152–12155. [Google Scholar] [CrossRef]
- Zhao, P.C.; Wei, X.X.; Wang, Q.; Wang, Q.H.; Li, J.N.; Shang, J.; Lu, C.; Shi, J.Y. Single-step retrosynthesis prediction via multitask graph representation learning. Nat. Commun. 2025, 16, 814. [Google Scholar] [CrossRef]
- Chen, S.; Jung, Y. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention. JACS Au 2021, 1, 1612–1620. [Google Scholar] [CrossRef]
- Ucak, U.V.; Ashyrmamatov, I.; Ko, J.; Lee, J. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nat. Commun. 2022, 13, 1186. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.; Zhao, M.; Tan, L.; Lou, J.G. Single-step retrosynthesis prediction by leveraging commonly preserved substructures. Nat. Commun. 2023, 14, 2446. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Yin, S.; Shi, L.; Zhou, W.; Zhang, Y.J. G2GT: Retrosynthesis Prediction with Graph-to-Graph Attention Neural Network and Self-Training. J. Chem. Inf. Model. 2023, 63, 1894–1905. [Google Scholar] [CrossRef]
- Mao, K.; Xiao, X.; Xu, T.; Rong, Y.; Huang, J.; Zhao, P. Molecular graph enhanced transformer for retrosynthesis prediction. Neurocomputing 2021, 457, 193–202. [Google Scholar] [CrossRef]
- Tu, Z.; Coley, C.W. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction. J. Chem. Inf. Model. 2022, 62, 3503–3513. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Qiu, J.; Chen, G.; Liu, H.; Liao, B.; Hsieh, C.-Y.; Yao, X. Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chem. Eng. J. 2021, 420, 129845. [Google Scholar] [CrossRef]
- Beckers, M.; Sturm, N.; Sirockin, F.; Fechner, N.; Stiefl, N. Prediction of Small-Molecule Developability Using Large-Scale In Silico ADMET Models. J. Med. Chem. 2023, 66, 14047–14060. [Google Scholar] [CrossRef]
- Vangala, S.R.; Krishnan, S.R.; Bung, N.; Srinivasan, R.; Roy, A. pBRICS: A Novel Fragmentation Method for Explainable Property Prediction of Drug-like Small Molecules. J. Chem. Inf. Model. 2023, 63, 5066–5076. [Google Scholar] [CrossRef]
- Jamrozik, E.; Śmieja, M.; Podlewska, S. ADMET-PrInt: Evaluation of ADMET Properties: Prediction and Interpretation. J. Chem. Inf. Model. 2024, 64, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Mamada, H.; Takahashi, M.; Ogino, M.; Nomura, Y.; Uesawa, Y. Predictive Models Based on Molecular Images and Molecular Descriptors for Drug Screening. ACS Omega 2023, 8, 37186–37195. [Google Scholar] [CrossRef] [PubMed]
- Komissarov, L.; Manevski, N.; Groebke Zbinden, K.; Schindler, T.; Zitnik, M.; Sach-Peltason, L. Actionable Predictions of Human Pharmacokinetics at the Drug Design Stage. Mol. Pharm. 2024, 21, 4356–4371. [Google Scholar] [CrossRef]
- Niu, Z.; Xiao, X.; Wu, W.; Cai, Q.; Jiang, Y.; Jin, W.; Wang, M.; Yang, G.; Kong, L.; Jin, X.; et al. PharmaBench: Enhancing ADMET benchmarks with large language models. Sci. Data 2024, 11, 985. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.; Walther, P.; Leitz, J.; Mukherjee, S.; Wu, J.C.; Shivnaraine, R.V.; Zou, J. ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries. Bioinformatics 2024, 40, btae416. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; et al. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN Web Server for ADMET Predictions. Front. Pharmacol. 2017, 8, 889. [Google Scholar] [CrossRef]
- Yi, J.C.; Yang, Z.Y.; Zhao, W.T.; Yang, Z.J.; Zhang, X.C.; Wu, C.K.; Lu, A.P.; Cao, D.S. ChemMORT: An automatic ADMET optimization platform using deep learning and multi-objective particle swarm optimization. Brief. Bioinform. 2024, 25, bbae008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yang, X.; Wang, Y.; Yu, Y.; Huang, N.; Li, G.; Li, X.; Wu, J.C.; Yang, S. Artificial intelligence in drug development. Nat. Med. 2025, 31, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of Hallucination in Natural Language Generation. ACM Comput. Surv. 2023, 55, 248. [Google Scholar] [CrossRef]
- Wellawatte, G.P.; Gandhi, H.A.; Seshadri, A.; White, A.D. A Perspective on Explanations of Molecular Prediction Models. J. Chem. Theory Comput. 2023, 19, 2149–2160. [Google Scholar] [CrossRef]
- Frye, L.; Bhat, S.; Akinsanya, K.; Abel, R. From computer-aided drug discovery to computer-driven drug discovery. Drug Discov. Today Technol. 2021, 39, 111–117. [Google Scholar] [CrossRef]





| Comparison Dimension | Supervised Learning | Unsupervised Learning | Semi-Supervised Learning | Reinforcement Learning |
|---|---|---|---|---|
| Data Requirements | Fully labeled datasets (input–output pairs) | Unlabeled data | Small amount of labeled data coupled with a large amount of unlabeled data | Dynamic environment interaction (state-action-reward signals) |
| Core Functions | Classification, Regression | Clustering, Dimensionality reduction | Label expansion & data augmentation | Strategy optimization & sequential decision-making |
| Typical Algorithms | Support Vector Machine (SVM); Logistic Regression; Random Forest [53] | Principal Component Analysis (PCA); t-SNE; K-means [53,54] | Graph-based Semi-supervised Learning [56,57] | Q-learning; Policy Gradient [53,60] |
| Advantages | High prediction accuracy; Clear objective functions | Reveals intrinsic data structures; No labeling cost | Mitigates labeled data scarcity; Enhances model generalization | Adapts to dynamic environments; Optimizes long-term goals |
| Disadvantages | Relies on high-quality labels; High overfitting risk | Poor interpretability of results; Requires manual validation of clusters | High model complexity; Performance depends on initial label quality | Slow training convergence; High computational cost |
| Drug Discovery Applications | Molecular toxicity prediction; Activity classification [51,52] | Chemical space visualization; Compound library deduplication [55] | Drug–target interaction prediction [61] | Inhibitor reaction path optimization; Multi attribute molecular design [58,59] |
| Model | Core Mechanism | Advantages | Disadvantages | Drug Discovery Applications |
|---|---|---|---|---|
| Support Vector Machine (SVM) | Finds optimal hyperplane maximizing the margin between classes using kernel functions. | High classification accuracy for small and high-dimensional datasets; robust to overfitting with suitable kernel. | Sensitive to kernel and hyperparameter selection; limited scalability for large datasets. | Drug–target interaction prediction; compound activity classification; ADMET and toxicity modeling. |
| Decision Tree | Builds hierarchical decision rules by recursively splitting features that maximize information gain. | Simple, interpretable, and requires minimal preprocessing; handles nonlinear relationships. | Prone to overfitting; small data perturbations can change structure. | Compound classification; QSAR modeling; structure–activity relationship visualization. |
| Random Forest (RF) | Ensemble of multiple decision trees via bootstrap aggregation (bagging) and majority voting. | Reduces variance and overfitting; robust to noise; provides feature importance ranking. | Decreased interpretability; slower inference for large forests. | Bioactivity prediction; virtual screening; toxicity classification. |
| k-Nearest Neighbors (KNN) | Classifies samples by majority vote of k nearest data points in feature space. | Simple implementation; adaptable to diverse datasets. | Computationally expensive for large datasets; sensitive to irrelevant features and scaling. | Molecular similarity searching; ligand-based virtual screening; QSAR/QSPR modeling. |
| Artificial Neural Network (ANN) | Composed of interconnected layers of neurons performing weighted summations and nonlinear activation. | Learns nonlinear mappings; flexible architecture; high predictive performance with proper tuning. | Prone to overfitting; requires large labeled data; limited interpretability compared to tree models. | QSAR/QSPR modeling; bioactivity prediction; pharmacokinetic property estimation. |
| No. | Model Name | Framework Description | Web |
|---|---|---|---|
| 1 | Geneformer | A deep learning model based on a six-layer Transformer architecture. It is self-supervised pretrained on 30 million single-cell transcriptomes to learn gene interaction dynamics. Its attention mechanisms autonomously capture hierarchical gene relationships, enabling transfer to data-scarce scenarios such as disease gene prediction, chromatin interaction analysis, and therapeutic target discovery [142]. | https://huggingface.co/ctheodoris/Geneformer (accessed on 20 August 2025) |
| 2 | PIC | A framework built on the pretrained Evolutionary Scale Modeling 2 (ESM2) protein language model. It extracts sequence features via an embedding module, captures residue importance through an attention module, and outputs probability-based predictions of protein essentiality across human tissues, cell lines, and mouse. The resulting Protein Essentiality Score quantifies protein importance, supports breast-cancer prognostic marker identification, and evaluates microprotein function [143]. | https://github.com/KangBoming/PIC (accessed on 20 August 2025) |
| 3 | Deep Docking | A binary classifier deep neural network trained iteratively on 1024-bit circular Morgan fingerprint features. It dynamically predicts and filters high-docking-score compounds from ultra-large libraries, reducing a multi-billion-member library to a manageable size while retaining over 90% of active candidates and drastically lowering compute requirements [150]. | https://github.com/jamesgleave/DD_protocol (accessed on 20 August 2025) |
| 4 | EMCIP | An ensemble model combining multiple machine-learning algorithms with a multi-instance 3D graph neural network. Using stacked generalization and soft-voting, it integrates predictions from all base models for efficient forecasting of Candida drug resistance inhibitors [153]. | https://github.com/trinhthechuong/Cdr1_inhibitors (accessed on 20 August 2025) https://huggingface.co/spaces/thechuongtrinh/EMCIP_Cdr1_inhibitor_prediction (accessed on 20 August 2025) |
| 5 | CSNN | A graph-neural network leveraging Chemical Space Networks (CSNs) and label information as node features. This method achieves zero-training predictions by querying a compound’s chemical neighbors and exploiting network homophily, significantly enhancing drug–target interaction accuracy for human G protein-coupled receptors [154]. | https://github.com/cansyl/TransferLearning4DTI/ (accessed on 20 August 2025) |
| 6 | GraphBAN | A graph-based knowledge-distillation model combining a graph autoencoder and a bilinear attention network. It fuses multi-source features of compounds and proteins, along with a cross-domain adaptation module, to predict interactions between unseen nodes, improving both accuracy and generalization in compound–protein interaction prediction for drug discovery [155]. | https://github.com/HamidHadipour/GraphBAN/blob/main/README.md (accessed on 20 August 2025) |
| 7 | DTIAM | A unified framework that uses self-supervised pretraining for drug molecules (multi-task learning) and Transformer-based protein representations. It incorporates automated machine-learning to predict drug–target interactions, binding affinities, and activation/inhibition mechanisms [156]. | https://github.com/CSUBioGroup/DTIAM (accessed on 20 August 2025) |
| 8 | KinGen | A recurrent neural network (RNN)-based molecule generator combined with reinforcement learning and transfer learning. By optimizing reward functions and transferring knowledge, it could generate high-activity compounds targeting specific kinases [157]. | https://github.com/Shawn-Lau-lxm/KinGen (accessed on 20 August 2025) |
| 9 | MINDG | A hybrid architecture that extracts drug and target sequence features via deep networks, captures higher-order structural information through graph-attention convolutional layers, and integrates multi-view predictions with an adaptive decision module. This approach markedly improves drug–target interaction prediction accuracy [158]. | https://github.com/AGI-FBHC/MINDG (accessed on 20 August 2025) |
| 10 | PIGNet2 | A DL model combining physics-informed graph neural networks with novel data-augmentation strategies. It accurately predicts protein–ligand binding affinities and efficiently screens candidate drugs, demonstrating exceptional cross-task performance in hit identification and lead optimization [159]. | https://github.com/ACE-KAIST/PIGNet2 (accessed on 20 August 2025) |
| 11 | CarsiDock | A DL-based protein–ligand docking model pretrained on 9 million predicted complexes. Coupled with geometric optimization strategies, it greatly enhances pose-prediction accuracy, reliably reproduces key interactions observed in crystal structures, and preserves ligand topology for high-throughput virtual screening [160]. | https://github.com/carbonsilicon-ai/CarsiDock (accessed on 20 August 2025) |
| No. | Model Name | Framework Description | Web |
|---|---|---|---|
| 1 | DRLinker | A deep reinforcement learning framework for fragment-based drug design that optimizes linker generation, controls physicochemical properties, enhances bioactivity, and promotes structural innovation during lead optimization [187]. | https://github.com/biomed-AI/Drlinker (accessed on 20 August 2025) |
| 2 | Link-INVENT | Link-INVENT uses an RNN to generate novel linkers as SMILES strings between two molecular subunits. Unlike database-search methods, it creates linkers token-by-token, enabling exploration of new chemical space. Its key advantage is a customizable Scoring Function that uses reinforcement learning to optimize linkers for multiple specific properties, as demonstrated in fragment linking, scaffold hopping, and proteolysis targeting chimeras design case studies [188]. | https://github.com/MolecularAI/Reinvent (accessed on 20 August 2025) |
| 3 | DeepHop | Integrates 3D molecular conformations and target protein information to efficiently generate compounds with novel 2D scaffolds, improved bioactivity, and preserved 3D similarity. It is specifically used for scaffold-hopping optimization in drug design [189]. | https://github.com/prokia/deepHops (accessed on 20 August 2025) |
| 4 | ScaffoldGVAE | A deep generative model that smartly modifies the molecular core scaffold while retaining key side chains, enabling the design of novel active compounds. It has been successfully applied to develop Leucine-rich repeat ki-nase 2 inhibitors for Parkinson’s disease, offering a tool for innovative chemical-space exploration [75]. | https://github.com/ecust-hc/ScaffoldGVAE (accessed on 20 August 2025) |
| 5 | MolGPT | A Transformer-based molecular generator that assembles chemically valid drug molecules and provides controllable optimization of structure and molecular properties [190]. | https://github.com/devalab/molgpt (accessed on 20 August 2025) |
| 6 | Scaffold Decorator | A SMILES-based generative model that decorates a given scaffold to pro-duce novel compounds with potential activity. It has experimentally generated predicted Dopamine Receptor D2 ligands while ensuring synthetic feasibility, offering an effective scaffold-decoration tool [191]. | https://github.com/undeadpixel/reinvent-scaffold-decorator (accessed on 20 August 2025) |
| 7 | SAMOA | A deep learning framework for lead optimization that maintains a specified core scaffold while improving bioactivity and drug-likeness under structural constraints [192]. | https://github.com/maxime-langevin/scaffold-constrained-generation (accessed on 20 August 2025) |
| 8 | LibINVENT | A reaction-guided molecular generation platform that constructs libraries of compounds sharing a common scaffold, streamlining lead optimization and improving synthetic accessibility [193]. | https://github.com/MolecularAI/Lib-INVENT (accessed on 20 August 2025) |
| 9 | DiffDec | A structure-aware molecule optimization tool based on diffusion models. Given a protein binding pocket’s 3D structure, it intelligently generates side-chain R-groups to enhance binding affinity, offering an efficient solution for lead optimization [194]. | https://github.com/biomed-AI/DiffDec (accessed on 20 August 2025) |
| 10 | DeepFrag | An AI method using diffusion models that, guided by a protein’s 3D structure, generates chemically compatible R-groups for lead molecules, significantly boosting binding affinity and drug-likeness [195]. | https://durrantlab.pitt.edu/deepfragmodel/ (accessed on 20 August 2025) |
| 11 | STRIFE | A structure-guided fragment expansion tool that designs optimized fragments based on target protein structures, improving efficiency for antiviral and anti-inflammatory drug discovery [196]. | https://github.com/oxpig/STRIFE (accessed on 20 August 2025) |
| 12 | DEVELOP | A 3D-pharmacophore-guided generative framework (DEVELOP) that combines graph neural networks with 3D pharmacophoric features for linker and R-group design, improving target specificity and molecular quality [197]. | https://github.com/oxpig/DEVELOP (accessed on 20 August 2025) |
| 13 | DrugEX-v3 | A graph-transformer and reinforcement-learning model that generates high-affinity compounds from user-defined fragments [198]. | https://github.com/CDDLeiden/DrugEx (accessed on 20 August 2025) |
| 16 | REINVENT4 | A hybrid RNN/Transformer generative framework enhanced with reinforcement learning for de novo molecule generation, R-group replacement, linker design, and property optimization in an end-to-end workflow [199]. | https://github.com/MolecularAI/REINVENT4 (accessed on 20 August 2025) |
| 17 | TamGen | A GPT-based chemical language model that generates new drug-like molecules targeting disease proteins and optimizes existing scaffolds for improved activity and synthetic accessibility [182]. | https://github.com/SigmaGenX/TamGen/tree/main/data (accessed on 20 August 2025) |
| 18 | ClickGen | An AI model combining modular reaction chemistry with reinforcement learning to rapidly design easily synthesizable and bioactive drug molecules [200]. | https://github.com/mywang1994/cligen_gen (accessed on 20 August 2025) |
| 19 | JAEGER | A deep generative model integrating structure generation with activity prediction, successfully designing low-toxicity antimalarials with nanomolar experimental efficacy [180]. | https://github.com/Novartis/JAEGER (accessed on 20 August 2025) |
| 20 | SyntheMol | An AI–synthetic-chemistry hybrid system that rapidly proposes easily synthesizable novel antibiotic scaffolds. Experimentally, it identified six new compounds effective against drug-resistant Acinetobacter baumannii and other pathogens [181]. | https://github.com/swansonk14/SyntheMol (accessed on 20 August 2025) |
| 21 | CLM | An RNN-based generative model trained on limited molecular data to produce structures containing specified motifs, applied to discover bacterial, plant, and fungal metabolites as potential drug leads [183]. | https://github.com/skinnider/low-data-generative-models (accessed on 20 August 2025) |
| No. | Model Name | Framework Description | Web |
|---|---|---|---|
| 1 | ADMET-PrInt | An online platform that integrates machine learning models with interpretability modules to predict major ADMET properties. It provides visual analytics of structural features to guide molecular optimization and accelerate in silico lead evaluation [218]. | https://github.com/JamEwe/ADMET-PrInt (accessed on 20 August 2025) |
| 2 | PharmaBench | A benchmark dataset built from more than 14,000 bioassay entries covering over 52,000 compounds. It offers a standardized training and evaluation framework for AI models in absorption, distribution, metabolism, excretion, and toxicity prediction [221]. | https://github.com/mindrank-ai/PharmaBench (accessed on 20 August 2025) |
| 3 | ADMET-AI | A hybrid platform combining graph neural networks and molecular descriptors for rapid ADMET property prediction. It supports both web and local deployment for high-throughput virtual screening focused on metabolism and toxicity endpoints [222]. | https://admet.ai.greenstonebio.com/ (accessed on 20 August 2025) |
| 4 | SwissADME | A free web service that evaluates small-molecule ADME properties, drug-likeness, and synthetic accessibility. It assists researchers in early-stage drug candidate optimization [223]. | http://www.swissadme.ch/ (accessed on 20 August 2025) |
| 5 | ADMETlab 3.0 | A deep learning platform that predicts key ADMET parameters using integrated molecular features and neural network models. It streamlines early screening and reduces experimental workload [224]. | https://admetlab3.scbdd.com/server/screening (accessed on 20 August 2025) |
| 6 | pkCSM | A graph-based predictive model that estimates metabolic stability and potential toxicity directly from molecular structure. It uses graph signatures to rapidly identify high-risk compounds during early ADMET assessment [225]. | https://biosig.lab.uq.edu.au/pkcsm/ (accessed on 20 August 2025) |
| 7 | vNN-ADMET | A similarity-based prediction algorithm that applies nearest-neighbor statistics in chemical space. It provides ADMET predictions with confidence intervals to support risk-aware decision-making in candidate selection [226]. | https://vnnadmet.bhsai.org/vnnadmet/login.xhtml (accessed on 20 August 2025) |
| 8 | ChemMORT | An automated optimization platform that combines reversible molecular representations with reinforcement learning. It refines ADME and safety properties while preserving bioactivity [227]. | https://cadd.nscc-tj.cn/deploy/chemmort/ (accessed on 20 August 2025) |
| 9 | Conformal ADMET Prediction | A graph-neural-network model enhanced with conformal prediction calibration that generates both point estimates and prediction intervals for ADMET endpoints. It offers statistical confidence for decision-making under uncertainty [101]. | https://github.com/peiyaoli/Conformal-ADMET-Prediction (accessed on 20 August 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Sun, B.; Yi, Y.; Velkov, T.; Shen, J.; Dai, C.; Jiang, H. Progress of AI-Driven Drug–Target Interaction Prediction and Lead Optimization. Int. J. Mol. Sci. 2025, 26, 10037. https://doi.org/10.3390/ijms262010037
Wang Q, Sun B, Yi Y, Velkov T, Shen J, Dai C, Jiang H. Progress of AI-Driven Drug–Target Interaction Prediction and Lead Optimization. International Journal of Molecular Sciences. 2025; 26(20):10037. https://doi.org/10.3390/ijms262010037
Chicago/Turabian StyleWang, Qiqi, Boyan Sun, Yunpeng Yi, Tony Velkov, Jianzhong Shen, Chongshan Dai, and Haiyang Jiang. 2025. "Progress of AI-Driven Drug–Target Interaction Prediction and Lead Optimization" International Journal of Molecular Sciences 26, no. 20: 10037. https://doi.org/10.3390/ijms262010037
APA StyleWang, Q., Sun, B., Yi, Y., Velkov, T., Shen, J., Dai, C., & Jiang, H. (2025). Progress of AI-Driven Drug–Target Interaction Prediction and Lead Optimization. International Journal of Molecular Sciences, 26(20), 10037. https://doi.org/10.3390/ijms262010037

