Charge Reversal of the Uppermost Arginine in Sliding Helix S4-I Affects Gating of Cardiac Sodium Channel
Abstract
:1. Introduction
2. Results
2.1. Arginine R1 in Helix S4I (R1_S4I) and Glutamate E1 in Helix S2I (E1_S2I) of VSDI in Experimental and Computed Structures of Nav1.x Channels
2.2. AlphaFold 3 Structures of VSDI in WT Nav1.5 and ClinVar-Reported Variants of R1_S4I and E1_S2I
2.3. In Silico Deactivating Lone VSDI of the WT Channel Nav1.5 and Mutant Channel R219E
2.4. Biophysical Characteristics of the WT and R219E Channels
3. Discussion
4. Materials and Methods
4.1. Structural Analyses and Modeling
4.2. Site-Directed Mutagenesis and Heterologous Expression System Analyses and Modeling
4.3. Electrophysiology
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Amin, A.S.; Asghari-Roodsari, A.; Tan, H.L. Cardiac sodium channelopathies. Pflug. Arch. 2010, 460, 223–237. [Google Scholar] [CrossRef]
- Abriel, H.; Rougier, J.S.; Jalife, J. Ion channel macromolecular complexes in cardiomyocytes: Roles in sudden cardiac death. Circ. Res. 2015, 116, 1971–1988. [Google Scholar] [CrossRef]
- Remme, C.A. Cardiac sodium channelopathy associated with SCN5A mutations: Electrophysiological, molecular and genetic aspects. J. Physiol. 2013, 591, 4099–4116. [Google Scholar] [CrossRef] [PubMed]
- Veerman, C.C.; Wilde, A.A.; Lodder, E.M. The cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology. Gene 2015, 573, 177–187. [Google Scholar] [CrossRef]
- Detta, N.; Frisso, G.; Salvatore, F. The multi-faceted aspects of the complex cardiac Nav1.5 protein in membrane function and pathophysiology. Biochim. Biophys. Acta 2015, 1854, 1502–1509. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J. Physiol. 2012, 590, 2577–2589. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Structure and function of voltage-gated sodium channels at atomic resolution. Exp. Physiol. 2014, 99, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, J.; Scheuer, T.; Zheng, N.; Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475, 353–358. [Google Scholar] [CrossRef]
- Han, D.; Tan, H.; Sun, C.; Li, G. Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp. Biol. Med. 2018, 243, 852–863. [Google Scholar] [CrossRef]
- Capes, D.L.; Goldschen-Ohm, M.P.; Arcisio-Miranda, M.; Bezanilla, F.; Chanda, B. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J. Gen. Physiol. 2013, 142, 101–112. [Google Scholar] [CrossRef]
- Ahern, C.A.; Payandeh, J.; Bosmans, F.; Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 2016, 147, 1–24. [Google Scholar] [CrossRef]
- Piot, O.; Boveda, S.; Defaye, P.; Klug, D.; Lacotte, J.; Marijon, E. Prospective evolution of cardiac arrhythmia care: 2030 vision. Arch. Cardiovasc. Dis. 2022, 115, 179–189. [Google Scholar] [CrossRef]
- Gui, J.; Wang, T.; Jones, R.P.; Trump, D.; Zimmer, T.; Lei, M. Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome. PLoS ONE 2010, 5, e10985. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Steinberg, C.; Pilote, S.; Philippon, F.; Laksman, Z.W.; Champagne, J.; Simard, C.; Krahn, A.D.; Drolet, B. SCN5A-C683R exhibits combined gain-of-function and loss-of-function properties related to adrenaline-triggered ventricular arrhythmia. Exp. Physiol. 2021, 106, 683–699. [Google Scholar] [CrossRef]
- Wisedchaisri, G.; Tonggu, L.; McCord, E.; Gamal El-Din, T.M.; Wang, L.; Zheng, N.; Catterall, W.A. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell 2019, 178, 993–1003.E12. [Google Scholar] [CrossRef]
- Korkosh, V.S.; Zaytseva, A.K.; Kostareva, A.A.; Zhorov, B.S. Intersegment Contacts of Potentially Damaging Variants of Cardiac Sodium Channel. Front. Pharmacol. 2021, 12, 756415. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Tonggu, L.; Gamal El-Din, T.M.; Banh, R.; Pomes, R.; Zheng, N.; Catterall, W.A. Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nat. Commun. 2021, 12, 128. [Google Scholar] [CrossRef]
- Huang, G.; Wu, Q.; Li, Z.; Jin, X.; Huang, X.; Wu, T.; Pan, X.; Yan, N. Unwinding and spiral sliding of S4 and domain rotation of VSD during the electromechanical coupling in Na(v)1.7. Proc. Natl. Acad. Sci. USA 2022, 119, e2209164119. [Google Scholar] [CrossRef]
- Smits, J.P.; Koopmann, T.T.; Wilders, R.; Veldkamp, M.W.; Opthof, T.; Bhuiyan, Z.A.; Mannens, M.M.; Balser, J.R.; Tan, H.L.; Bezzina, C.R.; et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J. Mol. Cell. Cardiol. 2005, 38, 969–981. [Google Scholar] [CrossRef]
- Mann, S.A.; Castro, M.L.; Ohanian, M.; Guo, G.; Zodgekar, P.; Sheu, A.; Stockhammer, K.; Thompson, T.; Playford, D.; Subbiah, R.; et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 2012, 60, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Brake, N.; Mancino, A.S.; Yan, Y.; Shimomura, T.; Kubo, Y.; Khadra, A.; Bowie, D. Closed-state inactivation of cardiac, skeletal, and neuronal sodium channels is isoform specific. J. Gen. Physiol. 2022, 154, e202112921. [Google Scholar] [CrossRef] [PubMed]
- Surber, R.; Hensellek, S.; Prochnau, D.; Werner, G.S.; Benndorf, K.; Figulla, H.R.; Zimmer, T. Combination of cardiac conduction disease and long QT syndrome caused by mutation T1620K in the cardiac sodium channel. Cardiovasc. Res. 2008, 77, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Olesen, M.S.; Yuan, L.; Liang, B.; Holst, A.G.; Nielsen, N.; Nielsen, J.B.; Hedley, P.L.; Christiansen, M.; Olesen, S.P.; Haunsø, S.; et al. High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation. Circ. Cardiovasc. Genet. 2012, 5, 450–459. [Google Scholar] [CrossRef]
- Horne, A.J.; Eldstrom, J.; Sanatani, S.; Fedida, D. A novel mechanism for LQT3 with 2:1 block: A pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm. 2011, 8, 770–777. [Google Scholar] [CrossRef]
- Bankston, J.R.; Sampson, K.J.; Kateriya, S.; Glaaser, I.W.; Malito, D.L.; Chung, W.K.; Kass, R.S. A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences. Channels 2007, 1, 273–280. [Google Scholar] [CrossRef]
- Lupoglazoff, J.M.; Cheav, T.; Baroudi, G.; Berthet, M.; Denjoy, I.; Cauchemez, B.; Extramiana, F.; Chahine, M.; Guicheney, P. Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circ. Res. 2001, 89, E16–E21. [Google Scholar] [CrossRef] [PubMed]
- Gosselin-Badaroudine, P.; Keller, D.I.; Huang, H.; Pouliot, V.; Chatelier, A.; Osswald, S.; Brink, M.; Chahine, M. A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype. PLoS ONE 2012, 7, e38331. [Google Scholar] [CrossRef]
- Moreau, A.; Gosselin-Badaroudine, P.; Mercier, A.; Burger, B.; Keller, D.I.; Chahine, M. A leaky voltage sensor domain of cardiac sodium channels causes arrhythmias associated with dilated cardiomyopathy. Sci. Rep. 2018, 8, 13804. [Google Scholar] [CrossRef]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024, 52, D368–D375. [Google Scholar] [CrossRef]
- Zhorov, B.S. Possible Mechanism of Ion Selectivity in Eukaryotic Voltage-Gated Sodium Channels. J. Phys. Chem. B 2021, 125, 2074–2088. [Google Scholar] [CrossRef]
- Weiner, S.J.; Kollman, P.A.; Nguyen, D.T.; Case, D.A. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 1986, 7, 230–252. [Google Scholar] [CrossRef]
- Garden, D.P.; Zhorov, B.S. Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function. J. Comput. Aided Mol. Des. 2010, 24, 91–105. [Google Scholar] [CrossRef]
- Li, Z.; Scheraga, H.A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. USA 1987, 84, 6611–6615. [Google Scholar] [CrossRef] [PubMed]
- Zhorov, B.S.; Du, Y.; Song, W.; Luo, N.; Gordon, D.; Gurevitz, M.; Dong, K. Mapping the interaction surface of scorpion beta-toxins with an insect sodium channel. Biochem. J. 2021, 478, 2843–2869. [Google Scholar] [CrossRef] [PubMed]
- Zaytseva, A.K.; Boitsov, A.S.; Kostareva, A.A.; Zhorov, B.S. Possible Interactions of Extracellular Loop IVP2-S6 With Voltage-Sensing Domain III in Cardiac Sodium Channel. Front. Pharmacol. 2021, 12, 742508. [Google Scholar] [CrossRef]
- Long, S.B.; Tao, X.; Campbell, E.B.; MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 2007, 450, 376–382. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Unit | WT | n b | R219E | n b | p |
---|---|---|---|---|---|---|
Peak current density | pA/pF | −426.5 ± 53.5 | 32 | −299.3 ± 41.9 | 21 | 0.09 |
Steady-state activation | V1/2, mV K | −38.4 ± 1.2 5.4 ± 0.3 | 32 | −46.1 ± 1.2 5.8 ± 0.3 | 21 | <0.001 0.4 |
Steady-state inactivation | V1/2, mV K | −86.6 ± 1.4 −5.6 ± 0.2 | 24 | −92.0 ± 1.2 5.5 ± 0.2 | 16 | 0.048 0.8 |
Steady-state fast inactivation | V1/2, mV K | −65.9 ± 2.0 8.5 ± 0.6 | 14 | −77.0 ± 2.6 9.8 ± 0.3 | 14 | 0.0025 0.07 |
Recovery from inactivation | τfast, ms τslow, ms | 24.51 ± 3.2 241.1 ± 23.1 | 11 | 59.12 ± 13.4 404.7 ± 61.8 | 6 | 0.005 0.009 |
Variant | Clinical Significance | Phenotype |
---|---|---|
E161K NM_000335.5(SCN5A):c.481G>C | Conflicting interpretations of pathogenicity | BrS1 Progressive cardiac conduction disease Sick sinus syndrome |
E161Q NM_000335.5(SCN5A):c.481G>A | Not provided | BrS1 |
R219C NM_000335.5(SCN5A):c.655C>T | Variant of unknown significance | BrS1 |
R219H NM_000335.5(SCN5A):c.656G>A | Conflicting interpretations of pathogenicity | BrS1 Dilated cardiomyopathy Sick sinus syndrome |
R219P NM_000335.5(SCN5A):c.656G>C | Variant of unknown significance | Atrial fibrillation BrS1 Dilated cardiomyopathy LQT3 Progressive cardiac conduction disease Sick sinus syndrome |
R219Q NM_001099404.2(SCN5A): c.656G>A | Likely benign | Arrhythmia |
Channel | Variant | Clinical Significance | Phenotype |
---|---|---|---|
Nav1.1 | E158Q | Conflicting classifications of pathogenicity | Early infantile epileptic encephalopathy with suppression bursts |
Nav1.6 | R220C NM_014191.4 (SCN8A):c.658C>T | Uncertain significance | Early infantile epileptic encephalopathy with suppression bursts |
Nav1.7 | R214L NM_001365536.1 (SCN9A):c.641G>T | Uncertain significance | Neuropathy, hereditary sensory and autonomic, type 2A| Generalized epilepsy with febrile seizures plus, type 7 |
R214Q NM_001365536.1 (SCN9A):c.641G>A | Uncertain significance | Inborn genetic diseases; generalized epilepsy with febrile seizures plus, type 7; neuropathy, hereditary sensory and autonomic, type 2A; generalized epilepsy with febrile seizures plus, type 7 | |
E156K NM_001365536.1 (SCN9A):c.466G>A | Uncertain significance | Generalized epilepsy with febrile seizures plus, type 7; neuropathy, hereditary sensory and autonomic, type 2A | |
Nav1.8 | R215Q NM_006514.4 (SCN10A):c.644G>A | Uncertain significance | Episodic pain syndrome, familial, 2; Brugada syndrome |
R215W NM_006514.4 (SCN10A):c.643C>T | Uncertain significance | Cardiovascular phenotype; not provided | |
Nav1.9 | R222H NM_001349253.2 (SCN11A):c.665G>A | Pathogenic | Hereditary sensory and autonomic neuropathy type 7; familial episodic pain syndrome with predominantly lower limb involvement |
R222C NM_001349253.2 (SCN11A):c.664C>T | Uncertain significance | Hereditary sensory and autonomic neuropathy type 7; familial episodic pain syndrome with predominantly lower limb involvement | |
R222S | Pathogenic | Familial episodic pain syndrome with predominantly lower limb involvement | |
E163D NM_001349253.2 (SCN11A):c.489G>T | Uncertain significance | Hereditary sensory and autonomic neuropathy type 7; familial episodic pain syndrome with predominantly lower limb involvement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulichik, O.E.; Zaytseva, A.K.; Kostareva, A.A.; Zhorov, B.S. Charge Reversal of the Uppermost Arginine in Sliding Helix S4-I Affects Gating of Cardiac Sodium Channel. Int. J. Mol. Sci. 2025, 26, 712. https://doi.org/10.3390/ijms26020712
Kulichik OE, Zaytseva AK, Kostareva AA, Zhorov BS. Charge Reversal of the Uppermost Arginine in Sliding Helix S4-I Affects Gating of Cardiac Sodium Channel. International Journal of Molecular Sciences. 2025; 26(2):712. https://doi.org/10.3390/ijms26020712
Chicago/Turabian StyleKulichik, Olga E., Anastasia K. Zaytseva, Anna A. Kostareva, and Boris S. Zhorov. 2025. "Charge Reversal of the Uppermost Arginine in Sliding Helix S4-I Affects Gating of Cardiac Sodium Channel" International Journal of Molecular Sciences 26, no. 2: 712. https://doi.org/10.3390/ijms26020712
APA StyleKulichik, O. E., Zaytseva, A. K., Kostareva, A. A., & Zhorov, B. S. (2025). Charge Reversal of the Uppermost Arginine in Sliding Helix S4-I Affects Gating of Cardiac Sodium Channel. International Journal of Molecular Sciences, 26(2), 712. https://doi.org/10.3390/ijms26020712