Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of Babesia bigemina
Abstract
1. Introduction
2. Results
2.1. Sequencing
2.2. RNA Sequencing (RNA-Seq) Analysis
3. Discussion
4. Materials and Methods
4.1. Biological Samples
4.1.1. Babesia bigemina Strains
4.1.2. Experimental Animals
4.1.3. Buffy Coat Cell Isolation
4.2. RNA Extraction
4.3. Library Preparation and Sequencing
4.4. RNA-Seq Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almazan, C.; Tipacamu, G.A.; Rodriguez, S.; Mosqueda, J.; Perez de Leon, A. Immunological control of ticks and tick-borne diseases that impact cattle health and production. Front. Biosci. 2018, 23, 1535–1551. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.E.; Jackson, L.; De Vos, A.J.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 4, 247–269. [Google Scholar] [CrossRef]
- Gohil, S.; Herrmann, S.; Günther, S.; Cooke, B.M. Bovine babesiosis in the 21st century: Advances in biology and functional genomics. Int. J. Parasitol. 2013, 43, 125–132. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Rojas, C.; Figueroa, J.V. Diagnostic tools for the identification of Babesia sp. in persistently infected cattle. Pathogens 2019, 8, 143. [Google Scholar] [CrossRef]
- Gallego-Lopez, G.M.; Cooke, B.M.; Suarez, C.E. Interplay between attenuation- and virulence-factors of Babesia bovis and their contribution to the establishment of persistent infections in cattle. Pathogens 2019, 8, 97. [Google Scholar] [CrossRef]
- Bastos, R.G.; Laughery, J.M.; Ozubek, S.; Alzan, H.F.; Taus, N.S.; Ueti, M.W.; Suarez, C.E. Identification of novel immune correlates of protection against acute bovine babesiosis by superinfecting cattle with in vitro culture attenuated and virulent Babesia bovis strains. Front. Immunol. 2022, 13, 1045608. [Google Scholar] [CrossRef]
- Suarez, C.E.; Alzan, H.F.; Silva, M.G.; Rathinasamy, V.; Poole, W.A.; Cooke, B.M. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: Is the sky the limit? Int. J. Parasitol. 2019, 49, 183–197. [Google Scholar] [CrossRef]
- García, T.D.; Figueroa, M.J.; Ramos, A.J.; Rojas, M.C.; Cantó, A.G.; Falcón, N.A.; Alvarez, M.J. Immune response to Babesia bigemina infection in pregnant cows. Ann. N. Y. Acad. Sci. 2004, 1026, 144–148. [Google Scholar] [CrossRef]
- Attia, M.M.; Khalifa, M.M. Virulence of Babesia bigemina in infected cattle (Bos taurus): Molecular and immunological studies. Res. Vet. Sci. 2023, 156, 7–13. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Rojas, C.; Figueroa, J.V. An Overview of Current Knowledge on in vitro Babesia Cultivation for Production of Live Attenuated Vaccines for Bovine Babesiosis in Mexico. Front. Vet. Sci. 2020, 7, 364. [Google Scholar] [CrossRef]
- Bautista-Garfias, C.R.; Lozano, A.R.; Martínez, C.R.; Alvarez, M.J.A.; Millán, J.V.; García, G.R.; Castañeda-Arriola, R.; Aguilar-Figueroa, B.R. Co-immunization of cattle with a vaccine against babesiosis and Lactobacillus casei increases specific IgG1 levels to Babesia bovis and B. bigemina. Parasitol. Int. 2015, 64, 319–323. [Google Scholar] [CrossRef]
- Rojas-Martínez, C.; Rodríguez-Vivas, R.I.; Figueroa-Millán, J.V.; Bautista-Garfias, C.R.; Castañeda-Arriola, R.O.; Lira-Amaya, J.J.; Urióstegui-Vargas, P.; Carrasco-Ojeda, J.J.; Alvarez-Martínez, J.A. Bovine babesiosis: Cattle protected in the field with a frozen vaccine containing Babesia bovis and Babesia bigemina cultured in vitro with a serum-free medium. Parasitol. Int. 2018, 67, 190–195. [Google Scholar] [CrossRef]
- García-Campos, A.; Correia, C.N.; Naranjo-Lucena, A.; Garza-Cuartero, L.; Farries, G.; Browne, J.A.; MacHugh, D.E.; Mulcahy, G. Fasciola hepatica infection in cattle: Analyzing responses of peripheral blood mononuclear cells (PBMC) using a transcriptomics approach. Front. Immunol. 2019, 10, 2081. [Google Scholar] [CrossRef]
- Li, W.; Mao, L.; Shu, X.; Liu, R.; Hao, F.; Li, J.; Liu, M.; Yang, L.; Zhang, W.; Sun, M.; et al. Transcriptome analysis reveals differential immune related genes expression in bovine viral diarrhea virus-2 infected goat peripheral blood mononuclear cells (PBMCs). BMC Genom. 2019, 20, 516. [Google Scholar] [CrossRef]
- Lopez, B.I.; Santiago, K.G.; Lee, D.; Ha, S.; Seo, K. RNA sequencing (RNA-Seq) based transcriptome analysis in immune response of Holstein cattle to killed vaccine against Bovine Viral Diarrhea Virus type I. Animals 2020, 10, 344. [Google Scholar] [CrossRef]
- Tirumurugaan, K.G.; Pawar, R.M.; Dhinakar Raj, G.; Thangavelu, A.; Hammond, J.A.; Parida, S. RNAseq reveals the contribution of interferon stimulated genes to the increased host defense and decreased PPR viral replication in cattle. Viruses 2020, 12, 463. [Google Scholar] [CrossRef]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Antunes, S.; Couto, J.; Ferrolho, J.; Sanches, G.S.; Merino Charrez, J.O.; de la Cruz Hernández, N.; Mazuz, M.; Villar, M.; Shkap, V.; de la Fuente, J.; et al. Transcriptome and proteome response of Rhipicephalus annulatus tick vector to Babesia bigemina infection. Front. Physiol. 2009, 10, 318. [Google Scholar] [CrossRef]
- Ueti, M.W.; Johnson, W.C.; Kappmeyer, L.S.; Herndon, D.R.; Mousel, M.R.; Reif, K.E.; Taus, N.S.; Ifeonu, O.O.; Silva, J.C.; Suarez, C.E.; et al. Transcriptome dataset of Babesia bovis life stages within vertebrate and invertebrate hosts. Data Brief. 2020, 33, 106533. [Google Scholar] [CrossRef]
- Santamaria, R.M.; Estrada, K.; López, M.E.; Rojas, E.; Martínez, G.; Alcalá, Y.; Rojas, C.; Álvarez, J.A.; Lira, J.J.; Santamaria, T.V.; et al. Comparative transcriptome analysis of Babesia bigemina attenuated vaccine and virulent strains of Mexican origin. Vaccines 2024, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Rahmatallah, Y.; Emmert-Streib, F.; Glazko, G. Gene set analysis approaches for RNA-seq data: Performance evaluation and application guideline. Brief. Bioinform. 2016, 17, 393–407. [Google Scholar] [CrossRef]
- de Jong, E.; Bosco, A. Unlocking immune-mediated disease mechanisms with transcriptomics. Biochem. Soc. Trans. 2021, 49, 705–714. [Google Scholar] [CrossRef]
- Boldt, A.B.W.; van Tong, H.; Grobusch, M.P.; Kalmbach, Y.; Dzeing Ella, A.; Kombila, M.; Meyer, C.G.; Kun, J.F.J.; Kremsner, P.G.; Velavan, T.P. The blood transcriptome of childhood malaria. EBioMedicine 2019, 40, 614–625. [Google Scholar] [CrossRef]
- Videvall, E.; Palinauskas, V.; Valkiūnas, G.; Hellgren, O. Host Transcriptional Responses to High- and Low-Virulent Avian Malaria Parasites. Am. Nat. 2020, 195, 1070–1084. [Google Scholar] [CrossRef]
- Vahey, M.T.; Wang, Z.; Kester, K.E.; Cummings, J.; Heppner, D.G., Jr.; Nau, M.E.; Ofori-Anyinam, O.; Cohen, J.; Coche, T.; Ballou, W.R.; et al. Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine. J. Infect. Dis. 2010, 201, 580–589. [Google Scholar] [CrossRef]
- Nussenzweig, R.S. Parasitic disease as a cause of immunosuppression. N. Engl. J. Med. 1982, 306, 423–424. [Google Scholar] [CrossRef]
- Askonas, B.A. Interference in general immune function by parasite infections; African trypanosomiasis as a model system. Parasitology 1984, 88, 633–638. [Google Scholar] [CrossRef]
- Morilla, G.A. Inmunología de la babesiosis. Cienc. Vet. 1981, 3, 239–275. [Google Scholar]
- Catz, S.D. The role of Rab27a in the regulation of neutrophil function. Cell. Microbiol. 2014, 16, 1301–1310. [Google Scholar] [CrossRef]
- Ostrowski, M.; Carmo, N.B.; Krumeich, S.; Fanget, I.; Raposo, G.; Savina, A.; Moita, C.F.; Schauer, K.; Hume, A.N.; Freitas, R.P.; et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell. Biol. 2010, 12, 19–30. [Google Scholar] [CrossRef]
- Qing, B.; Li, M.; Peng, D.; Wang, J.; Song, S.; Mo, L.; Li, G.; Yang, P. Characterization of the immune suppressive functions of eosinophils. Cell. Immunol. 2024, 401–402. [Google Scholar] [CrossRef]
- Small, A.G.; Perveen, K.; Putty, T.; Patel, N.; Quinn, P.; Wechalekar, M.D.; Hii, C.S.; Quach, A.; Ferrante, A. Neutrophils Require Activation to Express Functional Cell-Surface Complement Receptor Immunoglobulin. Front. Immunol. 2022, 13, 840510. [Google Scholar] [CrossRef]
- Bakela, K.; Athanassakis, I. Soluble major histocompatibility complex molecules in immune regulation: Highlighting class II antigens. Immunology 2018, 153, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, Q.C.; Wang, J.P.; Ren, Q.Q.; Wang, X.P.; Luoreng, Z.M.; Wei, D.W.; Ma, Y. RNA-Seq Reveals the Role of miR-29c in Regulating Inflammation and Oxidative Stress of Bovine Mammary Epithelial Cells. Front. Vet. Sci. 2022, 9, 865415. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Varghese, S.S.; Doraiswamy, J.; Malaiappan, S. Role of sulfiredoxin in systemic diseases influenced by oxidative stress. Redox Biol. 2014, 2, 1023–1028. [Google Scholar] [CrossRef]
- Bosch, S.S.; Kronenberger, T.; Meissner, K.A.; Zimbres, F.M.; Stegehake, D.; Izui, N.M.; Schettert, I.; Liebau, E.; Wrenger, C. Oxidative stress control by apicomplexan parasites. Biomed. Res. Int. 2015, 2015, 351289. [Google Scholar] [CrossRef]
- Hagymasi, A.T.; Dempsey, J.P.; Srivastava, P.K. Heat-Shock Proteins. Curr. Protoc. 2022, 2, e592. [Google Scholar] [CrossRef]
- Fry, L.M.; Schneider, D.A.; Frevert, C.W.; Nelson, D.D.; Morrison, W.I.; Knowles, D.P. East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure. PLoS ONE 2016, 11, e0156004. [Google Scholar] [CrossRef]
- Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol. 2015, 6, 262. [Google Scholar] [CrossRef] [PubMed]
- Torina, A.; Villari, S.; Blanda, V.; Vullo, S.; La Manna, M.P.; Shekarkar, A.M.; Di Liberto, D.; de la Fuente, J.; Sireci, G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int. J. Mol. Sci. 2020, 21, 5437. [Google Scholar] [CrossRef]
- Kim, S.K.; Fouts, A.E.; Boothroyd, J.C. Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: Insights from a genome-wide transcriptional profiling. J. Immunol. 2007, 178, 5154–5165. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Goswami, T.; Evans, C.A.; Sibthorpe, D.; Papo, N.; White, J.K.; Searle, S.; Miller, E.N.; Peacock, C.S.; Mohammed, H.; et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 2001, 3, 773–784. [Google Scholar] [CrossRef]
- Wessling-Resnick, M. Nramp1 and Other Transporters Involved in Metal Withholding during Infection. J. Biol. Chem. 2015, 290, 18984–18990. [Google Scholar] [CrossRef]
- McMorran, B.J.; Wieczorski, L.; Drysdale, K.E.; Chan, J.A.; Huang, H.M.; Smith, C.; Mitiku, C.; Beeson, J.G.; Burgio, G.; Foote, S.J. Platelet factor 4 and Duffy antigen required for platelet killing of Plasmodium falciparum. Science 2012, 338, 1348–1351. [Google Scholar] [CrossRef]
- Moskovitz, R.; Pholcharee, T.; DonVito, S.M.; Guloglu, B.; Lowe, E.; Mohring, F.; Moon, R.W.; Higgins, M.K. Structural basis for DARC binding in reticulocyte invasion by Plasmodium vivax. Nat. Commun. 2023, 14, 3637. [Google Scholar] [CrossRef]
- Antonangelo, B.F.A.T.; Colombi, D.; Curi, R.A.; Braz, S.K.A.; Oliveira, M.T.; da Lígia, M.S.L.S. Detection and quantification of Duffy antigen on bovine red blood cell membranes using a polyclonal antibody. Pesq. Vet. Bras. 2012, 32, 936–940. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Chang, X. The role and mechanism of TXNDC5 in diseases. Eur. J. Med. Res. 2022, 27, 145. [Google Scholar] [CrossRef]
- Jiao, M.; Zhang, Y.; Song, X.; Xu, B. The role and mechanism of TXNDC5 in disease progression. Front. Immunol. 2024, 15, 1354952. [Google Scholar] [CrossRef]
- Sachman, R.B.; Lozano, L.; Lira, J.J.; Martínez, G.; Rojas, C.; Álvarez, A.; Figueroa, J.V. Comparative genomic study of attenuated and virulent strains of Babesia bigemina. Pathogens 2021, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.A.; Buening, G.M.; Green, T.J.; Carson, C.A. In vitro cultivation of Babesia bigemina. Am. J. Vet. Res. 1985, 46, 416–420. [Google Scholar] [PubMed]
- Figueroa, J.V.; Cantó, G.J.; Álvarez, J.A.; Loza, G.R.; Ramos, J.A.; Vega, C.A. Capacidad protectora en bovinos de una cepa de Babesia bigemina derivada del cultivo in vitro. Tec. Pecu. Méx. 1998, 36, 95–100. [Google Scholar]
- Figueroa, J.V.; Chieves, L.P.; Johnson, G.S.; Buening, G.M. Multiplex polymerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet. Parasitol. 1993, 50, 69–81. [Google Scholar] [CrossRef]
- Jiménez-Jacinto, V.; Sanchez-Flores, A.; Vega-Alvarado, L. Integrative Differential Expression Analysis for Multiple EXperiments (IDEAMEX): A Web Server Tool for Integrated RNA-Seq Data Analysis. Front. Genet. 2019, 10, 279. [Google Scholar] [CrossRef]
Group | Sample ID | Total Number of Reads | Phred Value (Average) | Reads Length (bp) | Mean GC Content (%) | Mapped Sequences |
---|---|---|---|---|---|---|
GI | V_1 | 17,979,636 | 33 | 76 | 51–55 | 11,426,710 |
V_2 | 18,832,282 | 34 | 76 | 51–55 | 1,118,703 | |
V_3 | 17,928,270 | 34 | 76 | 51–55 | 2,338,818 | |
GII | A_1 | 18,097,878 | 33 | 76 | 51–55 | 15,724,796 |
A_2 | 17,894,634 | 33 | 76 | 51–55 | 15,225,955 | |
A_3 | 18,148,942 | 33 | 76 | 47–51 | 14,490,409 | |
GIII | C_1 | 17,979,610 | 33 | 76 | 47–51 | 13,518,261 |
C_2 | 18,407,034 | 33 | 76 | 47–51 | 13,342,950 | |
C_3 | 17,431,266 | 33 | 76 | 51–55 | 14,263,462 |
Transcript | logFC | p-Value | Gen Symbol | Gen Name | Encoded Protein | Protein Name | |
---|---|---|---|---|---|---|---|
Down- regulated | XM_024997861.1 | −4.95 | 2.62 × 10−9 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853629.1 | ras-related protein Rab-27A isoform X3 |
XM_024997858.1 | −4.73 | 5.32 × 10−9 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853626.1 | ras-related protein Rab-27A isoform X1 | |
XM_024997860.1 | −4.71 | 7.80 × 10−9 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853628.1 | ras-related protein Rab-27A isoform X1 | |
XM_024997856.1 | −4.48 | 2.27 × 10−8 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853624.1 | ras-related protein Rab-27A isoform X3 | |
NM_001101270.1 | −4.33 | 6.27 × 10−8 | RAB27A | RAB27A, member of RAS oncogene family | NP_001094740.1 | ras-related protein Rab-27A | |
XM_024997857.1 | −4.22 | 1.55 × 10−7 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853624.1 | ras-related protein Rab-27A isoform X3 | |
XM_024997859.1 | −4.17 | 2.22 × 10−7 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853627.1 | ras-related protein Rab-27A isoform X3 | |
NM_001012675.2 | −4.13 | 8.77 × 10−4 | BOLA-DQA5 | major histocompatibility complex, class II, DQ alpha 5 | NP_001012693.2 | major histocompatibility complex, class II, DQ alpha 5 precursor | |
XM_024983736.1 | −3.19 | 3.47 × 10−5 | MPIG6B | megakaryocyte and platelet inhibitory receptor G6b | XP_024839504.1 | protein G6b isoform X1 | |
XM_015459849.2 | −2.96 | 4.91 × 10−3 | BOLA-DQA5 | major histocompatibility complex, class II, DQ alpha 5 | XP_015315335.1 | major histocompatibility complex, class II, DQ alpha 5 isoform X1 | |
XM_015459896.2 | −2.89 | 3.32 × 10−4 | MPIG6B | megakaryocyte and platelet inhibitory receptor G6b | XP_015315382.2 | protein G6b isoform X2 | |
NM_001078081.2 | −2.85 | 4.78 × 10−4 | MPIG6B | megakaryocyte and platelet inhibitory receptor G6b | NP_001071549.1 | megakaryocyte and platelet inhibitory receptor G6b precursor | |
NM_001130930.1 | −2.82 | 5.84 × 10−4 | STMP1 | short transmembrane mitochondrial protein 1 | NP_001124402.1 | short transmembrane mitochondrial protein 1 | |
XM_024983649.1 | −2.77 | 1.17 × 10−2 | MAPK14 | mitogen-activated protein kinase 14 | XP_024839417.1 | mitogen-activated protein kinase 14 isoform X3 | |
XM_002696068.6 | −2.75 | 1.75 × 10−2 | CD79B | CD79b molecule | XP_002696114.1 | B-cell antigen receptor complex-associated protein beta chain isoform X2 | |
NM_001101062.1 | −2.71 | 2.37 × 10−3 | PF4 | platelet factor 4 | NP_001094532.1 | platelet factor 4 precursor | |
NM_001101251.2 | −2.69 | 2.66 × 10−2 | IFI30 | IFI30 lysosomal thiol reductase | NP_001094721.1 | gamma-interferon-inducible lysosomal thiol reductase precursor | |
NM_001205988.1 | −2.67 | 1.99 × 10−3 | SRXN1 | sulfiredoxin 1 | NP_001192917.1 | sulfiredoxin-1 | |
NM_174266.4 | −2.6 | 2.17 × 10−3 | CD79A | CD79a molecule | NP_776691.2 | B-cell antigen receptor complex-associated protein alpha chain precursor | |
NM_001034735.1 | −2.5 | 5.50 × 10−3 | CD74 | CD74 molecule | NP_001029907.1 | HLA class II histocompatibility antigen gamma chain | |
XM_005209610.3 | −2.26 | 1.59 × 10−2 | CD74 | CD74 molecule | XP_005209667.1 | HLA class II histocompatibility antigen gamma chain isoform X1 | |
NM_001192560.1 | −2.22 | 1.33 × 10−2 | GRAP2 | GRB2-related adaptor protein 2 | NP_001179489.1 | GRB2-related adapter protein 2 | |
NM_001034517.2 | −2.2 | 2.36 × 10−2 | LAMTOR5 | late endosomal/lysosomal adaptor, MAPK and MTOR activator 5 | NP_001029689.1 | regulator complex protein LAMTOR5 | |
NM_001034255.2 | −2.18 | 1.72 × 10−2 | CFD | complement factor D | NP_001029427.1 | complement factor D precursor | |
Up- regulated | XM_002685850.5 | 8.35 | 5.67 × 10−8 | HSPA6 | heat shock protein family A (Hsp70) member 6 | XP_002685896.1 | heat shock 70 kDa protein 6 |
XM_010805535.1 | 2.76 | 1.74 × 10−3 | CD163 | CD163 molecule | XP_010803837.1 | scavenger receptor cysteine-rich type 1 protein M130 isoform X1 | |
XM_005202573.4 | 2.56 | 1.11 × 10−2 | STAT1 | signal transducer and activator of transcription 1 | XP_005202630.1 | signal transducer and activator of transcription 1-alpha/beta | |
NM_174652.2 | 2.17 | 3.11 × 10−2 | SLC11A1 | solute carrier family 11 member 1 | NP_777077.1 | natural resistance-associated macrophage protein 1 |
Transcript | logFC | p-Value | Gen Symbol | Gen Name | Encoded Protein | Protein Name | |
---|---|---|---|---|---|---|---|
Down- regulated | XM_024997856.1 | −4.73 | 1.14 × 10−11 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853624.1 | ras-related protein Rab-27A isoform X3 |
XM_024997857.1 | −4.4 | 7.16 × 10−10 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853624.1 | ras-related protein Rab-27A isoform X3 | |
XM_024997861.1 | −4.19 | 4.41 × 10−9 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853629.1 | ras-related protein Rab-27A isoform X3 | |
NM_001101270.1 | −4.16 | 7.78 × 10−9 | RAB27A | RAB27A, member of RAS oncogene family | NP_001094740.1 | ras-related protein Rab-27A | |
XM_024997858.1 | −3.91 | 3.36 × 10−9 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853626.1 | ras-related protein Rab-27A isoform X1 | |
XM_024997859.1 | −3.88 | 1.59 × 10−4 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853627.1 | ras-related protein Rab-27A isoform X3 | |
XM_024997860.1 | −3.74 | 3.57 × 10−8 | RAB27A | RAB27A, member of RAS oncogene family | XP_024853628.1 | ras-related protein Rab-27A isoform X1 | |
XM_002688351.4 | −3.22 | 1.36 × 10−5 | PPBP | pro-platelet basic protein | XP_002688397.1 | platelet basic protein | |
NM_001046590.1 | −3.16 | 1.46 × 10−4 | CD83 | CD83 molecule | NP_001040055.1 | CD83 antigen precursor | |
NM_001205988.1 | −3.11 | 2.08 × 10−7 | SRXN1 | sulfiredoxin 1 | NP_001192917.1 | sulfiredoxin-1 | |
XM_010818124.3 | −2.72 | 1.32 × 10−4 | MAPK14 | mitogen-activated protein kinase 14 | XP_010816426.1 | mitogen-activated protein kinase 14 isoform X4 | |
NM_001101062.1 | −2.66 | 2.41 × 10−4 | PF4 | platelet factor 4 | NP_001094532.1 | platelet factor 4 precursor | |
XM_024983649.1 | −2.62 | 5.35 × 10−4 | MAPK14 | mitogen-activated protein kinase 14 | XP_024839417.1 | mitogen-activated protein kinase 14 isoform X3 | |
XM_024983652.1 | −2.53 | 2.26 × 10−3 | MAPK14 | mitogen-activated protein kinase 14 | XP_024839420.1 | mitogen-activated protein kinase 14 isoform X7 | |
NM_001034517.2 | −2.52 | 3.73 × 10−4 | LAMTOR5 | late endosomal/lysosomal adaptor, MAPK and MTOR activator 5 | NP_001029689.1 | regulator complex protein LAMTOR5 | |
NM_001078081.2 | −2.52 | 3.90 × 10−4 | MPIG6B | megakaryocyte and platelet inhibitory receptor G6b | NP_001071549.1 | megakaryocyte and platelet inhibitory receptor G6b precursor | |
XM_024991787.1 | −2.47 | 1.27 × 10−3 | GRAP2 | GRB2 related adaptor protein 2 | XP_024847555.1 | GRB2-related adapter protein 2 isoform X1 | |
NM_001130930.1 | −2.33 | 1.84 × 10−3 | STMP1 | short transmembrane mitochondrial protein 1 | NP_001124402.1 | short transmembrane mitochondrial protein 1 | |
NM_001102174.1 | −2.3 | 2.09 × 10−3 | MAPK14 | mitogen-activated protein kinase 14 | NP_001095644.1 | mitogen-activated protein kinase 14 | |
NM_173900.2 | −2.29 | 6.37 × 10−3 | CD9 | CD9 molecule | NP_776325.1 | CD9 antigen | |
NM_001192560.1 | −2.28 | 4.60 × 10−4 | GRAP2 | GRB2-related adaptor protein 2 | NP_001179489.1 | GRB2-related adapter protein 2 | |
XM_015459896.2 | −2.26 | 1.01 × 10−3 | MPIG6B | megakaryocyte and platelet inhibitory receptor G6b | XP_015315382.2 | protein G6b isoform X2 | |
XM_024983736.1 | −2.26 | 8.38 × 10−3 | MPIG6B | megakaryocyte and platelet inhibitory receptor G6b | XP_024839504.1 | protein G6b isoform X1 | |
XM_024983650.1 | −2.24 | 3.52 × 10−3 | MAPK14 | mitogen-activated protein kinase 14 | XP_024839418.1 | mitogen-activated protein kinase 14 isoform X4 | |
NM_001012676.3 | −2.22 | 1.66 × 10−3 | BOLA-DQB | major histocompatibility complex, class II, DQ beta | NP_001012694.2 | major histocompatibility complex, class II, DQ beta precursor | |
NM_001012675.2 | −2.18 | 3.42 × 10−3 | BOLA-DQA5 | major histocompatibility complex, class II, DQ alpha 5 | NP_001012693.2 | major histocompatibility complex, class II, DQ alpha 5 precursor | |
XM_010818123.2 | −2.15 | 5.92 × 10−3 | MAPK14 | mitogen-activated protein kinase 14 | XP_010816425.1 | mitogen-activated protein kinase 14 isoform X1 | |
XM_024983651.1 | −2.1 | 1.18 × 10−2 | MAPK14 | mitogen-activated protein kinase 14 | XP_024839419.1 | mitogen-activated protein kinase 14 isoform X5 | |
NM_001101246.1 | −2.09 | 1.01 × 10−2 | MTURN | maturin, neural progenitor differentiation regulator homolog | NP_001094716.1 | maturin | |
XM_024983852.1 | −2.08 | 1.50 × 10−3 | BOLA-DQA2 | major histocompatibility complex, class II, DQ alpha 2 | XP_024839620.1 | major histocompatibility complex, class II, DQ alpha 2 | |
NM_001193019.1 | −1.98 | 2.17 × 10−2 | NFKBID | NFKB inhibitor delta | NP_001179948.1 | NF-kappa-B inhibitor delta | |
NM_001130746.2 | −1.94 | 9.97 × 10−3 | NFKBIE | NFKB inhibitor epsilon | NP_001124218.1 | NF-kappa-B inhibitor epsilon | |
XM_015459849.2 | −1.9 | 1.10 × 10−2 | BOLA-DQA5 | major histocompatibility complex, class II, DQ alpha 5 | XP_015315335.1 | major histocompatibility complex, class II, DQ alpha 5 isoform X1 | |
XM_005207393.4 | −1.82 | 2.75 × 10−2 | GRAP2 | GRB2-related adaptor protein 2 | XP_005207450.1 | GRB2-related adapter protein 2 isoform X1 | |
NM_001101164.2 | −1.78 | 1.04 × 10−2 | EGLN3 | egl-9 family hypoxia-inducible factor 3 | NP_001094634.1 | prolyl hydroxylase EGLN3 | |
Up- regulated | XM_003585963.5 | 3.5 | 4.42 × 10−7 | TARP | TCR gamma alternate reading frame protein | XP_003586011.2 | uncharacterized protein LOC100335800 isoform X1 |
XM_024991132.1 | 3.06 | 1.34 × 10−6 | LOC100335205 | T-cell receptor gamma chain C region C10.5 | XP_024846900.1 | T-cell receptor gamma chain C region C10.5 isoform X2 | |
NM_001075147.2 | 2.59 | 9.94 × 10−4 | CCL4 | C-C motif chemokine ligand 4 | NP_001068615.1 | C-C motif chemokine 4 precursor | |
XM_024985324.1 | 2.59 | 1.09 × 10−4 | LOC618541 | uncharacterized LOC618541 | XP_024841092.1 | uncharacterized protein LOC618541 isoform X1 | |
NM_001281911.1 | 2.55 | 3.34 × 10−4 | TARP | TCR gamma alternate reading frame protein | NP_001268840.1 | uncharacterized protein LOC100335800 | |
XM_024985322.1 | 2.44 | 3.85 × 10−4 | LOC618541 | uncharacterized LOC618541 | XP_024841090.1 | uncharacterized protein LOC618541 isoform X1 | |
XM_024991133.1 | 2.37 | 1.52 × 10−4 | LOC100335205 | T-cell receptor gamma chain C region C10.5 | XP_024846901.1 | T-cell receptor gamma chain C region C10.5 isoform X3 | |
NM_001046060.2 | 2.25 | 1.65 × 10−3 | GIMAP4 | GTPase, IMAP family member 4 | NP_001039525.1 | GTPase IMAP family member 4 | |
XM_024985326.1 | 2.25 | 7.58 × 10−4 | LOC618541 | uncharacterized LOC618541 | XP_024841094.1 | uncharacterized protein LOC618541 isoform X2 | |
XM_024985321.1 | 2.23 | 1.03 × 10−3 | LOC618541 | uncharacterized LOC618541 | XP_024841089.1 | uncharacterized protein LOC618541 isoform X1 | |
XM_010800704.3 | 2.21 | 3.44 × 10−4 | LOC100300806 | immunoglobulin heavy variable 4-59 | XP_010799006.3 | immunoglobulin heavy variable 4-59 isoform X1 | |
XM_024994697.1 | 2.17 | 3.73 × 10−3 | TCF7 | transcription factor 7 | XP_024850465.1 | transcription factor 7 isoform X5 | |
XM_024985323.1 | 2.16 | 9.03 × 10−4 | LOC618541 | uncharacterized LOC618541 | XP_024841091.1 | uncharacterized protein LOC618541 isoform X1 | |
XM_024985319.1 | 2.09 | 1.03 × 10−3 | IL32 | interleukin 32 | XP_024841087.1 | uncharacterized protein IL32 isoform X3 | |
XM_005203420.4 | 2.06 | 9.33 × 10−4 | CD247 | CD247 molecule | XP_005203477.1 | T-cell surface glycoprotein CD3 zeta chain isoform X1 | |
NM_174012.2 | 2.05 | 1.10 × 10−2 | CD247 | CD247 molecule | NP_776437.1 | T-cell surface glycoprotein CD3 zeta chain precursor | |
XM_005224639.4 | 2.03 | 1.43 × 10−3 | IL32 | interleukin 32 | XP_005224696.1 | interleukin-32 isoform X1 | |
XM_024990601.1 | 1.97 | 6.77 × 10−3 | GIMAP4 | GTPase, IMAP family member 4 | XP_024846369.1 | GTPase IMAP family member 4 isoform X1 | |
NM_175773.3 | 1.95 | 1.04 × 10−2 | JCHAIN | joining chain of multimeric IgA and IgM | NP_786967.1 | immunoglobulin J chain precursor | |
XM_005205826.3 | 1.94 | 5.01 × 10−3 | GIMAP4 | GTPase, IMAP family member 4 | XP_005205883.1 | GTPase IMAP family member 4 isoform X1 | |
NM_001024476.2 | 1.91 | 1.89 × 10−2 | TRAF3IP3 | TRAF3-interacting protein 3 | NP_001019647.2 | TRAF3-interacting JNK-activating modulator isoform 2 | |
XM_024991131.1 | 1.88 | 3.02 × 10−2 | LOC100335205 | T-cell receptor gamma chain C region C10.5 | XP_024846899.1 | T-cell receptor gamma chain C region C10.5 | |
XM_015471200.2 | 1.86 | 3.26 × 10−3 | IL2RB | interleukin 2 receptor subunit beta | XP_015326686.2 | interleukin-2 receptor subunit beta | |
XM_002683998.6 | 1.85 | 1.73 × 10−2 | LOC100300716 | immunoglobulin heavy variable 4-38-2 | XP_002684044.5 | immunoglobulin heavy variable 4-38-2 | |
XM_024991134.1 | 1.85 | 7.11 × 10−3 | LOC100335205 | T-cell receptor gamma chain C region C10.5 | XP_024846902.1 | T-cell receptor gamma chain C region C10.5 isoform X4 | |
XM_024994696.1 | 1.75 | 1.69 × 10−2 | TCF7 | transcription factor 7 | XP_024850464.1 | transcription factor 7 isoform X3 | |
NM_001046549.2 | 1.72 | 8.58 × 10−3 | TUBB | tubulin beta class I | NP_001040014.1 | tubulin beta-5 chain | |
NM_001206732.1 | 1.71 | 2.92 × 10−2 | TXNDC5 | thioredoxin domain-containing 5 | NP_001193661.1 | thioredoxin domain-containing protein 5 precursor |
Transcript | logFC | p-Value | Gen Symbol | Gen Name | Encoded Protein | Protein Name | |
---|---|---|---|---|---|---|---|
Down- regulated | XM_010800704.3 | −3.65 | 3.42 × 10−5 | LOC100300806 | immunoglobulin heavy variable 4-59 | XP_010799006.3 | immunoglobulin heavy variable 4-59 isoform X1 |
NM_175773.3 | −3.49 | 5.92 × 10−5 | JCHAIN | joining chain of multimeric IgA and IgM | NP_786967.1 | immunoglobulin J chain precursor | |
XM_002683998.6 | −3.48 | 5.85 × 10−5 | LOC100300716 | immunoglobulin heavy variable 4-38-2 | XP_002684044.5 | immunoglobulin heavy variable 4-38-2 | |
NM_001319884.1 | −3.4 | 1.58 × 10−4 | LOC100297192 | Ig heavy chain Mem5-like | NP_001306813 | Ig heavy chain Mem5-like precursor | |
XM_024989147.1 | −3.35 | 2.19 × 10−4 | LOC112441460 | immunoglobulin lambda-1 light chain | XP_024844915.1 | immunoglobulin lambda-1 light chain | |
XM_024977848.1 | −3.32 | 2.77 × 10−4 | LOC112441499 | immunoglobulin lambda-1 light chain | XP_024833616.2 | immunoglobulin lambda-1 light chain | |
XM_005222343.4 | −3.17 | 2.52 × 10−4 | LOC104968484 | immunoglobulin heavy variable 4-59 | XP_005222400.3 | immunoglobulin heavy variable 4-59 | |
NM_001083800.1 | −2.92 | 2.72 × 10−3 | LOC789205 | immunoglobulin lambda-1 light chain-like | NP_001077269.1 | immunoglobulin lambda-1 light chain-like precursor | |
NM_001103102.2 | −2.86 | 3.57 × 10−3 | SPN | Sialophorin | NP_001096572 | Leukosialin | |
NM_001046618.1 | −2.7 | 4.41 × 10−3 | PTPRCAP | protein tyrosine phosphatase receptor type C-associated protein | NP_001040083.1 | protein tyrosine phosphatase receptor type C-associated protein precursor | |
NM_001205186.1 | −2.57 | 1.86 × 10−2 | LOC524810 | IgM | NP_001192115.1 | IgM precursor | |
XM_005227324.4 | −2.32 | 1.87 × 10−2 | LSP1 | lymphocyte-specific protein 1 | XP_005227381.1 | lymphocyte-specific protein 1 isoform X1 | |
XM_024985319.1 | −2.22 | 2.95 × 10−2 | IL32 | interleukin 32 | XP_024841087.1 | uncharacterized protein IL32 isoform X3 | |
Up- regulated | XM_002685850.5 | 8.4 | 3.90 × 10−4 | HSPA6 | heat shock protein family A (Hsp70) member 6 | XP_002685896.1 | heat shock 70 kDa protein 6 |
XM_015459910.2 | 3.76 | 2.61 × 10−3 | LOC507917 | MHC class I heavy chain | XP_015315396.1 | BOLA class I histocompatibility antigen, alpha chain BL3-6 isoform X1 | |
NM_001193019.1 | 2.48 | 2.13 × 10−2 | NFKBID | NFKB inhibitor delta | NP_001179948.1 | NF-kappa-B inhibitor delta | |
NM_001076841.1 | 2.3 | 3.41 × 10−2 | LOC512672 | major histocompatibility complex, class I | NP_001070309.1 | major histocompatibility complex, class I precursor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-García, G.; Estrada, K.; Lira-Amaya, J.J.; Santamaria-Epinosa, R.M.; Lopez-Arellano, M.E.; Sciutto-Conde, E.L.; Rojas-Martinez, C.; Alvarez-Martínez, J.A.; Sánchez-Flores, A.; Figueroa-Millán, J.V. Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of Babesia bigemina. Int. J. Mol. Sci. 2025, 26, 487. https://doi.org/10.3390/ijms26020487
Martínez-García G, Estrada K, Lira-Amaya JJ, Santamaria-Epinosa RM, Lopez-Arellano ME, Sciutto-Conde EL, Rojas-Martinez C, Alvarez-Martínez JA, Sánchez-Flores A, Figueroa-Millán JV. Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of Babesia bigemina. International Journal of Molecular Sciences. 2025; 26(2):487. https://doi.org/10.3390/ijms26020487
Chicago/Turabian StyleMartínez-García, Grecia, Karel Estrada, José J. Lira-Amaya, Rebeca M. Santamaria-Epinosa, María E. Lopez-Arellano, Edda L. Sciutto-Conde, Carmen Rojas-Martinez, Jesus A. Alvarez-Martínez, Alejandro Sánchez-Flores, and Julio V. Figueroa-Millán. 2025. "Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of Babesia bigemina" International Journal of Molecular Sciences 26, no. 2: 487. https://doi.org/10.3390/ijms26020487
APA StyleMartínez-García, G., Estrada, K., Lira-Amaya, J. J., Santamaria-Epinosa, R. M., Lopez-Arellano, M. E., Sciutto-Conde, E. L., Rojas-Martinez, C., Alvarez-Martínez, J. A., Sánchez-Flores, A., & Figueroa-Millán, J. V. (2025). Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of Babesia bigemina. International Journal of Molecular Sciences, 26(2), 487. https://doi.org/10.3390/ijms26020487