Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Properties of the Substrates
2.2. Seedling Growth Characteristics
2.3. Nematode Analysis
3. Materials and Methods
3.1. Seed Material
3.2. Substrate Preparation Procedure
- A.
- Sewage sludge (0.80) + sawdust (0.20);
- B.
- Sewage sludge (0.40) + sawdust (0.10) + biodegradable garden and park waste (0.50);
- C.
- Biodegradable garden and park waste (0.90) + sawdust (0.10);
- 0-control (100 O)
- A I (0.75 A + 0.25 O);
- A II (0.50 A + 0.50 O);
- A III (0.25 A + 0.75 O);
- B I (0.75 B + 0.25 O);
- B II (0.50 B + 0.50 O);
- B III (0.25 B + 0.75 O);
- C I (0.75 C + 0.25 O);
- C II (0.50 C + 0.50 O);
- C III (0.25 C + 0.75 O).
3.3. Experimental Design
3.4. Analysis of Physicochemical Properties of Substrates
3.5. Physiological Parameters of Plants
3.5.1. The Relative Chlorophyll Content
3.5.2. Biometric Parameters of Cotyledons and Leaves
3.6. Nematodes Extraction
3.7. DNA Extraction and Libraries Preparation
3.8. Processing and Analysis of Sequencing Data
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, C.; Yu, C.; Shen, Y.; Fang, X.; Chen, L.; Min, J.; Cheng, J.; Zhao, S.; Xu, M.; Luo, Y.; et al. Whole-Genome Sequencing of Cultivated and Wild Peppers Provides Insights into Capsicum Domestication and Specialization. Proc. Natl. Acad. Sci. USA 2014, 111, 5135–5140. [Google Scholar] [CrossRef] [PubMed]
- Azlan, A.; Sultana, S.; Huei, C.S.; Razman, M.R. Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review. Molecules 2022, 27, 898. [Google Scholar] [CrossRef] [PubMed]
- Holmes, S.; Bain, C. Peat-Free Horticulture-Demonstrating Success: Addendum Report 2023. IUCN UK Peatland Programme, Edinburgh. Available online: https://www.iucn-uk-peatlandprogramme.org/sites/default/files/2023-02/Demonstrating%20Success-%20Peat-free%20Horticulture%20Addendum%202023%20WEB_2.pdf (accessed on 28 November 2024).
- Vandecasteele, B.; Pot, S.; Maenhout, K.; Delcour, I.; Vancampenhout, K.; Debode, J. Acidification of composts versus woody management residues: Optimizing biological and chemical characteristics for a better fit in growing media. J. Environ. Manag. 2021, 277, 111444. [Google Scholar] [CrossRef] [PubMed]
- Jankauskiene, J.; Laužike, K.; Kavaliauskaite, D. Effects of vermicompost on quality and physiological parameters of cucumber (Cucumis sativus L.) seedlings and plant productivity. Horticulturae 2022, 8, 1009. [Google Scholar] [CrossRef]
- Basheer, M.; Agrawal, O.P. Effect of vermicompost on the growth and productivity of tomato plant (Solanum lycopersicum) under field conditions. Int. J. Recent Sci. Res. 2013, 4, 247–249. [Google Scholar]
- Hajam, Y.A.; Kumar, R.; Kumar, A. Environmental waste management strategies and vermi transformation for sustainable development. Environ. Chall. 2023, 13, 100747. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Rehman, S.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Pattnaik, S.; Reddy, M.V. Nutrient status of vermicompost of urban green waste processed by three earthworm species—Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus. Appl. Environ. Soil Sci. 2010, 2010, 967526. [Google Scholar] [CrossRef]
- Olle, M. Review: Vermicompost, its importance and benefit in agriculture. Estonian Crop Research Institute. J. Agric. Sci. 2019, 30, 93–98. [Google Scholar] [CrossRef]
- Moschou, C.E.; Papadimitriou, D.M.; Galliou, F.; Markakis, N.; Papastefanakis, N.; Daskalakis, G.; Sabathianakis, M.; Stathopoulou, E.; Bouki, C.; Daliakopoulos, I.N.; et al. Grocery Waste Compost as an Alternative Hydroponic Growing Medium. Agronomy 2022, 12, 789. [Google Scholar] [CrossRef]
- Penuelas, J.; Coello, F.; Sardans, J. A better use of fertilizers is needed for global food security and environmental sustainability. Agric. Food Secur. 2023, 12, 5. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Palese, A.M.; Di Meo, V.; Pastore, V.; D’Adamo, C.; Celano, G. Composting: The way for a sustainable agriculture. Appl. Soil Ecol. 2018, 123, 744–750. [Google Scholar] [CrossRef]
- Manea, E.E.; Bumbac, C.; Dinu, L.R.; Bumbac, M.; Nicolescu, C.M. Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements. Sustainability 2024, 16, 6329. [Google Scholar] [CrossRef]
- Panday, D.; Bhusal, N.; Das, S.; Ghalehgolabbehbahani, A. Rooted in Nature: The Rise, Challenges, and Potential of Organic Farming and Fertilizers in Agroecosystems. Sustainability 2024, 16, 1530. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding Habits in Soil Nematode Families and Genera—An Outline for Soil Ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar]
- Yeates, G.W. Nematodes as soil indicators: Functional and biodiversity aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar] [CrossRef]
- Yadav, S.; Patil, J.; Kanwar, R.S. The Role of Free Living Nematode Population in the Organic Matter Recycling. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2726–2734. [Google Scholar] [CrossRef]
- Steinberger, Y.; Kerfahi, D.; Doniger, T.; Sherman, C.; Applebaum, I.; Eshel, G. Free-living nematode community structure and distribution within vineyard soil aggregates under conventional and organic management practices. Pedosphere 2023, 33, 916–926. [Google Scholar] [CrossRef]
- Renčo, M.; Kováčik, P. Assessment of the nematicidal potential of vermicompost, vermicompost tea, and urea application on the potato-cyst nematodes Globodera rostochiensis and Globodera Pallida. J. Plant Prot. Res. 2015, 55, 187–192. [Google Scholar] [CrossRef]
- Yadav, M.R.; Kumar, R.; Parihar, C.M.; Yadav, R.K.; Jat, S.L.; Ram, H.; Meena, R.K.; Singh, M.; Birbal; Verma, A.P.; et al. Strategies for improving nitrogen use efficiency: A review. Agric. Rev. 2017, 38, 29–40. [Google Scholar] [CrossRef]
- Azis, F.A.; Choo, M.; Suhaimi, H.; Abas, P.E. The Effect of Initial Carbon to Nitrogen Ratio on Kitchen Waste Composting Maturity. Sustainability 2023, 15, 6191. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef] [PubMed]
- FAO. Standard Operating Procedure for Soil pH Determination; FAO: Rome, Italy, 2021; Available online: https://openknowledge.fao.org/handle/20.500.14283/cb3637en (accessed on 25 December 2024).
- Thor, K. Calcium-Nutrient and Messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Wdowiak, A.; Podgórska, A.; Szal, B. Calcium in plants: An important element of cell physiology and structure, signaling, and stress responses. Acta Physiol. Plant. 2024, 46, 108. [Google Scholar] [CrossRef]
- Riga, P.; Anza, M. Effect of Magnesium Deficiency on Pepper Growth Parameters: Implications for Determination of Magnesium-Critical Value. J. Plant Nutr. 2003, 26, 1581–1593. [Google Scholar] [CrossRef]
- Niu, G.; Rodriguez, D.S.; Cabrera, R.; Jifon, J.; Leskovar, D.; Crosby, K. Salinity and Soil Type Effects on Emergence and Growth of Pepper Seedlings. HortScience 2010, 45, 1265–1269. [Google Scholar] [CrossRef]
- Ntanasi, T.; Savvas, D.; Karavidas, I.; Papadopoulou, E.A.; Mazahrirh, N.; Fotopoulos, V.; Aliferis, K.A.; Sabatino, L.; Ntatsi, G. Assessing Salinity Tolerance and Fruit Quality of Pepper Landraces. Agronomy 2024, 14, 309. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 330. [Google Scholar] [CrossRef]
- van Kessel, M.A.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Op den Camp, H.J.; Kartal, B.; Jetten, M.S.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559. [Google Scholar] [CrossRef]
- Cristescu, M.E. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends Ecol. Evol. 2014, 29, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Bánki, O.; Roskov, Y.; Döring, M.; Ower, G.; Robles, D.R.H.; Corredor, C.A.P.; Jeppesen, T.S.; Örn, A.; Vandepitte, L.; Hobern, D.; et al. Nemys, World Database of Nematodes. Catalogue of Life Checklist. 2023. Available online: https://obis.org/dataset/29dbebfe-bf43-4167-ab9b-48bcd546edc9 (accessed on 28 November 2024).
- Stock, S.P.; Caicedo, A.M.; Calatayud, P.A. Rhabditis (Oscheius) colombiana n. sp. (Nematoda: Rhabditida), a necromenic associate of the subterranean burrower bug Cyrtomenus bergi (Hemiptera: Cydnidae) from the Cauca Valley, Colombia. Nematology 2005, 7, 363–373. [Google Scholar] [CrossRef]
- Ye, W.; Torres-Barragan, A.; Cardoza, Y.J. Oscheius carolinensis n. sp. (Nematoda: Rhabditidae), a potential entomopathogenic nematode from vermicompost. Nematology 2010, 12, 121–135. [Google Scholar]
- Campos-Herrera, R.; Půža, V.; Jaffuel, G.; Blanco-Perez, R.; Čepulytė-Rakauskienė, R.; Turlings, T.C. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: Implications for their natural distribution in Swiss agricultural soils. J. Invertebr. Pathol. 2015, 132, 216–227. [Google Scholar] [CrossRef]
- Torrini, G.; Mazza, G.; Carletti, B.; Benvenuti, C.; Roversi, P.F.; Fanelli, E.; De Luca, F.; Troccoli, A.; Tarasco, E. Oscheius onirici sp. n. (Nematoda: Rhabditidae): A new entomopathogenic nematode from an Italian cave. Zootaxa 2015, 3937, 533–548. [Google Scholar] [CrossRef]
- Sudhaus, W.; Hooper, D.J. Rhabditis (Oscheius) guentheri sp. n.; an unusual species with reduced posterior ovary, with observations on the Dolichura and Insectivora groups (Nematoda: Rhabditidae). Nematologica 1994, 40, 508–533. [Google Scholar] [CrossRef]
- Phani, V.; Khan, M.R.; Dutta, T.K. Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Prot. 2021, 144, 105573. [Google Scholar] [CrossRef]
- Lopez-Nicora, H.; Pedrozo, L.M.; Grabowski, C.; Orrego Fuente, A.; Villalba, E.H.; Ralston, T. First Report of the Reniform Nematode (Rotylenchulus reniformis) from Soybean in Paraguay. Plant Dis. 2018, 102, 2043. [Google Scholar] [CrossRef]
- Onkendi, E.M.; Kariuki, G.M.; Marais, M.; Moleleki, L.N. The threat of root-knot nematodes (Meloidogyne spp.) in Africa: A review. Plant Pathol. 2014, 63, 727–737. [Google Scholar] [CrossRef]
- Djian-Caporalino, C. Root-knot nematodes (Meloidogyne spp.), a growing problem in French vegetable crops. Bull. OEPP/EPPO 2012, 42, 1. [Google Scholar] [CrossRef]
- Long, H.; Sun, Y.; Chen, Y.; Pei, Y.; Feng, T.; Che, H. Occurrence of Root-Knot Nematode (Meloidogyne spp.) on Peppers in Hainan, China, and M. enterolobii and M. incognita Resistance of Common Cultivars. Plant Dis. 2023, 107, 3148–3154. [Google Scholar] [CrossRef] [PubMed]
- Marquez, J.; Severns, P.M.; Hajihassani, A. The influence of the environment and vegetable cropping systems on plant-parasitic nematode communities in southern Georgia, USA. Plant Dis. 2021, 105, 3181–3191. [Google Scholar] [CrossRef]
- Hajihassani, A.; Davis, R.F.; Timper, P. Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber. Plant Dis. 2019, 103, 3161–3165. [Google Scholar] [CrossRef]
- Regmi, H.; Desaeger, J. Integrated management of root-knot nematode (Meloidogyne spp.) in Florida tomatoes combining host resistance and nematicides. Crop Prot. 2020, 134, 105170. [Google Scholar] [CrossRef]
- Greco, N.; Esmenjaud, D. Management strategies for nematode control in Europe. In Proceedings of the Fourth International Congress of Nematology, Tenerife, Spain, 8–13 June 2002; Brill: Leiden, The Netherlands, 2004; pp. 33–43. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, O.; Corona-Torres, T.; Heber, V. Differential response of pepper (Capsicum annuum L.) lines to Phytophthora capsici and root-knot nematodes. Crop Prot. 2017, 92, 148–152. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-Lopez, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Moens, M.; Perry, R.N.; Starr, J.L. Meloidogyne species—A diverse group of novel and important plant parasites. In Root-Knot Nematodes; Perry, R.N., Moens, M., Starr, J.L., Eds.; CAB International: Wallingford, UK, 2009; pp. 1–17. [Google Scholar] [CrossRef]
- Handoo, Z.A.; Skandar, A.M.; Carta, L.K.; Erbe, E.F. Morphological and Molecular Characterisation of a New Root-Kont Nematode Meloidogyne thailandica n.sp. (Nematoda:Meloidogynidae) Parasiting Ginger (Zingiber sp.). J. Nematol. 2005, 37, 343–353. [Google Scholar]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; den Nijs, L.; Hockland, S.; Maafi, Z.T. Key nematodes threatening major agricultural crops of importance worldwide. In Genomics and Molecular Genetics of Plant–Nematode Interactions; Jones, J.T., Gheysen, G., Fenoll, C., Eds.; Springer: New York, NY, USA, 2011; pp. 21–44. [Google Scholar] [CrossRef]
- Morton, O.; Hirsch, P.; Kerry, B. Infection of plant-parasitic nematodes by nematophagous fungi—A review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 2004, 6, 161–170. [Google Scholar] [CrossRef]
- Moosavia, S.H.; Kroenera, M.; Woiasa, P. Cost effective MEMS fabrication of a Thermoelectric Nanowire Characterization Platform (TNCP). Procedia Eng. 2015, 120, 210–214. [Google Scholar] [CrossRef]
- Maleita, C.; Curtis, R.; Abrantes, I. Thermal requirements for the embryonic development and life cycle of Meloidogyne hispanica. Plant Pathol. 2012, 61, 1002–1010. [Google Scholar] [CrossRef]
- Maleita, C.M.N.; Curtis, R.H.C.; Powers, S.J.; Abrantes, I. Host status of cultivated plants to Meloidogyne hispanica. Eur. J. Plant Path. 2012, 133, 449–460. [Google Scholar] [CrossRef]
- Robertson, L.; Lopez-Perez, J.A.; Bello, A.; Diez-Rojo, M.A.; Escuer, M.; Piedra-Buena, A.; Ros, C.; Martinez, C. Characterisation of Meloidogyne incognita, M. arenaria and M. hapla populations from Spain and Uruquay parasiting pepper (Capsicum annuum L.). Crop Prot. 2006, 25, 440–445. [Google Scholar] [CrossRef]
- Mamani-Mendoza, N.R.; Tamo-Zegarra, J.J.; Bellé, C. Reaction of different pepper varieties to Meloidogyne spp. Idesia 2020, 38, 4. [Google Scholar] [CrossRef]
- Bernardo, V.F.; Gonzales, M.A.; Garita, S.A.; Lopez, R.O.; Arango, M.C.; Nazareno Saparrat, M.C.; Ruscitti, M.F. Evaluation of two nematophagous fungi for the control of false root-knot nematode Nacobbus aberrans in pepper crops. Gen. Plant Pathol. 2023, 89, 339–346. [Google Scholar] [CrossRef]
- Tazi, H.; Hamza, M.A.; Hallouti, A.; Benjlil, H.; Idhmida, A.; Furze, J.N.; Paulitz, T.C.; Mayad, E.H.; Boubaker, H.; El, M.A. Biocontrol potential of nematophagous fungi against Meloidogyne spp. infecting tomato. Org. Agr. 2021, 11, 63–71. [Google Scholar] [CrossRef]
- Escudero, N.; Lopez-Lloreal, V. Effect on plant growth and root-knot nematode infection of an endophytic GFP-transformant of the nematophagous fungus Pochonia chlamydospora. Symbiosis 2012, 57, 33–42. [Google Scholar] [CrossRef]
- Hlaoua, W.; Regaieg, H.; Horrigue-Raouani, N. Bionematicidal Effect of Verticillium leptobactrum Against Nematodes (Meloidogyne spp.) and Globodera Parasitic Complex on Potato (Solanum tuberosum L.). In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (4th Edition); Advances in Science, Technology & Innovation, Ksibi, M., Sousa, A., Hentati, O., Chenchouni, H., Velho, J.L., Negm, A., Rodrigo-Comino, J., Hadji, R., Chakraborty, S., et al., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Steel, H.; Moens, T.; Schoaert, A.; Boshoff, H.; Houthhoofd, W.; Bert, W. Monochamus composticola n. sp. (Nematoda: Diplogasteridae) associated with composting processes: Morphological, molecular and ecological characterisation. Nematology 2011, 13, 347–363. [Google Scholar] [CrossRef]
- Zapałowska, A.; Skwiercz, A.; Puchalski, C.; Malewski, T. Influence of Eisenia fetida on the Nematode Populations during Vermicomposting Process. Appl. Sci. 2024, 14, 1576. [Google Scholar] [CrossRef]
- Liu, M.; Peng, D.; Su, W.; Xiang, C.; Jia, J.; Zhao, J.; Peng, H.; Liu, S.; Kong, L.; Dai, L.; et al. Potassium sulphate induces resistance of rice against the root-knot nematode Meloidogynegraminicola. J. Integr. Agric. 2022, 21, 3263–3277. [Google Scholar] [CrossRef]
- Gebremikael, M.; Steel, H.; Buchan, D. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Sci. Rep. 2016, 6, 32862. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, A.A.M. Relationship between Nematodes and some Soil Properties in the Rhizosphere of Banana Plants. ILNS 2021, 82, 1–12. [Google Scholar] [CrossRef]
- Brzeski, M.W. Nematodes of Tylenchina in Poland and Temperate Europe; Muzeum and Institute of Zoology, Polish Academy of Sciences: Warszawa, Poland, 1998; p. 397. [Google Scholar]
- De Leij, F.A.A.M.; Davies, K.G.; Kerry, B.R. The use of Verticillium chlamydosporium Goddard and Pasteuria penetrans (Thorne) Sayre & Starr alone and in combination to control Meloidogyne incognita on tomato plants. Fund. Appl. Nematol. 1992, 15, 235–242. [Google Scholar]
- De Leij, F.A.A.M.; Davies, K.G.; Kerry, B.R. The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita. Nematologica 1992, 38, 112–122. [Google Scholar] [CrossRef]
- Kaplan, M.; Noe, J.P. Effects of Chicken-excrement Amendments on Meloidogyne arenaria. J. Nematol. 1993, 25, 71–77. [Google Scholar] [PubMed] [PubMed Central]
- Stirling, G.R. Biological control of Meloidogyne javanica with Bacillus penetrans. Phytopathology 1984, 74, 55–60. Available online: https://www.apsnet.org/publications/phytopathology/backissues/Documents/1984Articles/Phyto74n01_55.PDF (accessed on 15 December 2024). [CrossRef]
- Forghani, F.; Hajihassani, A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef]
- Zapałowska, A.; Skwiercz, A.; Tereba, A.; Puchalski, C.; Malewski, T. Next-Generation Sequencing for Evaluating the Soil Nematode Diversity and Its Role in Composting Processes. Int. J. Mol. Sci. 2023, 24, 15749. [Google Scholar] [CrossRef]
- Skwiercz, A.; Stefanovska, T.; Zhukov, O.; Zapałowska, A.; Masłoń, A. Effect of Silver Nanoparticles and Vermicompost on the Control of Longidorus elongatus (De Man, 1876) in Miscanthus × Giganteus and Its Growth and Development. Sustainability 2024, 16, 8093. [Google Scholar] [CrossRef]
- Skwiercz, A.; Zapałowska, A.; Flis, Ł.; Koc-Jurczyk, J.; Jurczyk, Ł.; Litwińczuk, W.; Puchalski, C. Plant Parasitic Nematodes on Paulownia tomentosa in Poland. J. Hortic. Res. 2022, 30, 31–40. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; de Vries, M.; Verkleij, G.; Crous, P.; Boekhout, T.; et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 2016, 85, 91–105. [Google Scholar] [CrossRef]
Variant | 1st Replicate | 2nd Replicate | 3rd Replicate |
---|---|---|---|
0 | Dicranophoridae spp. 76%, Acrobeloides nanus 8%, Panagrolaimus cf. rigidus AF40 2%, Diplogasteroididae spp. 1%, Ditylenchus persicus 1% | Diplogasteroididas spp. 12%, Aphelenchidae spp. 7%, Panagrolaimus cf. rigidus AF40 4%, Ditylenchus persicus 4%, Pseudacrobeles curvatus 6%, Acrobeloides nanus 54% | Panagrolaimus cf. rigidus AF40 15%, Diplogasteroididae spp. 12%, Aphelenchoides spp. K1 WY-2008 8%, Meloidogyne spp. Lichtenburg 1%, Diplogasteridae spp. 1%, Acrobeloides nanus 60% |
(1) | (2) | (3) | |
AI | Ditylenchus persicus 64%, Acrobeloides nanus 15%, Oscheius spp. 13% Aphelenchidae spp. 4% Ichthyocephalidae spp. 0.8%, Plectidae spp. 2% | Acrobeloides nanus 50%, Dicranophoridae spp. 50% | Pseudacrobeles curvatus 9%, Ditylenchus persicus 14%, Pseudacrobeles curvatus 9%, Acrobeloides nanus 76% |
(4) | (5) | (6) | |
AII | Oscheius onirici 23%, Acrobeloides nanus 19%, Belondiridae spp. 19%, Ditylenchus persicus 40% | Dicranophoridae spp. 2%, Acrobeloides nanus 24%, Panagrolaimus cf. rigidus AF40 23%, Ditylenchus persicus 15%, Oscheius onirici 3%, Meloidogyne sp. Lichtenburg 1%, Aphelenchidae spp. 26% | Ditylenchus persicus 24%, Acrobeloides nanus 19%, Diplogasteroididae 12%, Oscheius onirici 8%, Aphelenchidae spp. 5%, Meloidogyne sp. Lichtenburg 2%, Panagrolaimus cf. rigidus AF40 26% |
(7) | (8) | (9) | |
AIII | Panagrolaimus cf. rigidus AF40 6%, Aphelenchoididae spp. 33%, Aphelenchoides spp. 0.9%, Plectus acuminatus 0.9%, Plectus spp. 2%, Chiloplectus andrassyi 23% | Daptonema spp. 5%, Acrobeloides nanus 5%, Panagrolaimus cf. rigidus AF40 15%, Plectus acuminatus 1%, Plectus spp. 2%, Plectus aquatilis 10% | Diplogasteroididae spp. 13%, Neodiplogasteridae spp. 1%, Diplogasteridae spp. 1%, Acrobeloides nanus 83% |
(10) | (11) | (12) | |
BI | Meloidogyne sp. Lichtenburg 21%, Meloidogyne hispanica 4%, Meloidogyne sp. Mi_c1 3%, Meloidogyne ethiopica 2%, Acrobeloides nanus 15%, Pseudacrobeles curvatus 5%, Panagrolaimus cf. rigidus AF40 7%, Psyllotylenchus spp. 2%, Aphelenchidae spp. 2%, Oscheius oniric 2%, Ditylenchus persicus 34% | Panagrolaimus cf. rigidus AF40 19%, Acrobeloides nanus 33%, Belondiridae spp. 49% | Ichthyocephalidae spp. 7%, Neodiplogasteridae spp. 5%, Pseudacrobeles curvatus 11%, Acrobeloides nanus 60%, Dicranophoridae spp. 17% |
(13) | (14) | (15) | |
BII | Acrobeloides nanus 26%, Oscheius onirici 8% | Acrobeloides nanus 37%, Dicranophoridae spp. 57%, Ditylenchus persicus 5% | Diplogasteroididae spp. 28%, Meloidogyne sp. Lichtenburg 8%, Meloidogyne hispanica 1%, Ditylenchus persicus 5%, Neodiplogasteridae spp. 3%, Diplogasteridae spp. 2%, Aporcelaimellus obtusicaudatus 0.1%, Acrobeloides nanus 47% |
(16) | (17) | (18) | |
BIII | Ditylenchus persicus 3%, Panagrolaimus cf. rigidus AF40 3%, Pseudacrobeles curvatus 3%, Acrobeloides nanus 46% | Acrobeloides nanus 15%, Oscheius spp. 13%, Aphelenchidae spp. 4%, Ditylenchus persicus 64% | Diplogasteroididae spp. 27%, Diplogasteridae spp. 3%, Panagrolaimus cf. rigidus AF40 3%, Aphelenchoides sp. K1 WY 1%, Acrobeloides nanus 59% |
(19) | (20) | (21) | |
CI | Acrobeloides nanus 63% | Diplogasteroididae spp. 21%, Aphelenchidae spp. 14%, Pseudacrobeles curvatus 11%, Acrobeloides nanus 39% | Acrobeloides nanus 51% |
(22) | (23) | (24) | |
CII | Aphelenchidae spp. 18%, Ditylenchus persicus 2%, Diplogasteroididae spp. 1%, Meloidogyne sp. Lichtenburg 1%, Panagrolaimus cf. rigidus AF40 1%, Pseudacrobeles curvat 11%, Acrobeloides nanus 48% | Panagrolaimus cf. rigidus AF40 5%, Diplogasteroididae spp. 5%, Acrobeloides nanus 54%, | Panagrolaimus cf. rigidus AF40 1%, Plectus aquatilis 1%, Chiloplectus andrassyi 0.8% |
(25) | (26) | (27) | |
CIII | Diplogasteroididae spp. 26%, Meloidogyne sp. Mh_c1 2%, Diplogasteridae spp. 3%, Aphelenchoides sp. K1 WY-2008 2%, Neodiplogasteridae spp. 2%, Pseudacrobeles curvatus 11%, Acrobeloides nanus 37% | Diplogasteroididae spp. 35%, Acrobeloides nanus 43%, Aphelenchidae spp. 22% | Oscheius spp. 36%, Acrobeloides nanus 14%, Panagrolaimus cf. rigidus AF40 6%, Meloidogyne sp. Lichtenburg 26%, Meloidogyne hispanica 5%, Meloidogyne sp. Mi_c1 3%, Meloidogyne ethiopica 2%, Meloidogyne thailandica 1% |
(28) | (29) | (30) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapałowska, A.; Jarecki, W.; Skwiercz, A.; Malewski, T. Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings. Int. J. Mol. Sci. 2025, 26, 442. https://doi.org/10.3390/ijms26020442
Zapałowska A, Jarecki W, Skwiercz A, Malewski T. Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings. International Journal of Molecular Sciences. 2025; 26(2):442. https://doi.org/10.3390/ijms26020442
Chicago/Turabian StyleZapałowska, Anita, Wacław Jarecki, Andrzej Skwiercz, and Tadeusz Malewski. 2025. "Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings" International Journal of Molecular Sciences 26, no. 2: 442. https://doi.org/10.3390/ijms26020442
APA StyleZapałowska, A., Jarecki, W., Skwiercz, A., & Malewski, T. (2025). Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings. International Journal of Molecular Sciences, 26(2), 442. https://doi.org/10.3390/ijms26020442