Production of β-Glucans by Pleurotus ostreatus: Cultivation and Genetic Background
Abstract
1. Introduction
2. Cultivation of Pleurotus ostreatus
2.1. Effect of Culture Media on the Growth and Biomass
2.2. Effect of Culture Conditions on the Growth and Biomass
2.3. Effect of Various Spawning Doses
3. Cultivation of P. ostreatus on Waste Substrate
3.1. Food and Agricultural Waste
3.2. Synthetic Polymers
3.3. Wastewater
4. Molecular Analysis of Pleurotus ostreatus
5. Applicative Potential of P. ostreatus as a Result of High β-Glucan Contents
5.1. β-Glucan in Human Health
5.2. β-Glucan as Drug Delivery Agent
5.3. β-Glucan in Aquaculture
6. Research Gaps and Challenges
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional Foods Based on Extracts or Compounds Derived from Mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Navarro Villa, P. Production of Mushrooms and Truffles Worldwide 2025. Available online: https://www.statista.com/statistics/1018488/global-mushrooms-and-truffles-production/ (accessed on 2 April 2025).
- Dimopoulou, M.; Chinou, I.; Gortzi, O. A Systematic Review of the Seven Most Cultivated Mushrooms: Production Processes, Nutritional Value, Bioactive Properties and Impact on Non-Communicable Diseases. Agriculture 2025, 15, 1329. [Google Scholar] [CrossRef]
- Wan Mahari, W.A.; Peng, W.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Sonne, C.; et al. A Review on Valorization of Oyster Mushroom and Waste Generated in the Mushroom Cultivation Industry. J. Hazard. Mater. 2020, 400, 123156. [Google Scholar] [CrossRef]
- Ejigu, N.; Sitotaw, B.; Girmay, S.; Assaye, H. Evaluation of Oyster Mushroom (Pleurotus ostreatus) Production Using Water Hyacinth (Eichhornia Crassipes) Biomass Supplemented with Agricultural Wastes. Int. J. Food Sci. 2022, 2022, 9289043. [Google Scholar] [CrossRef]
- Muswati, C.; Simango, K.; Tapfumaneyi, L.; Mutetwa, M.; Ngezimana, W. The Effects of Different Substrate Combinations on Growth and Yield of Oyster Mushroom (Pleurotus ostreatus). Int. J. Agron. 2021, 2021, 9962285. [Google Scholar] [CrossRef]
- Leo, V.V.; Passari, A.K.; Muniraj, I.K.; Uthandi, S.; Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Singh, B.P. Elevated Levels of Laccase Synthesis by Pleurotus pulmonarius BPSM10 and Its Potential as a Dye Decolorizing Agent. Saudi J. Biol. Sci. 2019, 26, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Lesa, K.N.; Khandaker, M.U.; Mohammad Rashed Iqbal, F.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar] [CrossRef]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Comparative Antioxidant Activity and Phytochemical Content of Five Extracts of Pleurotus ostreatus (Oyster Mushroom). Sci. Rep. 2024, 14, 3794. [Google Scholar] [CrossRef] [PubMed]
- Kummer, P. Der Führer in die Pilzkunde: Anleitung Zum Methodischen, Leichten Und Sichern Bestimmen der in Deutschland Vorkommenden Pilze: Mit Ausnahme der Schimmel- Und Allzu Winzigen Schleim- Und Kern-Pilzchen; E. Luppe’s Buchhandlung: Zerbst, Germany, 1871. [Google Scholar]
- Davidson, A. The Oxford Companion to Food; Oxford University Press: Oxford, UK, 2014; ISBN 978-0-19-967733-7. [Google Scholar]
- Nakazawa, T.; Kawauchi, M.; Otsuka, Y.; Han, J.; Koshi, D.; Schiphof, K.; Ramírez, L.; Pisabarro, A.G.; Honda, Y. Pleurotus ostreatus as a Model Mushroom in Genetics, Cell Biology, and Material Sciences. Appl. Microbiol. Biotechnol. 2024, 108, 217. [Google Scholar] [CrossRef]
- Pant, A.; Kumar, V.; Bisht, S.S.; Upadhyay, S.; Bahuguna, P. Effect of Different Media, pH and Temperature on Growth of Pleurotus ostreatus. J. Bio. Innov. 2020, 9, 132–140. [Google Scholar]
- Sardar, H.; Ali, M.A.; Ayyub, C.M.; Ahmad, R. Effects of Different Culture Media, Temperature and pH Levels on the Growth of Wild and Exotic Pleurotus Species. Pak. J. Phytopathol. 2016, 27, 139–145. [Google Scholar]
- Fletcher, I.A.; Freer, A.; Ahmed, A.; Fitzgerald, P. Effect of Temperature and Growth Media on Mycelium Growth of Pleurotus ostreatus and Ganoderma Lucidum Strains. Cohesive J. Microbiol. Infect. Dis. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Hoa, H.T.; Wang, C.-L. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 14–23. [Google Scholar] [CrossRef]
- Mumpuni, A.; Ekowati, N.; Purnomowati, P.; Purwati, E.S. Growth and Protein Content Establishment of Pleurotus ostreatus on Liquid and Solid Medium. Biosaintifika J. Biol. Biol. Educ. 2017, 9, 572–578. [Google Scholar] [CrossRef]
- Nidhi, R.; Sud, D. Cultural studies on mycelia of Pleurotus ostreatus (Oyster Mushroom). Mushroom Res. 2023, 32, 81–85. [Google Scholar] [CrossRef]
- Krupodorova, T.; Barshteyn, V.; Tsygankova, V.; Sevindik, M.; Blume, Y. Strain-Specific Features of Pleurotus ostreatus Growth in Vitro and Some of Its Biological Activities. BMC Biotechnol. 2024, 24, 9. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Kim, H.-H.; Kim, S.-H.; Kim, I.-S.; Sung, N.-J. Culture conditions of liquid spawn and the growth characteristics of Pleurotus ostreatus. J. Mushroom 2018, 16, 162–170. [Google Scholar] [CrossRef]
- Maseko, K.H.; Regnier, T.; Wokadala, O.C.; Bartels, P.; Meiring, B. Effect of Culture Media on the Yield and Protein Content of Pleurotus ostreatus (Jacq.) Kumm Mycelia. Int. J. Food Sci. 2024, 5562732. [Google Scholar] [CrossRef]
- Aimable, N.; Mediatrice, H.; Claude, I.; Biregeya, J.; Hu, Y.; Zhou, H.; Liu, P.; Li, J.; Lin, Z.; Lu, G.; et al. Enzymatic Activity and Nutrient Profile Assessment of Three Pleurotus Species Under Pasteurized Cenchrus fungigraminus Cultivation. Curr. Issues Mol. Biol. 2025, 47, 143. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xue, F.; Chen, Y.; Qi, Y.; Zhu, W.; Wang, F.; Wen, Q.; Shen, J. Effects and Mechanism of the Mycelial Culture Temperature on the Growth and Development of Pleurotus ostreatus (Jacq.) P. Kumm. Horticulturae 2023, 9, 95. [Google Scholar] [CrossRef]
- Díaz, R.; Téllez-Téllez, M.; Bibbins-Martínez, M.D.; Sánchez, C.; Díaz-Godínez, G.; Soriano-Santos, J. Influence of Initial pH of the Growing Medium on the Activity, Production and Expression Profiles of Laccases Produced by Pleurotus ostreatus in Submerged Fermentation. Electron. J. Biotechnol. 2013, 16, 1–13. [Google Scholar] [CrossRef]
- Lin, R.; Zhang, L.; Yang, X.; Li, Q.; Zhang, C.; Guo, L.; Yu, H.; Yu, H. Responses of the Mushroom Pleurotus ostreatus under Different CO2 Concentration by Comparative Proteomic Analyses. J. Fungi 2022, 8, 652. [Google Scholar] [CrossRef]
- Jang, K.-Y.; Jhune, C.-S.; Park, J.-S.; Cho, S.-M.; Weon, H.-Y.; Cheong, J.-C.; Choi, S.-G.; Sung, J.-M. Characterization of Fruitbody Morphology on Various Environmental Conditions in Pleurotus ostreatus. Mycobiology 2003, 31, 145–150. [Google Scholar] [CrossRef]
- Siwulski, M.; Ziombra, M.; Sobieralski, K. Impact of Light on Yielding of Some Pleurotus Sp. Strains. Acta Mycol. 2013, 47, 65–73. [Google Scholar] [CrossRef]
- De Bonis, M.; Locatelli, S.; Sambo, P.; Zanin, G.; Pecchia, J.A.; Nicoletto, C. Effect of Different LED Light Wavelengths on Production and Quality of Pleurotus ostreatus Grown on Different Commercial Substrates. Horticulturae 2024, 10, 349. [Google Scholar] [CrossRef]
- Dahmardeh, M. The Effect of Polythene Colour Container and Three Spawn Rates on Production of Pleurotus ostreatus Mushroom. Afr. J. Biotechnol. 2012, 11, 9373–9376. [Google Scholar] [CrossRef] [PubMed]
- Pal, J.; Sharma, R.; Lal, M.; Suman, B.C. Effect of Different Spawn Rates and Substrate Supplementation on Yield of Indian Oyster Mushroom, Pleurotus pulmonarius (Fr.) Quel. J. Appl. Nat. Sci. 2017, 9, 1406–1410. [Google Scholar] [CrossRef]
- Bhatti, M.I.; Jiskani, M.; Wagan, K.; Pathan, M.F.; Magsi, A. Growth, Development and Yield of Oyster Mushroom, Pleurotus ostreatus (Jacq. Ex. Fr.) Kummer as Affected by Different Spawn Rates. Pak. J. Bot. 2007, 39, 2685–2692. [Google Scholar]
- Idowu, O.O.; Kadiri, M.; Otunla, C.A. Influence of Inoculation Method and Spawn Level on Biological Efficiency of Pleurotus ostreatus. J. Appl. Sci. Environ. Manag. 2016, 20, 542–546. [Google Scholar] [CrossRef]
- Doroški, A.; Klaus, A.; Režek Jambrak, A.; Djekic, I. Food Waste Originated Material as an Alternative Substrate Used for the Cultivation of Oyster Mushroom (Pleurotus ostreatus): A Review. Sustainability 2022, 14, 12509. [Google Scholar] [CrossRef]
- Melanouri, E.M.; Papanikolaou, S.; Diamantopoulou, P. Mortierella Ramanniana Lipid Fermentation Wastewater as an Innovative Maceration Liquid Medium for Sustainable Solid-State Cultivation of Higher Fungi. Waste Biomass Valoriz. 2024, 15, 6903–6925. [Google Scholar] [CrossRef]
- Fufa, B.K.; Tadesse, B.A.; Tulu, M.M. Cultivation of Pleurotus ostreatus on Agricultural Wastes and Their Combination. Int. J. Agron. 2021, 2021, 1465597. [Google Scholar] [CrossRef]
- Atila, F.; Cetin, M. Recycling Biotoxic Green Walnut Husks through Mushroom Cultivation and Impact of These Wastes on Yield and Nutritional Composition of Pleurotus Spp. Biocatal. Agric. Biotechnol. 2024, 60, 103322. [Google Scholar] [CrossRef]
- Munir, N.; Ramli, A.N.M.; Aminan, A.W.; Badrulzaman, S.Z.S.; Patil, R.V.; Zailani, S.Z.; Azelee, N.I.W.; Manas, N.H.A.; Ismail, E.A. Bioconversion of Pineapple Wastes for Production of Pleurotus pulmonarius (Gray Oyster Mushroom) and Pleurotus ostreatus (White Oyster Mushroom). Environ. Qual. Manag. 2024, 34, e22223. [Google Scholar] [CrossRef]
- Torres-Martínez, B.D.M.; Vargas-Sánchez, R.D.; Pérez-Alvarez, J.Á.; Fernández-López, J.; Viuda-Martos, M.; Esqueda, M.; Rodríguez-Carpena, J.G.; Ibarra-Arias, F.J.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Bio-Valorization of Spent Coffee Grounds and Potato Peel as Substrates for Pleurotus ostreatus Growth. Foods 2024, 13, 3774. [Google Scholar] [CrossRef]
- Doroški Petković, A.; Klaus, A.; Vunduk, J.; Cvetković, S.; Nikolić, B.; Rabrenović, B.; Tomasevic, I.; Djekic, I. Pleurotus ostreatus Cultivation for More Sustainable Soybean and Sunflower Seed Waste Management. Sci. Hortic. 2025, 339, 113866. [Google Scholar] [CrossRef]
- Pan, C.; Sheng, C.; Wang, K.; Zhang, Y.; Liu, C.; Zhang, Z.; Tao, L.; Lv, Y.; Gao, F. Beeswax Waste Improves the Mycelial Growth, Fruiting Body Yield, and Quality of Oyster Mushrooms (Pleurotus ostreatus). PeerJ 2024, 12, e18726. [Google Scholar] [CrossRef] [PubMed]
- Sathiyaseelan, M.; Kannadhasan, V.; Tamilpriyan, S.; Balaji, K.; Saranya, V. Cultivation Potential of Oyster Mushroom (Pleurotus ostreatus) Using Agricultural Wastes as Substrates. Indian J. Hortic. 2024, 81, 196–199. [Google Scholar] [CrossRef]
- Ahmed, R.; Niloy, M.A.H.M.; Islam, M.S.; Reza, M.S.; Yesmin, S.; Rasul, S.B.; Khandakar, J. Optimizing Tea Waste as a Sustainable Substrate for Oyster Mushroom (Pleurotus ostreatus) Cultivation: A Comprehensive Study on Biological Efficiency and Nutritional Aspect. Front. Sustain. Food Syst. 2024, 7, 1308053. [Google Scholar] [CrossRef]
- Mohideen, A.; Perera, O.; Liyanage, G.S. Effects of Rubber Sawdust and Paper Waste as Substrates for Cultivating American Oyster Mushrooms (Pleurotus ostreatus): Their Influence on Nutrient Composition, Bioactive Compound Levels and Antioxidant Capacity. J. Appl. Learn. 2023, 1, 10–20. [Google Scholar]
- Akcay, C.; Ceylan, F.; Arslan, R. Production of Oyster Mushroom (Pleurotus ostreatus) from Some Waste Lignocellulosic Materials and FTIR Characterization of Structural Changes. Sci. Rep. 2023, 13, 12897. [Google Scholar] [CrossRef] [PubMed]
- Alsanad, M.; Sassine, Y.N.; El Sebaaly, Z.; Abou Fayssal, S. Spent Coffee Grounds Influence on Pleurotus ostreatus Production, Composition, Fatty Acid Profile, and Lignocellulose Biodegradation Capacity. CyTA-J. Food 2021, 19, 11–20. [Google Scholar] [CrossRef]
- Wang, S.; Xu, F.; Li, Z.; Zhao, S.; Song, S.; Rong, C.; Geng, X.; Liu, Y. The Spent Mushroom Substrates of Hypsizigus Marmoreus Can Be an Effective Component for Growing the Oyster Mushroom Pleurotus ostreatus. Sci. Hortic. 2015, 186, 217–222. [Google Scholar] [CrossRef]
- Jackson, L.W.; Pryor, B.M. Degradation of Aflatoxin B1 from Naturally Contaminated Maize Using the Edible Fungus Pleurotus ostreatus. AMB Express 2017, 7, 110. [Google Scholar] [CrossRef]
- Jafarpour, M.; Zand, A.J.; Dehdashtizadeh, B.; Eghbalsaied, S. Evaluation of Agricultural Wastes and Food Supplements Usage on Growth Characteristics of Pleurotus ostreatus. Afr. J. Agric. Res. 2010, 5, 3291–3296. [Google Scholar]
- Ma, N.L.; Khoo, S.C.; Peng, W.; Ng, C.M.; Teh, C.H.; Park, Y.-K.; Lam, S.S. Green Application and Toxic Risk of Used Diaper and Food Waste as Growth Substitute for Sustainable Cultivation of Oyster Mushroom (Pleurotus ostreatus). J. Clean. Prod. 2020, 268, 122272. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.-M.; Karayannis, D.; Kaminarides, E.-I.; Diamantopoulou, P. Utilization of Spent Substrates and Waste Products of Mushroom Cultivation to Produce New Crops of Pleurotus ostreatus, Pleurotus Eryngii and Agaricus Bisporus. Carbon Resour. Convers. 2024, 7, 100196. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Fawzy, Z.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Eid, Y.; Prokisch, J. Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation. Sustainability 2022, 14, 3667. [Google Scholar] [CrossRef]
- Xu, S.; Gao, M.; Peng, Z.; Sui, K.; Li, Y.; Li, C. Upcycling from Chitin-Waste Biomass into Bioethanol and Mushroom via Solid-State Fermentation with Pleurotus ostreatus. Fuel 2022, 326, 125061. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Hock, O.G.; Lum, H.W.; Qin, D.; Kee, W.K.; Shing, W.L. The Growth and Laccase Activity of Edible Mushrooms Involved in Plastics Degradation. Toxicology 2019, 15, 57–62. [Google Scholar]
- Olakanmi, G.B.; Lateef, S.A.; Ogunjobi, A.A. Utilization of Disposable Face Masks for Cultivation of Pleurotus ostreatus Mushroom as a Strategy for Reducing Environmental Plastic Pollution. J. Mater. Cycles Waste Manag. 2024, 26, 578–590. [Google Scholar] [CrossRef]
- Rodrigues, J.M.; Paes, S.A.; Nunes, M.D.; Da Silva, M.D.C.S.; Kasuya, M.C.M. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus. PLoS ONE 2013, 8, e69386. [Google Scholar] [CrossRef]
- Espinosa-Valdemar, R.M.; Turpin-Marion, S.; Delfín-Alcalá, I.; Vázquez-Morillas, A. Disposable Diapers Biodegradation by the Fungus Pleurotus ostreatus. Waste Manag. 2011, 31, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Chukunda, F.A.; Simbi-Wellington, W.S. Effects of Crude Oil on the Growth of Oyster Mushroom; Pleurotus ostreatus (Jacaum ex.fr. Kummer). J. Appl. Sci. Environ. Manag. 2019, 23, 1787–1793. [Google Scholar] [CrossRef]
- Zhang, W.-R.; Liu, S.-R.; Kuang, Y.-B.; Zheng, S.-Z. Development of a Novel Spawn (Block Spawn) of an Edible Mushroom, Pleurotus ostreatus, in Liquid Culture and Its Cultivation Evaluation. Mycobiology 2019, 47, 97–104. [Google Scholar] [CrossRef]
- Odigbo, C.; Adenipekun, C.; Oladosu, I.; Ogunjobi, A. Polyethylene Terephthalate (PET) Biodegradation by Pleurotus ostreatus and Pleurotus Pulmonarius. Environ. Monit. Assess. 2023, 195, 585. [Google Scholar] [CrossRef]
- González-Márquez, A.; Andrade-Alvarado, A.D.; González-Mota, R.; Sánchez, C. Enhanced Degradation of Phototreated Recycled and Unused Low-Density Polyethylene Films by Pleurotus Ostreatus. World J. Microbiol. Biotechnol. 2024, 40, 309. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Thomas, N.P.; Gopi, S.; Sudhakaran, G.; Haridevamuthu, B.; Namasivayam, K.R.; Arockiaraj, J. Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? A critical review of current progress, challenges, and future prospects. Int. J. Biol. Macromol. 2024, 276 Pt 2, 133971. [Google Scholar] [CrossRef]
- Kalmış, E.; Sargın, S. Cultivation of Two Pleurotus Species on Wheat Straw Substrates Containing Olive Mill Waste Water. Int. Biodeterior. Biodegrad. 2004, 53, 43–47. [Google Scholar] [CrossRef]
- Atila, F.; Kazankaya, A. Evaluation of the Yield and Heavy Metal Bioaccumulation in the Fruit Body of Pleurotus ostreatus Grown on Sugar Mill Wastewaters. Biomass Convers. Biorefinery 2024, 14, 19177–19186. [Google Scholar] [CrossRef]
- Melanouri, E.-M.; Diamantis, I.; Papanikolaou, S.; Diamantopoulou, P. Influence of Lipid Fermentation Wastewater on Yield and Nutritional Profile of Edible and Medicinal Mushrooms. Processes 2024, 12, 2792. [Google Scholar] [CrossRef]
- Loss, E.; Royer, A.R.; Barreto-Rodrigues, M.; Barana, A.C. Use of Maize Wastewater for the Cultivation of the Pleurotus Spp. Mushroom and Optimization of Its Biological Efficiency. J. Hazard. Mater. 2009, 166, 1522–1525. [Google Scholar] [CrossRef]
- Lee, J.; Shin, S.G.; Ahn, J.; Han, G.; Hwang, K.; Kim, W.; Hwang, S. Use of Swine Wastewater as Alternative Substrate for Mycelial Bioconversion of White Rot Fungi. Appl. Biochem. Biotechnol. 2017, 181, 844–859. [Google Scholar] [CrossRef]
- Olivieri, G.; Marzocchella, A.; Salatino, P.; Giardina, P.; Cennamo, G.; Sannia, G. Olive Mill Wastewater Remediation by Means of Pleurotus ostreatus. Biochem. Eng. J. 2006, 31, 180–187. [Google Scholar] [CrossRef]
- Golian, M.; Hegedűsová, A.; Mezeyová, I.; Chlebová, Z.; Hegedűs, O.; Urminská, D.; Vollmannová, A.; Chlebo, P. Accumulation of Selected Metal Elements in Fruiting Bodies of Oyster Mushroom. Foods 2022, 11, 76. [Google Scholar] [CrossRef]
- Ab Rhaman, S.M.S.; Naher, L.; Siddiquee, S. Mushroom Quality Related with Various Substrates’ Bioaccumulation and Translocation of Heavy Metals. J. Fungi 2021, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, M.; Castanera, R.; Lavín, J.L.; Grigoriev, I.V.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative and Transcriptional Analysis of the Predicted Secretome in the Lignocellulose-Degrading Basidiomycete Fungus Pleurotus ostreatus. Environ. Microbiol. 2016, 18, 4710–4726. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-Y.; Vidal-Diez de Ulzurrun, G.; Schwarz, E.M.; Stajich, J.E.; Hsueh, Y.-P. Genome Sequence of the Oyster Mushroom Pleurotus ostreatus Strain PC9. G3 2021, 11, jkaa008. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Son, H.; Choi, G.J.; Kim, J.-C.; Lee, Y.-W. MYT3, a Myb-like Transcription Factor, Affects Fungal Development and Pathogenicity of Fusarium Graminearum. PLoS ONE 2014, 9, e94359. [Google Scholar] [CrossRef]
- Wang, L.; Gao, W.; Wu, X.; Zhao, M.; Qu, J.; Huang, C.; Zhang, J. Genome-Wide Characterization and Expression Analyses of Pleurotus ostreatus MYB Transcription Factors during Developmental Stages and under Heat Stress Based on de Novo Sequenced Genome. Int. J. Mol. Sci. 2018, 19, 2052. [Google Scholar] [CrossRef]
- Pei, J.; Zhao, M.; Zhang, L.; Wu, X. The Metacaspase Gene PoMCA1 Enhances the Mycelial Heat Stress Tolerance and Regulates the Fruiting Body Development of Pleurotus ostreatus. Horticulturae 2024, 10, 116. [Google Scholar] [CrossRef]
- Lavrijssen, B.; Baars, J.P.; Lugones, L.G.; Scholtmeijer, K.; Sedaghat Telgerd, N.; Sonnenberg, A.S.M.; Peer, A.F. Interruption of an MSH4 Homolog Blocks Meiosis in Metaphase I and Eliminates Spore Formation in Pleurotus ostreatus. PLoS ONE 2020, 15, e0241749. [Google Scholar] [CrossRef]
- Yamasaki, F.; Nakazawa, T.; Sakamoto, M.; Honda, Y. Molecular breeding of sporeless strains of Pleurotus ostreatus using a non-homologous DNA end-joining defective strain. Mycol. Prog. 2021, 20, 73–81. [Google Scholar] [CrossRef]
- Yamasaki, F.; Nakazawa, T.; Oh, M.; Bao, D.; Kawauchi, M.; Sakamoto, M.; Honda, Y. Gene targeting of dikaryotic Pleurotus ostreatus nuclei using the CRISPR/Cas9 system. FEMS Microbiol. Lett. 2022, 369, fnac083. [Google Scholar] [CrossRef]
- Kobukata, T.; Nakazawa, T.; Yamasaki, F.; Sugano, J.; Oh, M.; Kawauchi, M.; Sakamoto, M.; Honda, Y. Identification of Two Genes Essential for Basidiospore Formation during the Postmeiotic Stages in Pleurotus ostreatus. Fungal Genet. Biol. 2024, 172, 103890. [Google Scholar] [CrossRef]
- Chai, R.; Qiu, C.; Liu, D.; Qi, Y.; Gao, Y.; Shen, J.; Qiu, L. β-Glucan Synthase Gene Overexpression and β-Glucans Overproduction in Pleurotus ostreatus Using Promoter Swapping. PLoS ONE 2013, 8, e61693. [Google Scholar] [CrossRef]
- Thara, S.S.; Soni, K.B.; Sindura, K.P. Expression Profiling of Laccase and β-Glucan Synthase Genes in Pleurotus ostreatus during Different Developmental Stages. Mol. Biol. Rep. 2023, 50, 7205–7213. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Hu, J.; Li, Y.; Yang, B.; Guan, Y.; Xu, C.; Chen, F.; Chi, J.; Bao, Y. Comparative Proteomic Analysis of Pleurotus ostreatus Reveals Great Metabolic Differences in the Cap and Stipe Development and the Potential Role of Ca2+ in the Primordium Differentiation. Int. J. Mol. Sci. 2019, 20, 6317. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fueyo, E.; Ruiz-Dueñas, F.J.; López-Lucendo, M.F.; Pérez-Boada, M.; Rencoret, J.; Gutiérrez, A.; Pisabarro, A.G.; Ramírez, L.; Martínez, A.T. A Secretomic View of Woody and Nonwoody Lignocellulose Degradation by Pleurotus ostreatus. Biotechnol. Biofuels 2016, 9, 49. [Google Scholar] [CrossRef]
- Zadražil, F. Influence of CO2 Concentration on the Mycelium Growth of Three Pleurotus Species. Eur. J. Appl. Microbiol. 1975, 1, 327–335. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, J.; Tao, K.; Ye, W.; Li, A.; Liu, X.; Kong, L.; Dong, S.; Zheng, X.; Wang, Y. A Myb Transcription Factor of Phytophthora Sojae, Regulated by MAP Kinase PsSAK1, Is Required for Zoospore Development. PLoS ONE 2012, 7, e40246. [Google Scholar] [CrossRef] [PubMed]
- Rop, O.; Mlcek, J.; Jurikova, T. Beta-Glucans in Higher Fungi and Their Health Effects. Nutr. Rev. 2009, 67, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Shear, M.J.; Turner, F.C.; Perrault, A.; Shovelton, T. Chemical Treatment of Tumors. V. Isolation of the Hemorrhage-Producing Fraction from Serratia marcescens (Bacillus prodigiosus) Culture Filtrate. J. Natl. Cancer. Inst. 1943, 4, 81–97. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Xu, Y.; Zhang, G.; Shen, Q.; Zhang, R. Exploring Elicitors of the Beneficial Rhizobacterium Bacillus Amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions with Plant Signaling Pathways. Mol. Plant-Microbe Interact. 2018, 31, 560–567. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Zhao, J.; Wang, J.; Song, Q.; Zhao, C. The phagocytic receptors of β-glucan. Int. J. Biol. Macromol. 2022, 205, 430–441. [Google Scholar] [CrossRef]
- Hurley, P.J.; Bose, N.; Jha, G.; Gargano, M.; Ottoson, N.; Gorden, K.; Rathmann, B.; Harrison, B.; Qiu, X.; Dudek, A.Z. Immunoglobulin Restores Immune Responses to BTH1677 in Patients With Low Levels of Antibodies to Beta-Glucan. Anticancer Res. 2020, 40, 1467–1473. [Google Scholar] [CrossRef]
- Shi, S.; Yin, L.; Shen, X.; Dai, Y.; Wang, J.; Yin, D.; Zhang, D.; Pan, X. β-Glucans from Trametes Versicolor (L.) Lloyd Is Effective for Prevention of Influenza Virus Infection. Viruses 2022, 14, 237. [Google Scholar] [CrossRef]
- Sun, X.; Gao, Y.; Ding, Z.; Zhao, Y.; Yang, Y.; Sun, Q.; Yang, X.; Ge, W.; Xu, X.; Cheng, R.; et al. Soluble Beta-Glucan Salecan Improves Vaginal Infection of Candida Albicans in Mice. Int. J. Biol. Macromol. 2020, 148, 1053–1060. [Google Scholar] [CrossRef]
- Yu, J.; Xia, J.; Yang, C.; Pan, D.; Xu, D.; Sun, G.; Xia, H. Effects of Oat Beta-Glucan Intake on Lipid Profiles in Hypercholesterolemic Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 2043. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Mochizuki, S.; Sakurai, K. Designing an Immunocyte-Targeting Delivery System by Use of Beta-Glucan. Vaccine 2018, 36, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Zhao, J.; Luk, K.-H.; Cheung, S.-T.; Wong, K.-H.; Chen, T. Potentiation of in Vivo Anticancer Efficacy of Selenium Nanoparticles by Mushroom Polysaccharides Surface Decoration. J. Agric. Food Chem. 2019, 67, 2865–2876. [Google Scholar] [CrossRef]
- Su, Y.; Li, X.; Lam, K.L.; Cheung, P.C.K. pH-Sensitive PEG-Coated Hyper-Branched β-d-Glucan Derivative as Carrier for CpG Oligodeoxynucleotide Delivery. Carbohydr. Polym. 2020, 246, 116621. [Google Scholar] [CrossRef]
- Su, Y.; Chen, L.; Yang, F.; Cheung, P.C.K. Beta-d-Glucan-Based Drug Delivery System and Its Potential Application in Targeting Tumor Associated Macrophages. Carbohydr. Polym 2021, 253, 117258. [Google Scholar] [CrossRef] [PubMed]
- Amphan, S.; Unajak, S.; Printrakoon, C.; Areechon, N. Feeding-regimen of β-glucan to enhance innate immunity and disease resistance of Nile tilapia, Oreochromis niloticus Linn., against Aeromonas hydrophila and Flavobacterium columnare. Fish Shellfish Immunol. 2019, 87, 120–128. [Google Scholar] [CrossRef]
- Cao, H.; Yu, R.; Zhang, Y.; Hu, B.; Jian, S.; Wen, C.; Kajbaf, K.; Kumar, V.; Yang, G. Effects of Dietary Supplementation with β-Glucan and Bacillus subtilis on Growth, Fillet Quality, Immune Capacity, and Antioxidant Status of Pengze Crucian Carp (Carassius Auratus Var. Pengze). Aquaculture 2019, 508, 106–112. [Google Scholar] [CrossRef]
- Filho, F.D.O.R.; Koch, J.F.A.; Wallace, C.; Leal, M.C. Dietary β-1,3/1,6-Glucans Improve the Effect of a Multivalent Vaccine in Atlantic Salmon Infected with Moritella viscosa or Infectious Salmon Anemia Virus. Aquac. Int. 2019, 27, 1825–1834. [Google Scholar] [CrossRef]
- Jami, M.J.; Abedian Kenari, A.; Paknejad, H.; Mohseni, M. Effects of Dietary B-Glucan, Mannan Oligosaccharide, Lactobacillus Plantarum and Their Combinations on Growth Performance, Immunity and Immune Related Gene Expression of Caspian Trout, Salmo trutta caspius (Kessler, 1877). Fish Shellfish Immunol. 2019, 91, 202–208. [Google Scholar] [CrossRef]
- Yamamoto, F.Y.; Yin, F.; Rossi, W.; Hume, M.; Gatlin, D.M. β-1,3 glucan derived from Euglena gracilis and AlgamuneTM enhances innate immune responses of red drum (Sciaenops ocellatus L.). Fish Shellfish Immunol. 2018, 77, 273–279. [Google Scholar] [CrossRef]
- Wu, Y.; Liau, S.; Huang, C.; Nan, F. Beta 1,3/1,6-Glucan and Vitamin C Immunostimulate the Non-Specific Immune Response of White Shrimp (Litopenaeus Vannamei). Fish Shellfish Immunol. 2016, 57, 269–277. [Google Scholar] [CrossRef]
- Hadiuzzaman, M.; Moniruzzaman, M.; Shahjahan, M.; Bai, S.C.; Min, T.; Hossain, Z. β-Glucan: Mode of Action and Its Uses in Fish Immunomodulation. Front. Mar. Sci. 2022, 9, 905986. [Google Scholar] [CrossRef]
- Ji, L.; Sun, G.; Li, J.; Wang, Y.; Du, Y.; Li, X.; Liu, Y. Effect of Dietary β-Glucan on Growth, Survival and Regulation of Immune Processes in Rainbow Trout (Oncorhynchus Mykiss) Infected by Aeromonas Salmonicida. Fish Shellfish Immunol. 2017, 64, 56–67. [Google Scholar] [CrossRef]
- Rawling, M.; Schiavone, M.; Apper, E.; Merrifield, D.L.; Castex, M.; Leclercq, E.; Foey, A. Yeast Cell Wall Extracts from Saccharomyces cerevisiae Varying in Structure and Composition Differentially Shape the Innate Immunity and Mucosal Tissue Responses of the Intestine of Zebrafish (Danio rerio). Front. Immunol. 2023, 14, 1158390. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Abdo, S.E.; Gewaily, M.S.; Moustafa, E.M.; Saad Allah, M.S.; Abd El-kader, M.F.; Hamouda, A.H.; Omar, A.A.; Alwakeel, R.A. The Influence of Dietary β-Glucan on Immune, Transcriptomic, Inflammatory and Histopathology Disorders Caused by Deltamethrin Toxicity in Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 98, 301–311. [Google Scholar] [CrossRef]
- Menanteau-Ledouble, S.; Skov, J.; Lukassen, M.B.; Rolle-Kampczyk, U.; Haange, S.-B.; Dalsgaard, I.; Bergen, M.; Nielsen, J.L. Modulation of Gut Microbiota, Blood Metabolites, and Disease Resistance by Dietary β-Glucan in Rainbow Trout (Oncorhynchus mykiss). Anim. Microbiome 2022, 4, 58. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Yang, H.; Chen, J.; Xiao, Y.; Ji, X.; Zhang, Z.; He, H.; Ding, B.; Tang, B. Effect of β-1,3/1,6-Glucan on Gut Microbiota of Yellow-Feathered Broilers. AMB Express 2022, 12, 115. [Google Scholar] [CrossRef]
- Do Huu, H.; Sang, H.M.; Thanh Thuy, N.T. Dietary β-Glucan Improved Growth Performance, Vibrio Counts, Haematological Parameters and Stress Resistance of Pompano Fish, Trachinotus ovatus linnaeus, 1758. Fish Shellfish Immunol. 2016, 54, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Do-Huu, H.; Huynh, S.M.; Nguyen, H.T.N.; Pham, K.X. Effect of Dietary β-Glucan Supplementation on Growth Performance, Body Composition, Intestinal Microbes, and Capacity against Pathogen of Golden Trevally (Family Carangidae). J. World Aquac. Soc. 2024, 55, 77–88. [Google Scholar] [CrossRef]
- Rodrigues, M.V.; Zanuzzo, F.S.; Koch, J.F.A.; de Oliveira, C.A.F.; Sima, P.; Vetvicka, V. Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules 2020, 25, 5378. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, M.; Li, N.; Dong, Z.; Cai, L.; Wu, B.; Xie, J.; Liu, L.; Ren, L.; Shi, B. New Insights into β-Glucan-Enhanced Immunity in Largemouth Bass Micropterus salmoides by Transcriptome and Intestinal Microbial Composition. Front. Immunol. 2022, 13, 1086103. [Google Scholar] [CrossRef]
- Golian, M.; Chlebová, Z.; Žiarovská, J.; Benzová, L.; Urbanová, L.; Hovaňáková, L.; Chlebo, P.; Urminská, D. Analysis of Biochemical and Genetic Variability of Pleurotus ostreatus Based on the β-Glucans and CDDP Markers. J. Fungi 2022, 8, 563. [Google Scholar] [CrossRef]
- Elkanah, F.A.; Oke, M.A.; Adebayo, E.A. Substrate composition effect on the nutritional quality of Pleurotus ostreatus (MK751847) fruiting body. Heliyon 2022, 8, e11841. [Google Scholar] [CrossRef] [PubMed]
- Smiderle, F.R.; Morales, D.; Gil-Ramírez, A.; de Jesus, L.I.; Gilbert-López, B.; Iacomini, M.; Soler-Rivas, C. Evaluation of Microwave-Assisted and Pressurized Liquid Extractions to Obtain β-d-Glucans from Mushrooms. Carbohydr. Polym. 2017, 156, 165–174. [Google Scholar] [CrossRef]
- Vetter, J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023, 12, 1009. [Google Scholar] [CrossRef]
- Salifu, E.; Di Rauso Simeone, G.; Russo, G.; Rao, M.A.; Urciuoli, G.; El Mountassir, G. Influence of Environmental Conditions on the Growth of Pleurotus Ostreatus in Sand. Biogeotechnics 2025, 3, 100137. [Google Scholar] [CrossRef]
- Murphy, E.J.; Rezoagli, E.; Collins, C.; Saha, S.K.; Major, I.; Murray, P. Sustainable Production and Pharmaceutical Applications of β-Glucan from Microbial Sources. Microbiol. Res. 2023, 274, 127424. [Google Scholar] [CrossRef]
- Etter, B.E. New Media for Developing Sporophores of Wood-Rot Fungi. Mycologia 1929, 21, 197–203. [Google Scholar] [CrossRef]
- Hamza, A.; Khalad, A.; Kumar, D.S. Enhanced Production of Mycelium Biomass and Exopolysaccharides of Pleurotus ostreatus by Integrating Response Surface Methodology and Artificial Neural Network. Bioresour. Technol. 2024, 399, 130577. [Google Scholar] [CrossRef]
- Gundoshmian, T.M.; Ardabili, S.; Csaba, M.; Mosavi, A.; Gundoshmian, T.M.; Ardabili, S.; Csaba, M.; Mosavi, A. Modeling and Optimization of the Oyster Mushroom Growth Using Artificial Neural Network: Economic and Environmental Impacts. Math. Biosci. Eng. 2022, 19, 9749–9768. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A survey and performance evaluation of deep learning methods for small object detection. Expert Syst. Appl. 2021, 172, 114602. [Google Scholar] [CrossRef]
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/detectron2 (accessed on 25 September 2025).
- Moysiadis, V.; Kokkonis, G.; Bibi, S.; Moscholios, I.; Maropoulos, N.; Sarigiannidis, P. Monitoring Mushroom Growth with Machine Learning. Agriculture 2023, 13, 223. [Google Scholar] [CrossRef]
- Wang, R.; Gmoser, R.; Taherzadeh, M.J.; Lennartsson, P.R. Solid-State Fermentation of Stale Bread by an Edible Fungus in a Semi-Continuous Plug-Flow Bioreactor. Biochem. Eng. J. 2021, 169, 107959. [Google Scholar] [CrossRef]
- Jin, G.; Zhu, Y.; Rinzema, A.; Wijffels, R.H.; Ge, X.; Xu, Y. Water Dynamics during Solid-State Fermentation by Aspergillus Oryzae YH6. Bioresour. Technol. 2019, 277, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Wainaina, S.; Taherzadeh, M.J. Automation and Artificial Intelligence in Filamentous Fungi-Based Bioprocesses: A Review. Bioresour. Technol. 2023, 369, 128421. [Google Scholar] [CrossRef]
- Boontawon, T.; Nakazawa, T.; Inoue, C.; Osakabe, K.; Kawauchi, M.; Sakamoto, M.; Honda, Y. Efficient Genome Editing with CRISPR/Cas9 in Pleurotus Ostreatus. AMB Express 2021, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Frioui, M.; Yimer, G.; Shamtsyan, M.; Barakova, N.; Dozortseva, A.; Kolesnikov, B.; Sadovoy, V.; Kiprushkina, E. Isolation of Bioactive Beta-Glucans from Mycelium of Pleurotus ostreatus Mushroom. Bioact. Compd. Health Dis. 2024, 7, 649–658. [Google Scholar] [CrossRef]
- De Mastro, F.; Traversa, A.; Matarrese, F.; Cocozza, C.; Brunetti, G. Influence of Growing Substrate Preparation on the Biological Efficiency of Pleurotus ostreatus. Horticulturae 2023, 9, 439. [Google Scholar] [CrossRef]
Substrate | Biological Efficiency (%) | Yield of Fresh Fruiting Bodies | Spawn Run Period (days) | Reference |
---|---|---|---|---|
Corncob | 41.1 | 144.2 g/kg | 28.7 | [35] |
Finger millet straw | 50.2 | 253.1 g/kg | 34.9 | |
Bamboo waste | 35.1 | 180.8 g/kg | 43.8 | |
100% poplar sawdust | 63.6 | 190.9 g/kg | 14.8 | [36] |
90% poplar sawdust + 10% green walnut husk | 68.3 | 211.8 g/kg | 14.8 | |
80% poplar sawdust + 20% green walnut husk | 74.2 | 230.0 g/kg | 14.8 | |
70% poplar sawdust + 30% green walnut husk | 71.9 | 215.7 g/kg | 14.4 | |
40% dry pineapple leaves waste supplement | No data | Approx. 50 g/500 g | 28.0 | [37] |
60% dry pineapple leaves waste supplement | No data | 80 g/500 g | 42.0 | |
80% dry pineapple leaves waste supplement | No data | Approx. 30 g/500 g | 48.0 | |
100% dry pineapple leaves waste supplement | No data | Approx. 40 g/500 g | 60.0 | |
100% wheat straw | 45.9 | 1.6% | No data | [38] |
80% wheat straw + 10% spent coffee grounds + 10% potato peel | 49.5 | 1.9% | No data | |
70% wheat straw + 15% spent coffee grounds + 15% potato peel | 57.4 | 1.7% | No data | |
60% wheat straw + 20% spent coffee grounds + 20% potato peel | 58.3 | 2.2% | No data | |
100% soybean husk | 37.2 | 1114.8 g | 27.8 | [39] |
50% soybean husk + 50% sunflower husk | 30.5 | 914.5 g | 23.3 | |
100% sunflower seed husk | 18.2 | 531.8 g | 24.4 | |
33.3% soybean husk + 33.3% sunflower seed husk + 33% wheat straw | 25.1 | 753.0 g | 25.0 | |
50% soybean husk + 50% wheat straw | 24.4 | 730.5 g | 27.5 | |
50% sunflower seed husk + 50% wheat straw | 17.1 | 514.3 g | 26.0 | |
100% wheat straw | 16.7 | 500.0 g | 20.7 | |
85% corncob + 12% wheat bran + 3% lime | 88.8 | 1420.2 g | 43.3 | [40] |
85% corncob + 9% wheat bran + 3% beeswax waste + 3% lime | 89.2 | 1426.9 g | 46.3 | |
85% corncob + 7% wheat bran + 7% beeswax waste + 3% lime | 92.4 | 1478.9 g | 47.3 | |
85% corncob + 5% wheat bran + 5% beeswax waste + 3% lime | 87.4 | 1398.5 g | 47.0 | |
85% corncob + 3% wheat bran + 9% beeswax waste + 3% lime | 84.2 | 1346.8 g | 50.3 | |
100% coir pith | 72.0 | 720 g | 21.0 | [41] |
100% finger millet straw | 68.0 | 678 g | 23.0 | |
100% banana fiber | 69.0 | 690 g | 21.0 | |
100% saw dust | 83.0 | 826 g | 18.0 | |
100% sugarcane trash | 78.0 | 780 g | 19.0 | |
90% sawdust + 10% wheat bran | 65.0 | 130.0 g | 28.0 | [42] |
75% sawdust + 25% waste tea leaves | 62.0 | 155.3 g | 27.0 | |
50% sawdust + 50% waste tea leaves | 79.0 | 189.5 g | 27.0 | |
100% rice straw | 89.0 | 357.4 g | 29.0 | |
75% rice straw + 25% waste tea leaves | 68.0 | 308.2 g | 30.0 | |
50% rice straw + 50% waste tea leaves | 64.0 | 258.1 g | 30.0 | |
100% rubber sawdust | No data | 140.0 g | 47.0 | [43] |
100% paper waste | No data | 70.0 g | 55.0 | |
50% sawdust + 50% paperwaste | No data | 10.0 g | 55.0 | |
75% rubber sawdust + 25% paperwaste | No data | 60.0 g | 57.0 | |
25% rubber sawdust + 75% paperwaste | No data | 23.0 g | 54.0 | |
Hazelnut branches | 63.9 | 255.7 g/kg | 19.8 | [44] |
Hazelnut husks | 39.4 | 157.5 g/kg | 27.0 | |
Wheat straw | 43.1 | 172.5 g/kg | 20.0 | |
Coffee grounds | 43.6 | 174.4 g/kg | 32.7 | |
Rice husks | 45.6 | 182.6 g/kg | 26.7 | |
Hazelnut branches + Hazelnut husks (1:1) | 41.6 | 166.2 g/kg | 32.7 | |
Hazelnut branches + Wheat straw (1:1) | 52.2 | 208.7 g/kg | 17.3 | |
Hazelnut branches + Coffee grounds (1:1) | 46.6 | 186.6 g/kg | 15.7 | |
Hazelnut branches + Rice husks (1:1) | 38.3 | 153.0 g/kg | 17.0 | |
Hazelnut husks + Coffee grounds (1:1) | 26.3 | 105.2 g/kg | 45.0 | |
Wheat straw + Hazelnut husks (1:1) | 11.3 | 155.3 g/kg | 25.0 | |
Wheat straw + Coffee grounds (1:1) | 59.2 | 236.9 g/kg | 37.0 | |
Rice husks + Coffee grounds (1:1) | 64.3 | 257.0 g/kg | 15.0 | |
100% wheat straw | 105.0 | 910.1 g/bag | 32.0 | [45] |
67% wheat straw + 33% spent coffee grounds | 105.1 | 814.6 g/bag | 34.7 | |
33% wheat straw + 67% spent coffee grounds | 59.3 | 437.1 g/bag | 38.0 | |
80% cottonseed hulls + 18% wheat bran | 54.3 | 4341.7 g | 50.2 | [46] |
70% cottonseed hulls + 16% wheat bran + 12% spent mushroom substrate | 61.3 | 4901.0 g | 50.0 | |
60% cottonseed hulls + 13% wheat bran + 25% spent mushroom substrate | 57.2 | 4572.0 g | 51.2 | |
50% cottonseed hulls + 10% wheat bran + 38% spent mushroom substrate | 52.9 | 4231.7 g | 53.1 | |
40% cottonseed hulls + 8% wheat bran + 50% spent mushroom substrate | 52.5 | 4198.7 g | 53.9 | |
30% cottonseed hulls + 6% wheat bran + 62% spent mushroom substrate | 48.9 | 3910.3 g | 54.1 | |
20% cottonseed hulls + 3% wheat bran + 75% spent mushroom substrate | 39.7 | 3172.0 g | 54.8 | |
10% cottonseed hulls + 0% wheat bran + 88% spent mushroom substrate | 35.9 | 2869.3 g | 55.8 | |
Maize + 0 ng g−1 aflatoxin B1 | 21.8 | No data | 18.6 | [47] |
Maize + 25 ng g−1 aflatoxin B1 | 19.2 | No data | 23.6 | |
Maize + 250 ng g−1 aflatoxin B1 | 21.4 | No data | 25.8 | |
Maize + 2500 ng g−1 aflatoxin B1 | 26.7 | No data | 10.0 |
Substrate | Biological Efficiency (%) | Yield of Fresh Fruiting Bodies (g) | Spawn Run Period (Days) | Reference |
---|---|---|---|---|
100% mahogany wood shavings | 69.4 | 55.5 | 26.0 | [55] |
75% mahogany wood shavings + 25% face masks | 76.9 | 55.6 | 25.5 | |
50% mahogany wood shavings + 50% face masks | 6.3 | 5.0 | 28.0 | |
25% mahogany wood shavings + 75% face masks | 88.8 | 71.0 | 29.0 | |
100% face masks | 68.8 | 55.0 | 28.5 | |
Diaper cores and coffee waste in ratio of 5:1 | No data | 84.0 | 26.0 | [49] |
Diaper cores and coffee waste in ratio of 6:1 | No data | 55.0 | 28.0 | |
Diaper cores and coffee waste in ratio of 7:1 | No data | 49.0 | 31.0 | |
Plastic bags (oxo-biodegradable) | No data | No data | 45.0 | [56] |
Diaper with plastic, ground + grape | 12.6 | No data | 16.0 | [57] |
Diaper without plastic, ground + grape | 19.3 | No data | 16.0 | |
Sawdust + 150 mL of crude oil | No data | 272.5 | 14.0 | [58] |
Sawdust + 100 mL of crude oil | No data | 312.3 | 14.0 | |
Sawdust + 50 mL of crude oil | No data | 320.6 | 14.0 | |
Corncob spawn | 70.9 | 186.2 | 34.6 | [59] |
Sugarcane bagasse spawn | 69.2 | 181.6 | 35.4 | |
Loofah sponge spawn | 70.1 | 184.0 | 35.6 | |
Polyurethane spawn | 68.7 | 180.2 | 36.1 | |
Sawdust spawn | 70.2 | 184.3 | 34.4 |
Substrate | Biological Efficiency (%) | Yield of Fresh Fruiting Bodies | Spawn Run Period (Days) | Reference |
---|---|---|---|---|
100% tap water | 50.7 | 253.0 g | 28.0 | [63] |
25% olive mill effluent + 75% tap water | 46.1 | 231.0 g | 29.3 | |
50% olive mill effluent + 50% tap water | 42.6 | 212.0 g | 35.8 | |
75% olive mill effluent + 25% tap water | 23.8 | 119.0 g | 37.8 | |
100% olive mill effluent | 14.7 | 73.2 g | 43.8 | |
0% sugar mill wastewater | 54.6 | 196.5 g/kg | 26.0 | [64] |
25% sugar mill wastewater | 64.0 | 224.0 g/kg | 26.6 | |
50% sugar mill wastewater | 63.6 | 222.8 g/kg | 27.2 | |
75% sugar mill wastewater | 68.3 | 239.2 g/kg | 29.9 | |
100% sugar mill wastewater | 67.5 | 236.3 g/kg | 27.6 | |
Coffee residue + wheat straw + 20% lipid fermentation wastewater | 64.5 | 168.9 g | 22.0 | [65] |
Coffee residue + beech wood shavings + 20% lipid fermentation wastewater | 64.6 | 151.8 g | 22.0 | |
Olive crop + wheat straw + 20% lipid fermentation wastewater | 72.2 | 176.2 g | 22.0 | |
Olive crop + beech wood shavings + 20% lipid fermentation wastewater | 71.5 | 174.4 g | 20.0 | |
Rice husk + wheat straw + 20% lipid fermentation wastewater | 62.4 | 73.6 g | 24.0 | |
Rice husk + beech wood shavings + 20% lipid fermentation wastewater | 63.2 | 79.0 g | 25.0 | |
Wheat straw + tap water | 79.7 | 279.1 g/bag | No data | [34] |
Wheat straw + coffee residue + tap water | 76.9 | 269.3 g/bag | No data | |
Wheat straw + coffee residue + olive crop + tap water | 77.6 | 271.6 g/bag | No data | |
Wheat straw + olive crop + tap water | 72.0 | 252.1 g/bag | No data | |
Wheat straw + lipid fermentation wastewater | 76.6 | 268.1 g/bag | No data | |
Wheat straw + coffee residue + lipid fermentation wastewater | 72.9 | 255.3 g/bag | No data | |
Wheat straw + coffee residue + olive crop + lipid fermentation wastewater | 82.2 | 287.6 g/bag | No data | |
Wheat straw + olive crop + lipid fermentation wastewater | 77.4 | 270.9 g/bag | No data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drężek, J.; Możejko-Ciesielska, J. Production of β-Glucans by Pleurotus ostreatus: Cultivation and Genetic Background. Int. J. Mol. Sci. 2025, 26, 9703. https://doi.org/10.3390/ijms26199703
Drężek J, Możejko-Ciesielska J. Production of β-Glucans by Pleurotus ostreatus: Cultivation and Genetic Background. International Journal of Molecular Sciences. 2025; 26(19):9703. https://doi.org/10.3390/ijms26199703
Chicago/Turabian StyleDrężek, Jakub, and Justyna Możejko-Ciesielska. 2025. "Production of β-Glucans by Pleurotus ostreatus: Cultivation and Genetic Background" International Journal of Molecular Sciences 26, no. 19: 9703. https://doi.org/10.3390/ijms26199703
APA StyleDrężek, J., & Możejko-Ciesielska, J. (2025). Production of β-Glucans by Pleurotus ostreatus: Cultivation and Genetic Background. International Journal of Molecular Sciences, 26(19), 9703. https://doi.org/10.3390/ijms26199703