The Central Cholinergic Synapse: A Primer
Abstract
1. Introduction
2. The Cholinergic Phenotype
2.1. Synthesis and Turnover of ACh
2.2. Precursors: Acetyl-CoA
2.3. Precursors: Choline
2.4. Choline and ACh Release
2.5. High-Affinity Choline Uptake (HACU)
2.6. The Vesicular Acetylcholine Transporter VAChT
2.7. Acetylcholinesterase (AChE)
2.8. Plasticity of Cholinergic Presynaptic Mechanisms
2.9. Muscarinic ACh Receptors
2.10. Nicotinic ACh Receptors
2.11. Control of ACh Release by Presynaptic Receptors
2.12. Cholinergic Systems and Neurological Disease
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
AChE | Acetylcholinesterase |
BChE | Butyrylcholinesterase |
ChAT | Choline acetyltransferase |
HACU | High-affinity choline uptake |
mAChR | Muscarinic ACh receptor |
nAChR | Nicotinic ACh receptor |
PC | Phosphatidylcholine |
VAChT | Vesicular acetylcholine transporter |
References
- Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron 2012, 76, 116–129. [Google Scholar] [CrossRef]
- Ananth, M.R.; Rajebhosale, P.; Kim, R.; Talmage, D.A.; Role, L.W. Basal forebrain cholinergic signaling: Development, connectivity and roles in cognition. Nat. Rev. Neurosci. 2023, 24, 233–251. [Google Scholar] [CrossRef]
- Karczmar, A.G. Exploring the Vertebrate Central Cholinergic Nervous System; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mesulam, M.M. Cholinergic circuitry in the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol. 2013, 521, 4124–4144. [Google Scholar] [CrossRef] [PubMed]
- Eiden, L.E. The cholinergic gene locus. J. Neurochem. 1998, 70, 2227–2240. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Villaca, Y.; Filguieras, C.C.; Manhaes, A.C. Developmental aspects of the cholinergic system. Behav. Brain Res. 2011, 221, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.Y.; Knowles, R.; Dehorter, N. New insights into cholinergic neuron diversity. Front. Mol. Neurosci. 2019, 12, 204. [Google Scholar] [CrossRef]
- Franklin, K.B.; Paxinos, G. A Stereotaxic Atlas of the Mouse Brain; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Keshavarz, M.; Tabrizi, S.F.; Ruppert, A.L.; Pfeil, U.; Schreiber, Y.; Klein, J.; Brandenburger, I.; Lochnit, G.; Bhushan, S.; Perniss, A.; et al. Cysteinyl leukotrienes and acetylcholine are tuft cell cotransmitters. Sci. Immunol. 2022, 7, abf6734. [Google Scholar] [CrossRef]
- Perniss, A.; Liu, S.; Boonen, B.; Keshavarz, M.; Ruppert, A.L.; Timm, T.; Pfeil, U.; Soultanova, A.; Kusumakshi, S.; Delventhal, L.; et al. Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. Immunity 2020, 52, 683–699. [Google Scholar] [CrossRef]
- Wu, D.; Hersh, L.B. Choline acetyltransferase: Celebrating its fiftieth year. J. Neurochem. 1994, 62, 1653–1663. [Google Scholar] [CrossRef]
- Dobransky, T.; Rylett, R.J. A model for dynamic regulation of choline acetyltransferase by phosphorylation. J. Neurochem. 2005, 95, 305–313. [Google Scholar] [CrossRef]
- Tucek, S. Short-term control of the synthesis of acetylcholine. Prog. Biophys. Mol. Biol. 1993, 60, 59–69. [Google Scholar] [CrossRef]
- Haubrich, D.R.; Chippendale, T.J. Regulation of acetylcholine synthesis in nervous tissue. Life Sci. 1977, 20, 1465–1478. [Google Scholar] [CrossRef]
- Brandon, E.P.; Mellott, T.; Pizzo, D.P.; Coufal, N.; D’Amour, K.A.; Gobeske, K.; Lortie, M.; López-Coviella, I.; Berse, B.; Thal, L.J.; et al. Choline transporter 1 maintains cholinergic function in choline acetyltransferase haploinsufficiency. J. Neurosci. 2004, 24, 5459–5466. [Google Scholar] [CrossRef]
- Ohno, K.; Tsujino, A.; Brengman, J.M.; Harper, C.M.; Bajzer, Z.; Udd, B.; Beyring, R.; Robb, S.; Kirkham, F.J.; Engel, A.G. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc. Natl. Acad. Sci. USA 2001, 98, 2017–2022. [Google Scholar] [CrossRef] [PubMed]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 38, 587–597. [Google Scholar] [CrossRef]
- Löffelholz, K.; Klein, J. Precursors: Choline and glucose. In The Brain Cholinergic System.; Giacobini, E., Pepeu, G., Eds.; Informa; Taylor & Francis: London, UK, 2006; pp. 99–105. [Google Scholar]
- Allen, D.D.; Smith, Q.R. Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J. Neurochem. 2001, 76, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Köppen, A.; Löffelholz, K.; Schmitthenner, J. Uptake and metabolism of choline by rat brain after acute choline administration. J. Neurochem. 1992, 58, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, L.; Magistretti, P.J. Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab. 2012, 32, 1152–1166. [Google Scholar] [CrossRef]
- Kopf, S.R.; Buchholzer, M.L.; Hilgert, M.; Löffelholz, K.; Klein, J. Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release in mice. Neuroscience 2001, 103, 365–371. [Google Scholar] [CrossRef]
- Gold, P.E. Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol. Learn. Mem. 2003, 80, 194–210. [Google Scholar] [CrossRef]
- Ragozzino, M.E.; Unick, K.E.; Gold, P.E. Hippocampal acetylcholine release during memory testing in rats: Augmentation by glucose. Proc. Natl. Acad. Sci. USA 1996, 93, 4693–4698. [Google Scholar] [CrossRef]
- Klein, J.; Gonzalez, R.; Köppen, A.; Löffelholz, K. Free choline and choline metabolites in rat brain and body fluids: Sensitive determination and implication for choline supply to the brain. Neurochem. Int. 1993, 22, 293–300. [Google Scholar] [CrossRef]
- Kenny, T.C.; Scharenberg, S.; Abu-Remaileh, M.; Birsoy, K. Cellular and organismal function of choline metabolism. Nat. Metabol. 2025, 7, 35–52. [Google Scholar] [CrossRef]
- Klein, J. Membrane breakdown in acute and chronic neurodegeneration: Focus on choline-containing phospholipids. J. Neural Transm. 2000, 107, 1027–1063. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Korth, U.; Hilgert, M.; Hartmann, J.; Weichel, O.; Hilgert, M.; Fassbender, K.; Schmitt, A.; Klein, J. Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol. Aging 2004, 25, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H.; Blusztajn, J.K. Choline and human nutrition. Ann. Rev. Nutr. 1994, 14, 269–296. [Google Scholar] [CrossRef] [PubMed]
- Blusztajn, J.K.; Slack, B.E.; Mellott, T.J. Neuroprotective actions of dietary choline. Nutrients 2017, 9, 815. [Google Scholar] [CrossRef]
- Hartmann, J.; Kiewert, C.; Duysen, E.G.; Lockridge, O.; Klein, J. Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice. Neurochem. Int. 2008, 52, 972–978. [Google Scholar] [CrossRef]
- Klein, J.; Weichel, O.; Ruhr, J.; Dvorak, C.; Löffelholz, K. A homeostatic mechanism counteracting K+-evoked choline release in adult brain. J. Neurochem. 2002, 80, 843–849. [Google Scholar] [CrossRef]
- Klein, J. Function and pathophysiological roles of phospholipase D in the brain. J. Neurochem. 2005, 94, 1473–1487. [Google Scholar] [CrossRef]
- Köppen, A.; Klein, J.; Erb, C.; Löffelholz, K. Acetylcholine release and choline availability in rat hippocampus: Effects of exogenous choline and nicotinamide. J. Pharmacol. Exp. Ther. 1997, 282, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Suzuki, Y.; Umegaki, H.; Ikari, H.; Tajima, T.; Endo, H.; Iguchi, A. Dietary restriction of choline reduces hippocampal acetylcholine release in rats: In vivo microdialysis study. Brain Res. Bull. 2001, 56, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Ikarashi, Y.; Takahashi, A.; Ishimarz, H.; Arai, T.; Maruyama, Y. Effects of choline-free plasma induced by choline oxidase on regional levels of choline and acetylcholine in rat brain. Brain Res. Bull. 1993, 32, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Ikarashi, Y.; Takahashi, A.; Ishimaru, H.; Arai, T.; Maruyama, Y. Relations between the extracellular concentrations of choline and acetylcholine in rat striatum. J. Neurochem. 1997, 69, 1246–1251. [Google Scholar] [CrossRef]
- Hartmann, J.; Kiewert, C.; Duysen, E.G.; Lockridge, O.; Greig, N.H.; Klein, J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 2007, 100, 1421–1429. [Google Scholar] [CrossRef]
- Parikh, V.; Sarter, M. Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: Clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J. Neurochem. 2006, 97, 488–503. [Google Scholar] [CrossRef]
- Haga, T. Molecular properties of the high-affinity choline transporter CHT1. J. Biochem. 2014, 156, 181–194. [Google Scholar] [CrossRef]
- Ojiakor, O.A.; Rylett, R.J. Modulation of sodium-coupled choline transporter CHT function in health and disease. Neurochem. Int. 2020, 140, 104810. [Google Scholar] [CrossRef]
- Okuda, T.; Haga, T.; Kanai, Y.; Endou, H.; Ishihara, T.; Katsura, I. Identification and characterization of the high-affinity choline transporter. Nat. Neurosci. 2000, 3, 120–125. [Google Scholar] [CrossRef]
- Kuhar, M.J.; Murrin, L.C. Sodium-dependent, high affinity choline uptake. J. Neurochem. 1978, 30, 15–21. [Google Scholar] [CrossRef]
- Qiu, Y.; Gao, Y.; Huang, B.; Bai, Q.; Zhao, Y. Transport mechanism of presynaptic high-affinity choline uptake by CHT1. Nat. Struct. Mol. Biol. 2024, 31, 701–709. [Google Scholar] [CrossRef]
- Ferguson, S.M.; Savchenk, V.; Apparsundaram, S.; Zwick, M.; Wright, J.; Heilman, C.J.; Yi, H.; Levey, A.I.; Blakely, P.B. Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J. Neurosci. 2003, 23, 9697–9709. [Google Scholar] [CrossRef]
- Ferguson, S.S.; Blakeley, R.D. The choline transporter resurfaces: New roles for synaptic vesicles? Mol. Intervent. 2004, 4, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.M.; Black, S.A.; Prado, V.F.; Rylett, R.J.; Ferguson, S.S.; Prado, M.A. The “ins” and “outs” of the high-affinity choline transporter CHT1. J. Neurochem. 2006, 97, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bazalakova, M.H.; Wright, J.; Schneble, E.J.; McDonald, M.P.; Heilman, C.J.; Levey, A.I.; Blakely, R.D. Deficits in acetylcholine homeostasis, receptors and behaviors in choline transporter heterozygous mice. Genes Brain Behav. 2006, 6, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Holmstrand, E.C.; Lund, D.; Cherian, A.K.; Wright, J.; Martin, R.F.; Ennis, E.A.; Stanwood, G.D.; Sarter, M.; Blakely, R.D. Transgenic overexpression of the presynaptic choline transporter elevates acetylcholine levels and augments motor endurance. Neurochem. Int. 2014, 73, 217–228. [Google Scholar] [CrossRef]
- Okuda, T.; Okamura, M.; Kaitsuka, C.; Haga, T.; Gurwitz, D. Single nucleotide polymorphism of the human high-affinity choline transporter alters transport rate. J. Biol. Chem. 2002, 277, 45315–45322. [Google Scholar] [CrossRef]
- Banerjee, M.; Arutyunov, D.; Brandwein, D.; Janetzky-Flatt, C.; Kolski, H.; Hume, S.; Leonard, N.J.; Watt, J.; Lacson, A.; Baradi, M.; et al. The novel p.Ser263Phe mutation in the high-affinity choline transporter 1 (CHT1/SLC5A7) causes a lethal form of fetal akinesia syndrome. Hum. Mutat. 2019, 40, 1676–1683. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, K.; Dong, Y.; Meng, Y.; Zhao, J.; Li, R.; Bai, Q.; Wu, D.; Jiang, D.; Sun, J.; et al. Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT. Nat. Struct. Mol. Biol. 2025, 32, 818–827. [Google Scholar] [CrossRef]
- Prado, V.F.; Martins-Silva, C.; de Castro, B.M.; Lima, R.F.; Barros, D.M.; Amaral, E.; Ramsey, A.J.; Sotnikova, T.D.; Ramirez, M.R.; Kim, H.-G.; et al. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 2006, 51, 601–612. [Google Scholar] [CrossRef]
- Prado, V.F.; Roy, A.; Kolisnyk, B.; Gros, R.; Prado, M.A. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem. J. 2013, 450, 265–274. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, G.L.; Verschuuren, C.; Yuen, M.; Webster, R.; Menezes, M.; Fock, J.M.; Pride, N.; Best, H.A.; Damm, T.B.; Turner, C.; et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology 2016, 87, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P.M.; Aubert, I. Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus. Neuroscience 2012, 218, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Soreq, H.; Seidman, S. Acetylcholinesterase—New roles for an old actor. Nat. Rev. Neurosci. 2001, 2, 294–302. [Google Scholar] [CrossRef]
- Zimmermann, M.; Westwell, M.S.; Greenfield, S. Impact of detergents on the activity of acetylcholinesterase and on the effectiveness of its inhibitors. Biol. Chem. 2009, 390, 19–26. [Google Scholar] [CrossRef]
- Perrier, A.L.; Massoulie, J.; Krejci, E. PRiMA: The membrane anchor of acetylcholinesterase in the brain. Neuron 2002, 33, 275–285. [Google Scholar] [CrossRef]
- Meshorer, E.; Erb, C.; Gazit, R.; Pavlovsky, L.; Kaufer, D.; Friedman, A.; Glick, D.; Ben-Arie, N.; Soreq, H. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 2002, 295, 508–512. [Google Scholar] [CrossRef]
- Soreq, H. Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci. 2019, 38, 448–458. [Google Scholar] [CrossRef]
- Winek, K.; Lobentanzer, S.; Nadorp, B.; Dubnov, S.; Dames, C.; Moshitzky, G.; Hotter, B.; Meisel, C.; Greenberg, D.S.; Shifman, S. Transfer RNA fragments replace microRNAs regulators of the cholinergic post-stroke immune blockade. Proc. Natl. Acad. Sci. USA 2020, 117, 32606–32616. [Google Scholar] [CrossRef]
- Winek, K.; Soreq, H.; Meisel, A. Regulators of cholinergic signaling in disorders of the central nervous system. J. Neurochem. 2021, 158, 1425–1438. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Stribley, J.A.; Chatonnet, A.; Wilder, P.J.; Rizzino, A.; McComb, R.D.; Taylor, P.; Hinrichs, S.H.; Lockridge, O. Prenatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 2000, 293, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Petrov, K.A.; Proskurina, S.E.; Krejci, E. Cholinesterases in tripartite neuromuscular synapse. Front. Mol. Neurosci. 2021, 14, 81120. [Google Scholar] [CrossRef] [PubMed]
- Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003, 4, 131–138. [Google Scholar] [CrossRef]
- Mohr, F.; Zimmermann, M.; Klein, J. Mice heterozygous for AChE are more sensitive to AChE inhibitors but do not respond to BuChE inhibition. Neuropharmacology 2013, 67, 37–45. [Google Scholar] [CrossRef]
- Duysen, E.G.; Li, B.; Lockridge, O. The butyrylcholinesterase knockout mouse: A research tool in the study of drug sensitivity, bio-distribution, obesity and Alzheimer’s disease. Expert Opin. Drug Metab. Toxicol. 2009, 5, 523–528. [Google Scholar] [CrossRef]
- Giacobini, E.; Cuello, A.C.; Fisher, A. Reimagining cholinergic therapy for Alzheimer’s disease. Brain 2022, 145, 2250–2275. [Google Scholar] [CrossRef]
- Erb, C.; Troost, J.; Kopf, S.; Schmitt, U.; Löffelholz, K.; Soreq, H.; Klein, J. Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J. Neurochem. 2001, 77, 638–646. [Google Scholar] [CrossRef]
- Sarter, M.; Parikh, V. Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 2005, 6, 48–56. [Google Scholar] [CrossRef]
- Farar, V.; Mohr, F.; Legrand, M.; Lamotte d’Incamps, B.; Cendelin, J.; Leroy, J.; Abitbol, M.; Bernard, V.; Baud, F.; Fournet, V.; et al. Near complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 2012, 122, 1065–1080. [Google Scholar] [CrossRef]
- Mohr, F.; Krejci, E.; Zimmermann, M.; Klein, J. Dysfunctional presynaptic M2 receptors in the presence of chronically high acetylcholine levels: Data from the PRiMA knockout mouse. PLoS ONE 2015, 10, e0141136. [Google Scholar] [CrossRef]
- Wess, J.; Eglen, R.M.; Gautam, D. Muscarinic acetylcholine receptors: Mutant mice provide new insights for drug development. Nat. Rev. Drug Disc. 2007, 6, 721–733. [Google Scholar] [CrossRef]
- Tobin, A.B. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat. Rev. Drug Disc. 2024, 23, 743–758. [Google Scholar] [CrossRef]
- Liu, J.K.; Kato, T. Effect of physostigmine on relative acetylcholine output induced by systemic treatment with scopolamine in in vivo microdialysis of rat frontal cortex. Neurochem. Int. 1994, 24, 589–596. [Google Scholar] [CrossRef]
- Hartmann, J.; Kiewert, C.; Klein, J. Acetylcholine release and energy metabolites in amyloid-bearing APPSWE x PSEN1dE9 mice. J. Pharmacol. Exp. Ther. 2010, 332, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Gotti, C.; Zoli, M.; Clementi, F. Brain nicotinic acetylcholine receptors: Native subtypes and their relevance. Trends Pharmacol. Sci. 2006, 27, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Taly, A.; Corringer, P.-J.; Guedin, D.; Lestage, P.; Changeux, J.-P. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Disc. 2009, 8, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Bouzat, C.; Lasala, M.; Nielsen, B.E.; Corradi, J.; Del Carmen Elsandi, M. Molecular function of alpha7 nicrotinic receptors as drug targets. J. Physiol. 2018, 596, 1847–1861. [Google Scholar] [CrossRef]
- Fadel, J.R. Regulation of cortical acetylcholine release: Insights from in vivo microdialysis studies. Behav. Brain Res. 2011, 221, 527–536. [Google Scholar] [CrossRef]
- Scarr, E.; Gibbons, A.S.; Neo, J.; Udawela, M.; Dean, B. Cholinergic connectivity: Its implications for psychiatric disorders. Front. Cell. Neurosci. 2013, 7, 55. [Google Scholar] [CrossRef]
- Van Dort, C.J.; Baghdoyan, H.A.; Lydic, R. Neurochemical modulators of sleep and anesthetic states. Int. Anesthesiol. Clin. 2008, 46, 75–104. [Google Scholar] [CrossRef]
- Buchholzer, M.L.; Klein, J. NMDA-induced acetylcholine release in mouse striatum: Role of NO synthase isoforms. J. Neurochem. 2002, 82, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
- Ratna, D.D.; Francis, T.C. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front. Mol. Neurosci. 2025, 18, 1528419. [Google Scholar] [CrossRef] [PubMed]
- Pepeu, G.; Giovannini, M.G. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res. 2017, 1670, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Hillert, M.; Imran, I.; Zimmermann, M.; Lau, H.; Weinfurter, S.; Klein, J. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J. Neurochem. 2014, 131, 42–52. [Google Scholar] [CrossRef]
- Kampmann, M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat. Rev. Neurosci. 2024, 25, 351–371. [Google Scholar] [CrossRef]
- Dejanovic, B.; Sheng, M.; Hanson, J.E. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat. Rev. Drug Discov. 2024, 23, 23–42. [Google Scholar] [CrossRef]
- Burke, J.F.; Kerber, K.A.; Langa, K.M.; Albin, R.L.; Kotagal, V. Lecanumab—looking before we leap. Neurology 2023, 110, 661–665. [Google Scholar] [CrossRef]
- Riedel, G.; Klein, J.; Niewiadomska, G.; Kondak, C.; Schwab, K.; Lauer, D.; Magbagbeolu, M.; Steczkowska, M.; Zadrozny, M.; Wydrych, M.; et al. Mechanisms of anticholinesterase interference with tau aggregation inhibitor activity in a tau-transgenic mouse model. Curr. Alzheimer Res. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.; Bergersen, L.H.; Brinton, R.D.; de la Monte, S.; et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Rev. Drug Discov. 2020, 19, 609–633. [Google Scholar] [CrossRef]
- Auld, D.S.; Kar, S.; Quirion, R. ß-Amyloid peptides as direct cholinergic modulators: A missing link? Trends Neurosci. 1998, 21, 43–49. [Google Scholar] [CrossRef]
- Bellucci, A.; Luccarini, I.; Scali, C.; Prosperi, C.; Giovannini, M.G.; Pepeu, G.; Casamenti, F. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice. Neurobiol. Dis. 2006, 23, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, J.; Erb, C.; Ebert, U.; Baumann, K.H.; Popp, A.; König, G.; Klein, J. Central cholinergic functions in human amyloid precursor protein knock-in/presenilin-1 transgenic mice. Neuroscience 2004, 125, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.M.; Rezai-Zadeh, K.; Weitz, T.M.; Rentsendorj, A.; Gate, D.; Spivak, I.; Bholat, Y.; Vasilevko, V.; Glabe, C.G.; Breunig, J.J.; et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric Aß, and frank neuronal loss. J. Neurosci. 2013, 33, 6245–6256. [Google Scholar] [CrossRef] [PubMed]
- DoSarmo, S.; Cuello, A.C. Modeling Alzheimer’s disease in transgenic rats. Mol. Neurodegen. 2013, 8, 37. [Google Scholar]
- Sarter, M.; Lustig, C. Forebrain cholinergic signaling: Wired and phasic, not tonic, and causing behavior. J. Neurosci. 2020, 40, 712–719. [Google Scholar] [CrossRef]
- Chase, T.N.; Farlow, M.R.; Clarence-Smith, K. Donepezil plus solifenacin (CPC-201) treatment for Alzheimer’s disease. Neurotherapeutics 2017, 14, 405–416. [Google Scholar] [CrossRef]
- Kumar, R.; Sing, B.R. Botulinum toxin: A comprehensive review on its molecular architecture and mechanistic action. Int. J. Mol. Sci. 2025, 26, 777. [Google Scholar] [CrossRef]
- Monash, A.; Tam, J.; Rosen, O.; Soreq, H. Botulinum neurotoxins: History, mechanism, and applications. A narrative review. J. Neurochem. 2025, 169, e70187. [Google Scholar] [CrossRef]
- Jing, M.; Li, Y.; Zeng, J.; Huang, P.; Skirzewski, M.; Kljakic, O.; Peng, W.; Qian, T.; Tan, K.; Zou, J.; et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Meth. 2020, 17, 1139–1146. [Google Scholar] [CrossRef]
- Zorbaz, T.; Madrer, N.; Soreq, H. Cholinergic blockade of neuroinflammation: From tissue to RNA regulators. Neuronal Signal. 2022, 6, NS20210035. [Google Scholar] [CrossRef]
Muscarinic Receptors | 2nd Messenger | Location and Function |
---|---|---|
M1, (M3, M5) | ↑ IP3, ↑ Ca2+, ↓ K+ | Excitatory receptors, M1 ubiquitous in forebrain |
M2, M4 | ↓ cAMP, ↓ Ca2+; ↑ K+ | Main presynaptic receptors, reduce transmitter release |
Nicotinic receptors | ||
ɑ4ß2-Receptors | ↑ Na+ | Main excitatory receptor, releases catecholamines |
ɑ7-receptors | ↑ Na+, ↑ Ca2+ | Releases glutamate in hippocampus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, J. The Central Cholinergic Synapse: A Primer. Int. J. Mol. Sci. 2025, 26, 9670. https://doi.org/10.3390/ijms26199670
Klein J. The Central Cholinergic Synapse: A Primer. International Journal of Molecular Sciences. 2025; 26(19):9670. https://doi.org/10.3390/ijms26199670
Chicago/Turabian StyleKlein, Jochen. 2025. "The Central Cholinergic Synapse: A Primer" International Journal of Molecular Sciences 26, no. 19: 9670. https://doi.org/10.3390/ijms26199670
APA StyleKlein, J. (2025). The Central Cholinergic Synapse: A Primer. International Journal of Molecular Sciences, 26(19), 9670. https://doi.org/10.3390/ijms26199670