Memory in Misfire: The Gut Microbiome-Trained Immunity Circuit in Inflammatory Bowel Diseases
Abstract
1. Introduction
2. Mechanism and Plasticity of Trained Immunity
3. Microbiome Regulation of Trained Immunity
3.1. Exposure to Bacterial Flora Directly Regulates Trained Immunity
3.2. Microbial Metabolite-Mediated Regulation of Trained Immunity
3.3. Host Genetics: A Key Modulator of the Microbiome–Immunity Axis
4. Tolerogenic Trained Immunity and Bidirectional Regulation by Microbial Metabolites
5. Critical Pathways of the Flora–Immune Memory Axis Driving IBD Chronicity
5.1. The Gut–Bone Marrow Axis
5.2. Deficiency of Protective Metabolites and Pathological Training of Pro-Inflammatory Metabolites
5.3. The Microbiome–Immune–Neuronal Axis
5.4. Transgenerational Transmission
6. Intervention Strategies Targeting the Flora–Immune Memory Axis
6.1. Primary Prevention
6.1.1. Dietary Fibre and Whole Grains
6.1.2. Prebiotics
6.1.3. Omega-3 Polyunsaturated Fatty Acids (PUFAs)
6.1.4. Limiting Processed Foods and Additives
6.2. Secondary Treatment
6.2.1. Fecal Microbiota Transplantation
6.2.2. Probiotics
6.2.3. Postbiotics
6.3. Tertiary Management
7. Challenges and Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
IBD | Inflammatory bowel disease |
CD | Crohn’s disease |
UC | Ulcerative colitis |
TCA | Tricarboxylic acid cycle |
NOD2 | Nucleotide-binding oligomerisation domain-containing protein 2 |
CARD9 | Caspase recruitment domain-containing protein 9 |
NK | Natural killer |
lncRNAs | Long non-coding RNAs |
HIF-1α | Hypoxia-inducible factor 1-alpha |
mTOR | Mechanistic target of rapamycin |
HSPCs | Hematopoietic stem and progenitor cells |
SSc | Systemic sclerosis |
HDAC | Histone deacetylase |
SCFA | Short-chain fatty acid |
AhR | Aryl hydrocarbon receptor |
CNS | Central nervous system |
γδ T | Gamma delta T cells |
Th17 | T helper 17 |
GABA | Gamma-aminobutyric acid |
APOL9a/b | Apolipoprotein L9a/b |
OMVs | Outer membrane vesicles |
TLR | Toll-like receptor |
IFN-γ | Interferon gamma |
MHC-II | Major histocompatibility complex class II |
NF-κB | Nuclear factor kappa B |
MCI | Monocytes with enhanced inflammatory properties |
MC | Monocytes with anti-inflammatory properties |
GWASs | Genome-wide association studies |
DSS | Dextran sulfate sodium |
Mincle | Macrophage-inducible C-type lectin (CLEC4E) |
ZO-1 | Zonula occludens-1 |
LPS | Lipopolysaccharide |
CX3CR1 | C-X3-C motif chemokine receptor 1 |
STING | Stimulator of interferon genes |
TBK1 | TANK-binding kinase 1 |
IRF3 | Interferon regulatory factor 3 |
GMPs | Granulocyte–monocyte progenitors |
WD | Western diet |
FMT | Fecal microbiota transplantation |
IL-2 | Interleukin-2 |
EPA | Eicosapentaenoic acid |
DHA | Docosahexaenoic acid |
UPFs | Ultra-processed foods |
STAT3 | Signal transducer and activator of transcription 3 |
MUC2 | Mucin 2 |
Th | T helper cell |
Treg | Regulatory T cell |
PAMPs | Pathogen-associated molecular patterns |
DAMPs | Damage-associated molecular patterns |
APC | Antigen-presenting cell |
References
- Xu, L.; He, B.; Sun, Y.; Li, J.; Shen, P.; Hu, L.; Liu, G.; Wang, J.; Duan, L.; Zhan, S.; et al. Incidence of Inflammatory Bowel Disease in Urban China: A Nationwide Population-Based Study. Clin. Gastroenterol. Hepatol. 2023, 21, 3379–3386.e29. [Google Scholar] [CrossRef]
- Shah, S.C.; Itzkowitz, S.H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology 2022, 162, 715–730.e3. [Google Scholar] [CrossRef]
- Jairath, V.; Feagan, B.G. Global Burden of Inflammatory Bowel Disease. Lancet Gastroenterol. Hepatol. 2020, 5, 2–3. [Google Scholar] [CrossRef]
- Zhang, H.; Mu, C.; Gu, Y.; Meng, F.; Qin, X.; Cao, H. Selection Strategy of Second-Line Biologic Therapies in Adult Patients with Ulcerative Colitis Following Prior Biologic Treatment Failure: Systematic Review and Meta-Analysis. Pharmacol. Res. 2024, 202, 107108. [Google Scholar] [CrossRef]
- Antonioli, L.; Fornai, M.; Romano, B.; Pellegrini, C.; Blandizzi, C. Editorial: IBD Management-Novel Targets and Therapeutic Perspectives. Front. Pharmacol. 2020, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, B.; Jin, T.; Ocansey, D.K.W.; Jiang, J.; Mao, F. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front. Immunol. 2022, 13, 835005. [Google Scholar] [CrossRef] [PubMed]
- Roberti, R.; Iannone, L.F.; Palleria, C.; De Sarro, C.; Spagnuolo, R.; Barbieri, M.A.; Vero, A.; Manti, A.; Pisana, V.; Fries, W.; et al. Safety Profiles of Biologic Agents for Inflammatory Bowel Diseases: A Prospective Pharmacovigilance Study in Southern Italy. Curr. Med. Res. Opin. 2020, 36, 1457–1463. [Google Scholar] [CrossRef]
- Danne, C.; Skerniskyte, J.; Marteyn, B.; Sokol, H. Neutrophils: From IBD to the Gut Microbiota. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Cheon, J.H. Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Netw. 2017, 17, 25–40. [Google Scholar] [CrossRef]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining Trained Immunity and Its Role in Health and Disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef]
- Zhang, B.; Moorlag, S.J.; Dominguez-Andres, J.; Bulut, Ö.; Kilic, G.; Liu, Z.; van Crevel, R.; Xu, C.-J.; Joosten, L.A.; Netea, M.G.; et al. Single-Cell RNA Sequencing Reveals Induction of Distinct Trained-Immunity Programs in Human Monocytes. J. Clin. Invest. 2022, 132, e147719. [Google Scholar] [CrossRef]
- Pellon, A.; Palacios, A.; Abecia, L.; Rodríguez, H.; Anguita, J. Friends to Remember: Innate Immune Memory Regulation by the Microbiota. Trends Microbiol. 2025, 33, 510–520. [Google Scholar] [CrossRef]
- Guggeis, M.A.; Harris, D.M.; Welz, L.; Rosenstiel, P.; Aden, K. Microbiota-Derived Metabolites in Inflammatory Bowel Disease. Semin. Immunopathol. 2025, 47, 19. [Google Scholar] [CrossRef]
- Shan, Y.; Lee, M.; Chang, E.B. The Gut Microbiome and Inflammatory Bowel Diseases. Annu. Rev. Med. 2022, 73, 455–468. [Google Scholar] [CrossRef]
- Netea, M.G.; Quintin, J.; van der Meer, J.W.M. Trained Immunity: A Memory for Innate Host Defense. Cell Host Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef]
- Divangahi, M.; Aaby, P.; Khader, S.A.; Barreiro, L.B.; Bekkering, S.; Chavakis, T.; van Crevel, R.; Curtis, N.; DiNardo, A.R.; Dominguez-Andres, J.; et al. Trained Immunity, Tolerance, Priming and Differentiation: Distinct Immunological Processes. Nat. Immunol. 2021, 22, 2–6, Erratum in Nat. Immunol. 2021, 22, 928. [Google Scholar] [CrossRef] [PubMed]
- Fanucchi, S.; Domínguez-Andrés, J.; Joosten, L.A.B.; Netea, M.G.; Mhlanga, M.M. The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity 2021, 54, 32–43. [Google Scholar] [CrossRef]
- Klemm, S.L.; Shipony, Z.; Greenleaf, W.J. Chromatin Accessibility and the Regulatory Epigenome. Nat. Rev. Genet. 2019, 20, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Ochando, J.; Mulder, W.J.M.; Madsen, J.C.; Netea, M.G.; Duivenvoorden, R. Trained Immunity—Basic Concepts and Contributions to Immunopathology. Nat. Rev. Nephrol. 2023, 19, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, A.; Novakovic, B.; Ventriglia, L.; Galang, N.; Tran, K.A.; Li, W.; Matzaraki, V.; van Unen, N.; Schlüter, T.; Ferreira, A.V.; et al. Long-Term Histone Lactylation Connects Metabolic and Epigenetic Rewiring in Innate Immune Memory. Cell 2025, 188, 2992–3012.e16. [Google Scholar] [CrossRef]
- Bannister, S.; Kim, B.; Domínguez-Andrés, J.; Kilic, G.; Ansell, B.R.E.; Neeland, M.R.; Moorlag, S.J.C.F.M.; Matzaraki, V.; Vlahos, A.; Shepherd, R.; et al. Neonatal BCG Vaccination Is Associated with a Long-Term DNA Methylation Signature in Circulating Monocytes. Sci. Adv. 2022, 8, eabn4002. [Google Scholar] [CrossRef]
- Novakovic, B.; Habibi, E.; Wang, S.-Y.; Arts, R.J.W.; Davar, R.; Megchelenbrink, W.; Kim, B.; Kuznetsova, T.; Kox, M.; Zwaag, J.; et al. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell 2016, 167, 1354–1368.e14. [Google Scholar] [CrossRef]
- Domínguez-Andrés, J.; dos Santos, J.C.; Bekkering, S.; Mulder, W.J.M.; van der Meer, J.W.M.; Riksen, N.P.; Joosten, L.A.B.; Netea, M.G. Trained Immunity: Adaptation Within Innate Immune Mechanisms. Physiol. Rev. 2023, 103, 313–346. [Google Scholar] [CrossRef]
- Mitsialis, V.; Wall, S.; Liu, P.; Ordovas-Montanes, J.; Parmet, T.; Vukovic, M.; Spencer, D.; Field, M.; McCourt, C.; Toothaker, J.; et al. Single-Cell Analyses of Colon and Blood Reveal Distinct Immune Cell Signatures of Ulcerative Colitis and Crohn’s Disease. Gastroenterology 2020, 159, 591–608.e10. [Google Scholar] [CrossRef]
- Warrick, K.A.; Vallez, C.N.; Meibers, H.E.; Pasare, C. Bidirectional Communication Between the Innate and Adaptive Immune Systems. Annu. Rev. Immunol. 2025, 43, 489–514. [Google Scholar] [CrossRef]
- Pan, X.; Zhu, Q.; Pan, L.-L.; Sun, J. Macrophage Immunometabolism in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Pharmacol. Ther. 2022, 238, 108176. [Google Scholar] [CrossRef]
- Dharmasiri, S.; Garrido-Martin, E.M.; Harris, R.J.; Bateman, A.C.; Collins, J.E.; Cummings, J.R.F.; Sanchez-Elsner, T. Human Intestinal Macrophages Are Involved in the Pathology of Both Ulcerative Colitis and Crohn Disease. Inflamm. Bowel Dis. 2021, 27, 1641–1652. [Google Scholar] [CrossRef]
- Padoan, A.; Musso, G.; Contran, N.; Basso, D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr. Issues Mol. Biol. 2023, 45, 5534–5557. [Google Scholar] [CrossRef] [PubMed]
- Kuttke, M.; Hromadová, D.; Yildirim, C.; Brunner, J.S.; Vogel, A.; Paar, H.; Peters, S.; Weber, M.; Hofmann, M.; Kerndl, M.; et al. PI3K Signaling in Dendritic Cells Aggravates DSS-Induced Colitis. Front. Immunol. 2022, 13, 695576. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Vázquez, A.; González, S.; Sacedón, R.; Fernández-Sevilla, L.M.; Varas, A.; Subiza, J.L.; Valencia, J.; Vicente, Á. Mucosal Bacterial Immunotherapy Attenuates the Development of Experimental Colitis by Reducing Inflammation Through the Regulation of Myeloid Cells. Int. J. Mol. Sci. 2024, 25, 13629. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Dang, B.; Ouyang, X.; Zhao, X.; Huang, Y.; Lin, Y.; Cheng, X.; Xie, G.; Lin, J.; Mi, P.; et al. Dietary Succinate Supplementation Alleviates DSS-Induced Colitis via the IL-4Rα/Hif-1α Axis. Int. Immunopharmacol. 2025, 152, 114408. [Google Scholar] [CrossRef]
- Castelo, J.; Araujo-Aris, S.; Barriales, D.; Pasco, S.T.; Seoane, I.; Peña-Cearra, A.; Palacios, A.; Simó, C.; Garcia-Cañas, V.; Khamwong, M.; et al. The Microbiota Metabolite, Phloroglucinol, Confers Long-Term Protection against Inflammation. Gut Microbes 2024, 16, 2438829. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, P.; Su, D.; Zhao, Y.; Zhang, M. Therapeutic Inhibition of the JAK-STAT Pathway in the Treatment of Inflammatory Bowel Disease. Cytokine Growth Factor. Rev. 2024, 79, 1–15. [Google Scholar] [CrossRef]
- Liu, J.; Di, B.; Xu, L.-L. Recent Advances in the Treatment of IBD: Targets, Mechanisms and Related Therapies. Cytokine Growth Factor. Rev. 2023, 71–72, 1–12. [Google Scholar] [CrossRef]
- Perez-Gracia, J.L.; Labiano, S.; Rodriguez-Ruiz, M.E.; Sanmamed, M.F.; Melero, I. Orchestrating Immune Check-Point Blockade for Cancer Immunotherapy in Combinations. Curr. Opin. Immunol. 2014, 27, 89–97. [Google Scholar] [CrossRef]
- Viola, M.F.; Mass, E. Bacterial Translocation Promotes Trained Immunity. Immunity 2025, 58, 268–270. [Google Scholar] [CrossRef]
- Geremia, A.; Biancheri, P.; Allan, P.; Corazza, G.R.; Di Sabatino, A. Innate and Adaptive Immunity in Inflammatory Bowel Disease. Autoimmun. Rev. 2014, 13, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, M.; Dai, Z.; Luo, S.; Shi, Y.; He, Z.; Chen, Y. Salidroside Alleviates Ulcerative Colitis via Inhibiting Macrophage Pyroptosis and Repairing the Dysbacteriosis-Associated Th17/Treg Imbalance. Phytother. Res. 2023, 37, 367–382. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; et al. mTOR- and HIF-1α-Mediated Aerobic Glycolysis as Metabolic Basis for Trained Immunity. Science 2014, 345, 1250684. [Google Scholar] [CrossRef] [PubMed]
- Llibre, A.; Mauro, C. Lactate Trains Immunity. Trends Immunol. 2025, 46, 432–434. [Google Scholar] [CrossRef] [PubMed]
- Winther, S.; Trauelsen, M.; Schwartz, T.W. Protective Succinate-SUCNR1 Metabolic Stress Signaling Gone Bad. Cell Metab. 2021, 33, 1276–1278. [Google Scholar] [CrossRef] [PubMed]
- Pålsson-McDermott, E.M.; O’Neill, L.A.J. Gang of 3: How the Krebs Cycle-Linked Metabolites Itaconate, Succinate, and Fumarate Regulate Macrophages and Inflammation. Cell Metab. 2025, 37, 1049–1059. [Google Scholar] [CrossRef]
- Aaby, P.; Netea, M.G.; Benn, C.S. Beneficial Non-Specific Effects of Live Vaccines Against COVID-19 and Other Unrelated Infections. Lancet Infect. Dis. 2023, 23, e34–e42. [Google Scholar] [CrossRef] [PubMed]
- Tsilika, M.; Taks, E.; Dolianitis, K.; Kotsaki, A.; Leventogiannis, K.; Damoulari, C.; Kostoula, M.; Paneta, M.; Adamis, G.; Papanikolaou, I.; et al. ACTIVATE-2: A Double-Blind Randomized Trial of BCG Vaccination Against COVID-19 in Individuals at Risk. Front. Immunol. 2022, 13, 873067, Erratum in Front. Immunol. 2022, 13, 1018384. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Tang, M.; Wu, Q.; Wang, Y.; Liu, Q.; Zhu, P.; Xue, X.; Liu, Y.; Chai, X.; Hou, Y.; et al. NMAAP1 Regulated Macrophage Polarizion into M1 Type Through Glycolysis Stimulated with BCG. Int. Immunopharmacol. 2024, 126, 111257. [Google Scholar] [CrossRef]
- Xu, J.-C.; Wu, K.; Ma, R.-Q.; Li, J.-H.; Tao, J.; Hu, Z.; Fan, X.-Y. Establishment of an In Vitro Model of Monocyte-like THP-1 Cells for Trained Immunity Induced by Bacillus Calmette-Guérin. BMC Microbiol. 2024, 24, 130. [Google Scholar] [CrossRef]
- Trained Immunity in Chronic Inflammatory Diseases and Cancer | Nature Reviews Immunology. Available online: https://www.nature.com/articles/s41577-025-01132-x (accessed on 9 May 2025).
- Jeljeli, M.; Riccio, L.G.C.; Doridot, L.; Chêne, C.; Nicco, C.; Chouzenoux, S.; Deletang, Q.; Allanore, Y.; Kavian, N.; Batteux, F. Trained Immunity Modulates Inflammation-Induced Fibrosis. Nat. Commun. 2019, 10, 5670. [Google Scholar] [CrossRef]
- Nenciarini, S.; Rivero, D.; Ciccione, A.; Amoriello, R.; Cerasuolo, B.; Pallecchi, M.; Bartolucci, G.L.; Ballerini, C.; Cavalieri, D. Impact of Cooperative or Competitive Dynamics Between the Yeast Saccharomyces Cerevisiae and Lactobacilli on the Immune Response of the Host. Front. Immunol. 2024, 15, 1399842. [Google Scholar] [CrossRef]
- Pellon, A.; Barriales, D.; Peña-Cearra, A.; Castelo-Careaga, J.; Palacios, A.; Lopez, N.; Atondo, E.; Pascual-Itoiz, M.A.; Martín-Ruiz, I.; Sampedro, L.; et al. The Commensal Bacterium Lactiplantibacillus Plantarum Imprints Innate Memory-like Responses in Mononuclear Phagocytes. Gut Microbes 2021, 13, 1939598. [Google Scholar] [CrossRef]
- Peña-Cearra, A.; Palacios, A.; Pellon, A.; Castelo, J.; Pasco, S.T.; Seoane, I.; Barriales, D.; Martin, J.E.; Pascual-Itoiz, M.Á.; Gonzalez-Lopez, M.; et al. Akkermansia Muciniphila-Induced Trained Immune Phenotype Increases Bacterial Intracellular Survival and Attenuates Inflammation. Commun. Biol. 2024, 7, 192. [Google Scholar] [CrossRef]
- Lasaviciute, G.; Barz, M.; van der Heiden, M.; Arasa, C.; Tariq, K.; Quin, J.; Östlund Farrants, A.-K.; Sverremark-Ekström, E. Gut Commensal Limosilactobacillus Reuteri Induces Atypical Memory-like Phenotype in Human Dendritic Cells In Vitro. Gut Microbes 2022, 14, 2045046. [Google Scholar] [CrossRef] [PubMed]
- Serafini, N.; Jarade, A.; Surace, L.; Goncalves, P.; Sismeiro, O.; Varet, H.; Legendre, R.; Coppee, J.-Y.; Disson, O.; Durum, S.K.; et al. Trained ILC3 Responses Promote Intestinal Defense. Science 2022, 375, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, A.J.; Uhr, T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science 2004, 303, 1662–1665. [Google Scholar] [CrossRef]
- Fung, T.C.; Bessman, N.J.; Hepworth, M.R.; Kumar, N.; Shibata, N.; Kobuley, D.; Wang, K.; Ziegler, C.G.K.; Goc, J.; Shima, T.; et al. Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism. Immunity 2016, 44, 634–646. [Google Scholar] [CrossRef]
- Arts, R.J.W.; Moorlag, S.J.C.F.M.; Novakovic, B.; Li, Y.; Wang, S.-Y.; Oosting, M.; Kumar, V.; Xavier, R.J.; Wijmenga, C.; Joosten, L.A.B.; et al. BCG Vaccination Protects Against Experimental Viral Infection in Humans Through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe 2018, 23, 89–100.e5. [Google Scholar] [CrossRef] [PubMed]
- Quintin, J.; Saeed, S.; Martens, J.H.A.; Giamarellos-Bourboulis, E.J.; Ifrim, D.C.; Logie, C.; Jacobs, L.; Jansen, T.; Kullberg, B.-J.; Wijmenga, C.; et al. Candida Albicans Infection Affords Protection against Reinfection via Functional Reprogramming of Monocytes. Cell Host Microbe 2012, 12, 223–232. [Google Scholar] [CrossRef]
- Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction Between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 6242. [Google Scholar] [CrossRef]
- Dang, B.; Gao, Q.; Zhang, L.; Zhang, J.; Cai, H.; Zhu, Y.; Zhong, Q.; Liu, J.; Niu, Y.; Mao, K.; et al. The Glycolysis/HIF-1α Axis Defines the Inflammatory Role of IL-4-Primed Macrophages. Cell Rep. 2023, 42, 112471. [Google Scholar] [CrossRef]
- Hiengrach, P.; Visitchanakun, P.; Finkelman, M.A.; Chancharoenthana, W.; Leelahavanichkul, A. More Prominent Inflammatory Response to Pachyman than to Whole-Glucan Particle and Oat-β-Glucans in Dextran Sulfate-Induced Mucositis Mice and Mouse Injection through Proinflammatory Macrophages. Int. J. Mol. Sci. 2022, 23, 4026. [Google Scholar] [CrossRef]
- Debisarun, P.A.; Gössling, K.L.; Bulut, O.; Kilic, G.; Zoodsma, M.; Liu, Z.; Oldenburg, M.; Rüchel, N.; Zhang, B.; Xu, C.-J.; et al. Induction of Trained Immunity by Influenza Vaccination—Impact on COVID-19. PLoS Pathog. 2021, 17, e1009928. [Google Scholar] [CrossRef]
- Brandi, P.; Conejero, L.; Cueto, F.J.; Martínez-Cano, S.; Dunphy, G.; Gómez, M.J.; Relaño, C.; Saz-Leal, P.; Enamorado, M.; Quintas, A.; et al. Trained Immunity Induction by the Inactivated Mucosal Vaccine MV130 Protects Against Experimental Viral Respiratory Infections. Cell Rep. 2022, 38, 110184. [Google Scholar] [CrossRef]
- Michaels, M.; Madsen, K.L. Immunometabolism and Microbial Metabolites at the Gut Barrier: Lessons for Therapeutic Intervention in Inflammatory Bowel Disease. Mucosal Immunol. 2023, 16, 72–85. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, J.; Pandey, S.; Capitani, M.; Rue-Albrecht, K.C.; Arnold, I.; Franchini, F.; Chomka, A.; Ilott, N.E.; Johnston, D.G.W.; Pires, E.; et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 2019, 50, 432–445.e7. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.G.; Patente, T.A.; Rouillé, Y.; Heumel, S.; Melo, E.M.; Deruyter, L.; Pourcet, B.; Sencio, V.; Teixeira, M.M.; Trottein, F. Acetate Improves the Killing of Streptococcus Pneumoniae by Alveolar Macrophages via NLRP3 Inflammasome and Glycolysis-HIF-1α Axis. Front. Immunol. 2022, 13, 773261. [Google Scholar] [CrossRef]
- Cai, H.; Chen, X.; Liu, Y.; Chen, Y.; Zhong, G.; Chen, X.; Rong, S.; Zeng, H.; Zhang, L.; Li, Z.; et al. Lactate Activates Trained Immunity by Fueling the Tricarboxylic Acid Cycle and Regulating Histone Lactylation. Nat. Commun. 2025, 16, 3230. [Google Scholar] [CrossRef]
- Montgomery, T.L.; Eckstrom, K.; Lile, K.H.; Caldwell, S.; Heney, E.R.; Lahue, K.G.; D’Alessandro, A.; Wargo, M.J.; Krementsov, D.N. Lactobacillus Reuteri Tryptophan Metabolism Promotes Host Susceptibility to CNS Autoimmunity. Microbiome 2022, 10, 198. [Google Scholar] [CrossRef]
- Bekkering, S.; Arts, R.J.W.; Novakovic, B.; Kourtzelis, I.; van der Heijden, C.D.C.C.; Li, Y.; Popa, C.D.; Ter Horst, R.; van Tuijl, J.; Netea-Maier, R.T.; et al. Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell 2018, 172, 135–146.e9. [Google Scholar] [CrossRef]
- Yang, T.; Hu, X.; Cao, F.; Yun, F.; Jia, K.; Zhang, M.; Kong, G.; Nie, B.; Liu, Y.; Zhang, H.; et al. Targeting Symbionts by Apolipoprotein L Proteins Modulates Gut Immunity. Nature 2025, 643, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-Microbe Interactions Have Shaped the Genetic Architecture of Inflammatory Bowel Disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.B.; Xavier, R.J. Pathway Paradigms Revealed from the Genetics of Inflammatory Bowel Disease. Nature 2020, 578, 527–539. [Google Scholar] [CrossRef]
- Knights, D.; Silverberg, M.S.; Weersma, R.K.; Gevers, D.; Dijkstra, G.; Huang, H.; Tyler, A.D.; van Sommeren, S.; Imhann, F.; Stempak, J.M.; et al. Complex Host Genetics Influence the Microbiome in Inflammatory Bowel Disease. Genome Med. 2014, 6, 107. [Google Scholar] [CrossRef]
- Couturier-Maillard, A.; Secher, T.; Rehman, A.; Normand, S.; De Arcangelis, A.; Haesler, R.; Huot, L.; Grandjean, T.; Bressenot, A.; Delanoye-Crespin, A.; et al. NOD2-Mediated Dysbiosis Predisposes Mice to Transmissible Colitis and Colorectal Cancer. J. Clin. Invest. 2013, 123, 700–711. [Google Scholar] [CrossRef]
- Ji, C.; Yang, Z.; Zhong, X.; Xia, J. The Role and Mechanism of CARD9 Gene Polymorphism in Diseases. Biomed. J. 2021, 44, 560–566. [Google Scholar] [CrossRef]
- Lam, S.; Zuo, T.; Ho, M.; Chan, F.K.L.; Chan, P.K.S.; Ng, S.C. Review Article: Fungal Alterations in Inflammatory Bowel Diseases. Aliment. Pharmacol. Ther. 2019, 50, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, M.W. Editorial: The Role of Oxidative Stress, Epigenetics and Non-Coding RNA in Regulating Trained Immunity. Front. Immunol. 2020, 11, 2114. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Arsh, A.M.; Rathore, J.S. Trained Innate Immunity and Diseases: Bane with the Boon. Clin. Immunol. Commun. 2022, 2, 118–129. [Google Scholar] [CrossRef]
- Liu, R.; Tang, A.; Wang, X.; Chen, X.; Zhao, L.; Xiao, Z.; Shen, S. Inhibition of lncRNA NEAT1 Suppresses the Inflammatory Response in IBD by Modulating the Intestinal Epithelial Barrier and by Exosome-Mediated Polarization of Macrophages. Int. J. Mol. Med. 2018, 42, 2903–2913. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Z.; Huang, Z.; Lv, X.; Jiang, D.; Huang, Z.; Han, B.; Lin, G.; Liu, G.; Li, S.; et al. Butyrate Attenuates Intestinal Inflammation in Crohn’s Disease by Suppressing Pyroptosis of Intestinal Epithelial Cells via the cGSA-STING-NLRP3 Axis. Int. Immunopharmacol. 2024, 143, 113305. [Google Scholar] [CrossRef]
- Chen, H.; Qian, Y.; Jiang, C.; Tang, L.; Yu, J.; Zhang, L.; Dai, Y.; Jiang, G. Butyrate Ameliorated Ferroptosis in Ulcerative Colitis through Modulating Nrf2/GPX4 Signal Pathway and Improving Intestinal Barrier. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166984. [Google Scholar] [CrossRef]
- Lührs, H.; Gerke, T.; Müller, J.G.; Melcher, R.; Schauber, J.; Boxberge, F.; Scheppach, W.; Menzel, T. Butyrate Inhibits NF-kappaB Activation in Lamina Propria Macrophages of Patients with Ulcerative Colitis. Scand. J. Gastroenterol. 2002, 37, 458–466. [Google Scholar] [CrossRef]
- Santis, S.D.; Pizarro, T.T. Host-Microbial Crosstalk Relies on “Tuft” Love. Immunity 2024, 57, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Eshleman, E.M.; Rice, T.; Potter, C.; Waddell, A.; Hashimoto-Hill, S.; Woo, V.; Field, S.; Engleman, L.; Lim, H.-W.; Schumacher, M.A.; et al. Microbiota-Derived Butyrate Restricts Tuft Cell Differentiation via Histone Deacetylase 3 to Modulate Intestinal Type 2 Immunity. Immunity 2024, 57, 319–332.e6. [Google Scholar] [CrossRef]
- Wu, R.; Xiong, R.; Li, Y.; Chen, J.; Yan, R. Gut Microbiome, Metabolome, Host Immunity Associated with Inflammatory Bowel Disease and Intervention of Fecal Microbiota Transplantation. J. Autoimmun. 2023, 141, 103062. [Google Scholar] [CrossRef]
- Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary Emulsifiers Impact the Mouse Gut Microbiota Promoting Colitis and Metabolic Syndrome. Nature 2015, 519, 92–96. [Google Scholar] [CrossRef]
- Niechcial, A.; Schwarzfischer, M.; Wawrzyniak, M.; Atrott, K.; Laimbacher, A.; Morsy, Y.; Katkeviciute, E.; Häfliger, J.; Westermann, P.; Akdis, C.A.; et al. Spermidine Ameliorates Colitis via Induction of Anti-Inflammatory Macrophages and Prevention of Intestinal Dysbiosis. J. Crohns Colitis 2023, 17, 1489–1503. [Google Scholar] [CrossRef]
- Weiss, T.S.; Herfarth, H.; Obermeier, F.; Ouart, J.; Schölmerich, J.; Jauch, K.-W.; Rogler, G. Intracellular Polyamine Levels of Intestinal Epithelial Cells in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2004, 10, 529–535. [Google Scholar] [CrossRef]
- Li, X.; Xiao, X.; Wang, S.; Wu, B.; Zhou, Y. Uncovering de Novo Polyamine Biosynthesis in the Gut Microbiome and Its Alteration in Inflammatory Bowel Disease. Gut Microbes 2025, 17, 2464225. [Google Scholar] [CrossRef]
- Weaver, L.K.; Minichino, D.; Biswas, C.; Chu, N.; Lee, J.-J.; Bittinger, K.; Albeituni, S.; Nichols, K.E.; Behrens, E.M. Microbiota-Dependent Signals Are Required to Sustain TLR-Mediated Immune Responses. JCI Insight 2019, 4, e124370. [Google Scholar] [CrossRef] [PubMed]
- Robles-Vera, I.; Jarit-Cabanillas, A.; Brandi, P.; Martínez-López, M.; Martínez-Cano, S.; Rodrigo-Tapias, M.; Femenía-Muiña, M.; Redondo-Urzainqui, A.; Nuñez, V.; González-Correa, C.; et al. Microbiota Translocation Following Intestinal Barrier Disruption Promotes Mincle-Mediated Training of Myeloid Progenitors in the Bone Marrow. Immunity 2025, 58, 381–396.e9. [Google Scholar] [CrossRef] [PubMed]
- Shmuel-Galia, L.; Humphries, F.; Lei, X.; Ceglia, S.; Wilson, R.; Jiang, Z.; Ketelut-Carneiro, N.; Foley, S.E.; Pechhold, S.; Houghton, J.; et al. Dysbiosis Exacerbates Colitis by Promoting Ubiquitination and Accumulation of the Innate Immune Adaptor STING in Myeloid Cells. Immunity 2021, 54, 1137–1153.e8. [Google Scholar] [CrossRef]
- Li, G.; Lin, J.; Zhang, C.; Gao, H.; Lu, H.; Gao, X.; Zhu, R.; Li, Z.; Li, M.; Liu, Z. Microbiota Metabolite Butyrate Constrains Neutrophil Functions and Ameliorates Mucosal Inflammation in Inflammatory Bowel Disease. Gut Microbes 2021, 13, 1968257. [Google Scholar] [CrossRef]
- Ruple, H.K.; Haasis, E.; Bettenburg, A.; Maier, C.; Fritz, C.; Schüle, L.; Löcker, S.; Soltow, Y.; Schintgen, L.; Schmidt, N.S.; et al. The Gut Microbiota Predicts and Time-Restricted Feeding Delays Experimental Colitis. Gut Microbes 2025, 17, 2453019. [Google Scholar] [CrossRef]
- Niu, Y.; Heddes, M.; Altaha, B.; Birkner, M.; Kleigrewe, K.; Meng, C.; Haller, D.; Kiessling, S. Targeting the Intestinal Circadian Clock by Meal Timing Ameliorates Gastrointestinal Inflammation. Cell Mol. Immunol. 2024, 21, 842–855. [Google Scholar] [CrossRef]
- Banfi, D.; Moro, E.; Bosi, A.; Bistoletti, M.; Cerantola, S.; Crema, F.; Maggi, F.; Giron, M.C.; Giaroni, C.; Baj, A. Impact of Microbial Metabolites on Microbiota-Gut-Brain Axis in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2021, 22, 1623. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Jain, S.; Yadav, H. Age-Related Cognitive Decline and Dementia: Interface of Microbiome–Immune–Neuronal Interactions. J. Gerontol. A Biol. Sci. Med. Sci. 2025, 80, glaf038. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Cao, L.-S.; Xia, W.-Y.; Wang, J.-M.; Wu, Q.-F. Gut Sensory Neurons as Regulators of Neuro-Immune-Microbial Interactions: From Molecular Mechanisms to Precision Therapy for IBD/IBS. J. Neuroinflamm. 2025, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, T.; Chen, G.; Liang, Y.; Nie, X.; Gu, W.; Li, L.; Tong, H.; Huang, W.; Lu, T.; et al. Vinegar-Processed Schisandra Chinensis Enhanced Therapeutic Effects on Colitis-Induced Depression Through Tryptophan Metabolism. Phytomedicine 2024, 135, 156057. [Google Scholar] [CrossRef]
- Zheng, S.-Y.; Li, H.-X.; Xu, R.-C.; Miao, W.-T.; Dai, M.-Y.; Ding, S.-T.; Liu, H.-D. Potential Roles of Gut Microbiota and Microbial Metabolites in Parkinson’s Disease. Ageing Res. Rev. 2021, 69, 101347. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, C.; Lu, H.; Feng, C.; He, P.; Yang, X.; Xiang, C.; Zuo, J.; Tang, W. Protective Role of Berberine on Ulcerative Colitis through Modulating Enteric Glial Cells–Intestinal Epithelial Cells–Immune Cells Interactions. Acta Pharm. Sin. B 2020, 10, 447–461. [Google Scholar] [CrossRef]
- Mitroulis, I.; Ruppova, K.; Wang, B.; Chen, L.-S.; Grzybek, M.; Grinenko, T.; Eugster, A.; Troullinaki, M.; Palladini, A.; Kourtzelis, I.; et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 2018, 172, 147–161.e12. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Yu, X.; Saha, G.; Kalafati, L.; Ioannidis, C.; Mitroulis, I.; Netea, M.G.; Chavakis, T.; Hajishengallis, G. Maladaptive Innate Immune Training of Myelopoiesis Links Inflammatory Comorbidities. Cell 2022, 185, 1709–1727.e18. [Google Scholar] [CrossRef]
- Kalafati, L.; Kourtzelis, I.; Schulte-Schrepping, J.; Li, X.; Hatzioannou, A.; Grinenko, T.; Hagag, E.; Sinha, A.; Has, C.; Dietz, S.; et al. Innate Immune Training of Granulopoiesis Promotes Anti-Tumor Activity. Cell 2020, 183, 771–785.e12. [Google Scholar] [CrossRef]
- Katzmarski, N.; Domínguez-Andrés, J.; Cirovic, B.; Renieris, G.; Ciarlo, E.; Le Roy, D.; Lepikhov, K.; Kattler, K.; Gasparoni, G.; Händler, K.; et al. Transmission of Trained Immunity and Heterologous Resistance to Infections across Generations. Nat. Immunol. 2021, 22, 1382–1390. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Xu, J.; Zhang, L.; Huang, C.; Nie, Y.; Zhou, Y. Gut Microbiota and Epigenetic Inheritance: Implications for the Development of IBD. Gut Microbes 2025, 17, 2490207. [Google Scholar] [CrossRef] [PubMed]
- Damianos, J.; Perumareddi, P. Gut Microbiome and Dietar Considerations. Prim. Care 2023, 50, 493–505. [Google Scholar] [CrossRef]
- Dietary Fiber in Inflammatory Bowel Disease: Are We Ready to Change the Paradigm? Available online: https://www.mdpi.com/2072-6643/16/8/1108 (accessed on 15 July 2025).
- Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease—PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10609902/ (accessed on 15 July 2025).
- Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; de Silva, P.; Korzenik, J.R.; Fuchs, C.S.; Willett, W.C.; Richter, J.M.; Chan, A.T. A Prospective Study of Long-Term Intake of Dietary Fiber and Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology 2013, 145, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Jung, S.-C.; Kwak, K.; Kim, J.-S. The Role of Prebiotics in Modulating Gut Microbiota: Implications for Human Health. Int. J. Mol. Sci. 2024, 25, 4834. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, Z. Unraveling the Causal Link: Fatty Acids and Inflammatory Bowel Disease. Front. Immunol. 2024, 15, 1405790. [Google Scholar] [CrossRef]
- Li, M.; Liu, N.; Zhu, J.; Wu, Y.; Niu, L.; Liu, Y.; Chen, L.; Bai, B.; Miao, Y.; Yang, Y.; et al. Engineered Probiotics with Sustained Release of Interleukin-2 for the Treatment of Inflammatory Bowel Disease After Oral Delivery. Biomaterials 2024, 309, 122584. [Google Scholar] [CrossRef]
- Mishra, J.; Stubbs, M.; Kuang, L.; Vara, N.; Kumar, P.; Kumar, N. Inflammatory Bowel Disease Therapeutics: A Focus on Probiotic Engineering. Mediators Inflamm. 2022, 2022, 9621668. [Google Scholar] [CrossRef]
- Han, M.; Lei, W.; Liang, J.; Li, H.; Hou, M.; Gao, Z. The Single-Cell Modification Strategies for Probiotics Delivery in Inflammatory Bowel Disease: A Review. Carbohydr. Polym. 2024, 324, 121472. [Google Scholar] [CrossRef] [PubMed]
- Steidler, L.; Hans, W.; Schotte, L.; Neirynck, S.; Obermeier, F.; Falk, W.; Fiers, W.; Remaut, E. Treatment of Murine Colitis by Lactococcus lactis Secreting Interleukin-10. Science 2000, 289, 1352–1355. [Google Scholar] [CrossRef] [PubMed]
- Daeffler, K.N.; Galley, J.D.; Sheth, R.U.; Ortiz-Velez, L.C.; Bibb, C.O.; Shroyer, N.F.; Britton, R.A.; Tabor, J.J. Engineering Bacterial Thiosulfate and Tetrathionate Sensors for Detecting Gut Inflammation. Mol. Syst. Biol. 2017, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Vernia, P.; Annese, V.; Bresci, G.; D’Albasio, G.; D’Incà, R.; Giaccari, S.; Ingrosso, M.; Mansi, C.; Riegler, G.; Valpiani, D.; et al. Topical Butyrate Improves Efficacy of 5—ASA in Refractory Distal Ulcerative Colitis: Results of a Multicentre Trial. Eur. J. Clin. Investig. 2003, 33, 244–248. [Google Scholar] [CrossRef]
- Wong, W.-Y.; Chan, B.D.; Cho, P.-T.; Leung, T.-W.; Tai, W.C.-S. Beneficial and Immunomodulatory Effects of Heat-Killed Lactobacillus plantarum L137 in Normal and Acute Colitis Mice. J. Funct. Foods 2024, 116, 106167. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Yadav, D.; Katiyar, S.; Jain, S.; Yadav, H. Postbiotics as Mitochondrial Modulators in Inflammatory Bowel Disease: Mechanistic Insights and Therapeutic Potential. Biomolecules 2025, 15, 954. [Google Scholar] [CrossRef]
- Feng, C.; Peng, C.; Zhang, W.; Zhang, T.; He, Q.; Kwok, L.-Y.; Zhang, H. Postbiotic Administration Ameliorates Colitis and Inflammation in Rats Possibly Through Gut Microbiota Modulation. J. Agric. Food Chem. 2024, 72, 9054–9066. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, L.-H.; Yang, H.; Fang, Y.-C.; Wang, S.-W.; Wang, M.; Yuan, Q.-T.; Wu, W.; Zhang, Y.-M.; Liu, Z.-J.; et al. GPR84 Signaling Promotes Intestinal Mucosal Inflammation via Enhancing NLRP3 Inflammasome Activation in Macrophages. Acta Pharmacol. Sin. 2022, 43, 2042–2054. [Google Scholar] [CrossRef]
- Lamas, B.; Natividad, J.M.; Sokol, H. Aryl Hydrocarbon Receptor and Intestinal Immunity. Mucosal Immunol. 2018, 11, 1024–1038. [Google Scholar] [CrossRef]
- Willing, B.P.; Dicksved, J.; Halfvarson, J.; Andersson, A.F.; Lucio, M.; Zheng, Z.; Järnerot, G.; Tysk, C.; Jansson, J.K.; Engstrand, L. A Pyrosequencing Study in Twins Shows That Gastrointestinal Microbial Profiles Vary with Inflammatory Bowel Disease Phenotypes. Gastroenterology 2010, 139, 1844–1854.e1. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Wu, D.; Wang, X.; Yang, X.; Gu, L.; McGeachy, M.J.; Liu, X. Temporary Consumption of Western Diet Trains the Immune System to Reduce Future Gut Inflammation. iScience 2023, 26, 106915. [Google Scholar] [CrossRef]
- Ungaro, R.C.; Yzet, C.; Bossuyt, P.; Baert, F.J.; Vanasek, T.; D’Haens, G.R.; Joustra, V.W.; Panaccione, R.; Novacek, G.; Reinisch, W.; et al. Deep Remission at 1 Year Prevents Progression of Early Crohn’s Disease. Gastroenterology 2020, 159, 139–147. [Google Scholar] [CrossRef]
- Neurath, M.F.; Travis, S.P.L. Mucosal Healing in Inflammatory Bowel Diseases: A Systematic Review. Gut 2012, 61, 1619–1635. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Ricciuto, A.; Lewis, A.; D’Amico, F.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Sands, B.E.; Reinisch, W.; et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target Strategies in IBD. Gastroenterology 2021, 160, 1570–1583. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-C.; Stappenbeck, T.S. Genetics and Pathogenesis of Inflammatory Bowel Disease. Annu. Rev. Pathol. 2016, 11, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Chu, C.-Q. Prediction of Treatment Response: Personalized Medicine in the Management of Rheumatoid Arthritis. Best. Pract. Res. Clin. Rheumatol. 2022, 36, 101741. [Google Scholar] [CrossRef]
- van Lingen, E.; Nooij, S.; Terveer, E.M.; Crossette, E.; Prince, A.L.; Bhattarai, S.K.; Watson, A.; Galazzo, G.; Menon, R.; Szabady, R.L.; et al. Faecal Microbiota Transplantation Engraftment After Budesonide or Placebo in Patients with Active Ulcerative Colitis Using Pre-Selected Donors: A Randomized Pilot Study. J. Crohns Colitis 2024, 18, 1381–1393. [Google Scholar] [CrossRef]
- Cheng, Y.-W.; Fischer, M. Fecal Microbiota Transplantation for Ulcerative Colitis. Are We Ready for Primetime? Gastroenterol. Clin. North. Am. 2020, 49, 739–752. [Google Scholar] [CrossRef]
- Kuhnen, A. Genetic and Environmental Considerations for Inflammatory Bowel Disease. Surg. Clin. North. Am. 2019, 99, 1197–1207. [Google Scholar] [CrossRef]
- Drewes, J.L.; Corona, A.; Sanchez, U.; Fan, Y.; Hourigan, S.K.; Weidner, M.; Sidhu, S.D.; Simner, P.J.; Wang, H.; Timp, W.; et al. Transmission and Clearance of Potential Procarcinogenic Bacteria During Fecal Microbiota Transplantation for Recurrent Clostridioides Difficile. JCI Insight 2019, 4, e130848. [Google Scholar] [CrossRef]
- Fritsch, J.; Abreu, M.T. The Microbiota and the Immune Response: What Is the Chicken and What Is the Egg? Gastrointest. Endosc. Clin. N. Am. 2019, 29, 381–393. [Google Scholar] [CrossRef]
- Anthamatten, L.; von Bieberstein, P.R.; Menzi, C.; Zünd, J.N.; Lacroix, C.; de Wouters, T.; Leventhal, G.E. Stratification of Human Gut Microbiomes by Succinotype Is Associated with Inflammatory Bowel Disease Status. Microbiome 2024, 12, 186. [Google Scholar] [CrossRef]
- Franzosa, E.A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; McIver, L.J.; et al. Gut Microbiome Structure and Metabolic Activity in Inflammatory Bowel Disease. Nat. Microbiol. 2019, 4, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.J.; Gan, H.Y.; Li, X.; Huang, Y.; Li, Z.C.; Deng, H.M.; Chen, S.Z.; Zhou, Y.; Wang, L.S.; Han, Y.P.; et al. Correlation of Diet, Microbiota and Metabolite Networks in Inflammatory Bowel Disease. J. Dig. Dis. 2019, 20, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Ryan, F.J.; Ahern, A.M.; Fitzgerald, R.S.; Laserna-Mendieta, E.J.; Power, E.M.; Clooney, A.G.; O’Donoghue, K.W.; McMurdie, P.J.; Iwai, S.; Crits-Christoph, A.; et al. Colonic Microbiota Is Associated with Inflammation and Host Epigenomic Alterations in Inflammatory Bowel Disease. Nat. Commun. 2020, 11, 1512. [Google Scholar] [CrossRef] [PubMed]
- Keiran, N.; Ceperuelo-Mallafré, V.; Calvo, E.; Hernández-Alvarez, M.I.; Ejarque, M.; Núñez-Roa, C.; Horrillo, D.; Maymó-Masip, E.; Rodríguez, M.M.; Fradera, R.; et al. SUCNR1 Controls an Anti-Inflammatory Program in Macrophages to Regulate the Metabolic Response to Obesity. Nat. Immunol. 2019, 20, 581–592. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z.; Zhao, X.; Xu, L.; Teng, C.; Liu, S.; Huang, W.; Li, Y. Advanced Targeted Curcumin Delivery Using Biodegradable Hierarchical Microspheres with Calcium Pectinate Matrix and Hyaluronic Acid Moieties for Enhancing Colitis Amelioration. Carbohydr. Polym. 2025, 353, 123273. [Google Scholar] [CrossRef]
- Ziogas, A.; Bruno, M.; van der Meel, R.; Mulder, W.J.M.; Netea, M.G. Trained Immunity: Target for Prophylaxis and Therapy. Cell Host Microbe 2023, 31, 1776–1791. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhu, F.; Cheng, K.; Ma, N.; Ma, X.; Feng, Q.; Xu, C.; Gao, X.; Wang, X.; Shi, J.; et al. Outer Membrane Vesicle-Based Nanohybrids Target Tumor-Associated Macrophages to Enhance Trained Immunity-Related Vaccine-Generated Antitumor Activity. Adv. Mater. 2023, 35, e2306158. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.M.; Cox, D.J.; Connolly, S.A.; Breen, E.P.; Brugman, A.A.; Phelan, J.J.; Keane, J.; Basdeo, S.A. Trained Immunity Is Induced in Humans after Immunization with an Adenoviral Vector COVID-19 Vaccine. J. Clin. Invest. 2023, 133, e162581. [Google Scholar] [CrossRef] [PubMed]
Trained Immunity | Adaptive Immunity | |
---|---|---|
Basic features | ||
Major cell types | monocytes/macrophages; NK cells; (HSPCs) [23] | T cells [24] |
Response specificity | Non-specific; broad cross-protection | Highly antigen-specific |
Anatomical localization | Bone marrow hematopoietic niche plus tissue-resident compartments [23] | Lymphoid organs plus circulation |
Molecular mechanisms | ||
Basis of memory formation | Epigenetic reprogramming plus metabolic remodelling [23] | Gene rearrangement plus clonal expansion [25] |
Key cellular alterations | Macrophage polarization imbalance—M1 (pro-inflammatory)/M2 (anti-inflammatory); pro-inflammatory bias contributes to IBD [26] Monocyte subset imbalance—MCI (enhanced inflammatory)/MC (anti-inflammatory) [11,27] | Th/Treg imbalance promotes intestinal inflammation [28] Innate immune abnormalities perturb adaptive immune balance [29] |
Key signaling pathways | TLR signaling [30] mTOR/HIF-1α metabolic regulation [11,31] AhR signaling [32] | cytokines/JAK–STAT [33,34] co-stimulatory signal imbalance [35] |
Functional features | ||
Memory maintenance (partial mechanisms) | Persistent epigenetic reprogramming of bone marrow HSPCs [16] in situ training of tissue-resident cells [23] metabolic memory sustaining activation [26] gut–bone marrow axis remote regulation [36] | Long-term survival and reactivation of T-cell subsets [28] |
Cross-reactivity | Broad recognition of PAMPs/DAMPs; cross-reactivity across pathogens; tolerance induction [30] | Precise epitope recognition; antigen-specific anergy or deletion [37] |
Commonality | Trained and adaptive immunity are interlinked, with bidirectional crosstalk shaping IBD pathogenesis [25,38] |
Microbial Agent/Component | Target Cell/Model | Mechanism/Effect | Key Notes | Ref. |
---|---|---|---|---|
Commensal bacteria (strain-specific) | ||||
Saccharomyces cerevisiae, L. plantarum | Human monocytes | Single strain induces trained immunity (↑TNF-α, ↑IL-6); combined stimulation induces tolerance (↑IL-10, ↓CD14/CD86). | Effect depends on strain, dose, and co-stimulation. | [49] |
L. plantarum | Murine/human monocytes/macrophages | Induces anti-inflammatory memory phenotype (↑IL-10, ↓pro-inflammatory cytokines, ↓ROS); enhances bacterial survival. | Requires live bacteria; dose-dependent effect. | [50] |
Akkermansia muciniphila | Murine/human macrophages, monocytes | Induces trained immunity phenotype (↑bacterial survival, ↓TNF/IL-10), metabolic rewiring (↑glycolysis, ↓lysosome), ↑tolerogenic response. | Requires live bacteria; not replicated with the heat-killed form. | [51] |
Limosilactobacillus reuteri | Human dendritic cells (mo-DCs) | Atypical memory: ↑IL-6/IL-1β, ↓TNFα/IL-23/IL-27; promotes Th17/Th9 differentiation. | Effect attenuated by retinoic acid; secreted bacterial factors. | [52] |
Commensals—Tissue/Immune niche effects | ||||
Enteric commensals, LRCs, etc. | Murine mucosal DCs & ILCs | DCs retain commensals, induce IgA, local cytokines (IL-10, IL-22); foster tolerance and tissue protection. | Site-restricted; live bacteria; IL-10 and TLR-dependent regulation. | [54,55] |
Pathogen exposure/vaccine | ||||
Citrobacter rodentium (infection) | Murine gut ILC3 | Generates long-lived trained ILC3s (↑IL-22, ↑proliferation, better control); stable transcriptional/metabolic reprogramming. | Non-specific, transferable, adaptive immunity-independent. | [53] |
BCG vaccine | Human monocytes | Epigenetic reprogramming (↑H3K27ac/H3K4me3), ↑IL-1β/TNFα/IL-6; heterologous protection. | IL-1β pathway polymorphisms influence response. | [40] |
Influenza vaccine (inactivated) | Human PBMCs, clinical cohort | Induces trained immunity (monocyte reprogramming, ↑cytokines), lowers systemic inflammation. | Associated with reduced risk of COVID-19 in epidemiological studies. | [61] |
Microbial components/metabolites | ||||
β-glucan (Candida albicans, others) | Murine/human monocytes | Enhanced TNFα/IL-6 (trained immunity), Dectin-1/Raf-1/H3K4me3-dependent; protection in T/B-deficient mice. | Dose/context-dependent; antifungal activity; long-lasting effect. | [60] |
Bacterial LPS | Gut epithelium, macrophages, T cells | Via TLR4→NF-κB: ↑pro-inflammatory cytokines, M1 polarization, barrier disruption, Th1/Th17 skewing, chronic inflammation. | LPS effect varies by species, dietary context, and gut environment. | [58] |
LPS/HIF-1α/mTORC1 axis | Mouse/human macrophages | Epigenetic (↑H3K4me3) and metabolic (↑glycolysis, HIF-1α/mTORC1) reprogramming; persistent pro-inflammatory trained phenotype. | Glycolysis and HIF-1α are required for sustained output. | [59] |
Short-chain fatty acids (butyrate, etc.) | Human PBMCs, murine macrophages | Induce tolerogenic/trained memory phenotypes, modulate cytokine output, alter chromatin state, and enhance pathogen killing. | Effect is context- and differentiation-dependent. | [12] |
Polyvalent | ||||
MV130 (poly-bacterial vaccine) | Mouse BM progenitors, human monocytes | Epigenetic/metabolic reprogramming; ↑recall cytokines; broad protection from viral/fungal infection; mTOR-dependent. | Metformin blocks the effect; protection lasts months. | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Wu, J.; Hou, X.; Bai, T.; Liu, S. Memory in Misfire: The Gut Microbiome-Trained Immunity Circuit in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2025, 26, 9663. https://doi.org/10.3390/ijms26199663
Yang B, Wu J, Hou X, Bai T, Liu S. Memory in Misfire: The Gut Microbiome-Trained Immunity Circuit in Inflammatory Bowel Diseases. International Journal of Molecular Sciences. 2025; 26(19):9663. https://doi.org/10.3390/ijms26199663
Chicago/Turabian StyleYang, Binbin, Jiacheng Wu, Xiaohua Hou, Tao Bai, and Shi Liu. 2025. "Memory in Misfire: The Gut Microbiome-Trained Immunity Circuit in Inflammatory Bowel Diseases" International Journal of Molecular Sciences 26, no. 19: 9663. https://doi.org/10.3390/ijms26199663
APA StyleYang, B., Wu, J., Hou, X., Bai, T., & Liu, S. (2025). Memory in Misfire: The Gut Microbiome-Trained Immunity Circuit in Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 26(19), 9663. https://doi.org/10.3390/ijms26199663