Hypercapnia as a Double-Edged Modulator of Innate Immunity and Alveolar Epithelial Repair: A PRISMA-ScR Scoping Review
Abstract
1. Introduction
2. Results
2.1. Dose- and Time-Dependent Effects by Context
2.1.1. Non-Infectious Models
2.1.2. Infectious Models
2.2. Convergent Mechanisms
2.2.1. NF-κB Signaling (Canonical and Non-Canonical), Stress-Kinase Signaling (ASK1/JNK/p38), and Innate Immunity Outputs (Cytokines, Phagocytosis, Autophagy)
2.2.2. cAMP/PKA–AMPK Pathways and Epithelial Transport (ENaC; Na,K-ATPase; PKC-ζ; CaMKKβ)
3. Discussion
3.1. Non-Infectious Models
3.2. Infectious Models
3.3. Immunologic Effects of Hypercapnia
3.4. Alveolar Epithelial Repair/Healing
3.5. Limitations
3.6. Clinical Implications and Future Directions
3.7. The “Double-Edged Sword” of Hypercapnia: A Context-Specific Therapeutic Framework
3.7.1. Non-Infectious Context (VILI/Sterile Stress)
3.7.2. Infectious Context (Pneumonia/Sepsis)
4. Materials and Methods
4.1. Eligibility Criteria
4.2. Information Sources and Search Strategy
4.3. Study Selection
4.4. Data Extraction
4.5. Evidence Synthesis and Mapping
4.6. Transparency and Data Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Search Number | Search Terms |
---|---|
1 | Pneumonia |
2 | Hypercapnia |
3 | Acute respiratory distress syndrome (ARDS) |
4 | Ventilator-Associated Pneumonia (VAP) |
5 | Anti-Inflammatories |
6 | 1 AND 2 AND 3 |
7 | 4 AND 2 |
8 | 5 AND 2 AND 1 |
References
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788. [Google Scholar] [CrossRef]
- Máca, J.; Jor, O.; Holub, M.; Sklienka, P.; Burša, F.; Burda, M.; Janout, V.; Ševčík, P. Past and Present ARDS Mortality Rates: A Systematic Review. Respir. Care 2017, 62, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Hanrahan, J.; Bornstein, J.; Chen, S.-Y. Healthcare Costs Utilization and Costs of Patients Hospitalized with Acute Respiratory Distress Syndrome (ARDS) in US Commercially-Insured Individuals and Medicare Beneficiaries. In Proceedings of the 2.1 Acute Critical Care; European Respiratory Society: Lausanne, Switzerland, 2015; p. PA2139. [Google Scholar]
- Amato, M.B.P.; Barbas, C.S.V.; Medeiros, D.M.; Magaldi, R.B.; Schettino, G.P.; Lorenzi-Filho, G.; Kairalla, R.A.; Deheinzelin, D.; Munoz, C.; Oliveira, R.; et al. Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 1998, 338, 347–354. [Google Scholar] [CrossRef]
- The Acute Respiratory Distress Syndrome Network Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [CrossRef]
- Petrucci, N.; De Feo, C. Lung Protective Ventilation Strategy for the Acute Respiratory Distress Syndrome. Cochrane Database Syst. Rev. 2013, 2013, CD003844. [Google Scholar] [CrossRef]
- Tuxen, D.V.; Williams, T.J.; Scheinkestel, C.D.; Czarny, D.; Bowes, G. Use of a Measurement of Pulmonary Hyperinflation to Control the Level of Mechanical Ventilation in Patients with Acute Severe Asthma. Am. Rev. Respir. Dis. 1992, 146, 1136–1142. [Google Scholar] [CrossRef]
- Hickling, K.G.; Henderson, S.J.; Jackson, R. Low Mortality Associated with Low Volume Pressure Limited Ventilation with Permissive Hypercapnia in Severe Adult Respiratory Distress Syndrome. Intensive Care Med. 1990, 16, 372–377. [Google Scholar] [CrossRef]
- Hickling, K.G.; Walsh, J.; Henderson, S.; Jackson, R. Low Mortality Rate in Adult Respiratory Distress Syndrome Using Low-Volume, Pressure-Limited Ventilation with Permissive Hypercapnia: A Prospective Study. Crit. Care Med. 1994, 22, 1568–1578. [Google Scholar] [CrossRef]
- Chonghaile, M.N.; Higgins, B.D.; Costello, J.; Laffey, J.G. Hypercapnic Acidosis Attenuates Lung Injury Induced by Established Bacterial Pneumonia. Anesthesiology 2008, 109, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Madotto, F.; Rezoagli, E.; McNicholas, B.A.; Pham, T.; Slutsky, A.S.; Bellani, G.; Laffey, J.G. Patterns and Impact of Arterial CO2 Management in Patients With Acute Respiratory Distress Syndrome. Chest 2020, 158, 1967–1982. [Google Scholar] [CrossRef]
- Shigemura, M.; Lecuona, E.; Sznajder, J.I. Effects of Hypercapnia on the Lung. J. Physiol. 2017, 595, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Nin, N.; Muriel, A.; Peñuelas, O.; Brochard, L.; Lorente, J.A.; Ferguson, N.D.; Raymondos, K.; Ríos, F.; Violi, D.A.; Thille, A.W.; et al. Severe Hypercapnia and Outcome of Mechanically Ventilated Patients with Moderate or Severe Acute Respiratory Distress Syndrome. Intensive Care Med. 2017, 43, 200–208. [Google Scholar] [CrossRef]
- Gendreau, S.; Geri, G.; Pham, T.; Vieillard-Baron, A.; Mekontso Dessap, A. The Role of Acute Hypercapnia on Mortality and Short-Term Physiology in Patients Mechanically Ventilated for ARDS: A Systematic Review and Meta-Analysis. Intensive Care Med. 2022, 48, 517–534. [Google Scholar] [CrossRef]
- Masterson, C.; Horie, S.; McCarthy, S.D.; Gonzalez, H.; Byrnes, D.; Brady, J.; Fandiño, J.; Laffey, J.G.; O’Toole, D. Hypercapnia in the Critically Ill: Insights from the Bench to the Bedside. Interface Focus 2021, 11, 20200032. [Google Scholar] [CrossRef]
- Keogh, C.E.; Scholz, C.C.; Rodriguez, J.; Selfridge, A.C.; von Kriegsheim, A.; Cummins, E.P. Carbon Dioxide-Dependent Regulation of NF-κB Family Members RelB and p100 Gives Molecular Insight into CO2-Dependent Immune Regulation. J. Biol. Chem. 2017, 292, 11561–11571. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.M.; Lenihan, C.R.; Bruning, U.; Cheong, A.; Laffey, J.G.; McLoughlin, P.; Taylor, C.T.; Cummins, E.P. Hypercapnia Induces Cleavage and Nuclear Localization of RelB Protein, Giving Insight into CO2 Sensing and Signaling. J. Biol. Chem. 2012, 287, 14004–14011. [Google Scholar] [CrossRef]
- Welch, L.C.; Lecuona, E.; Briva, A.; Trejo, H.E.; Dada, L.A.; Sznajder, J.I. Extracellular Signal-Regulated Kinase (ERK) Participates in the Hypercapnia-Induced Na,K-ATPase Downregulation. FEBS Lett. 2010, 584, 3985–3989. [Google Scholar] [CrossRef]
- Lecuona, E.; Sun, H.; Chen, J.; Trejo, H.E.; Baker, M.A.; Sznajder, J.I. Protein Kinase A-Iα Regulates Na,K-ATPase Endocytosis in Alveolar Epithelial Cells Exposed to High CO2 Concentrations. Am. J. Respir. Cell Mol. Biol. 2013, 48, 626–634. [Google Scholar] [CrossRef]
- Contreras, M.; Ansari, B.; Curley, G.; Higgins, B.D.; Hassett, P.; O’Toole, D.; Laffey, J.G. Hypercapnic Acidosis Attenuates Ventilation-Induced Lung Injury by a Nuclear Factor-κB–dependent Mechanism. Crit. Care Med. 2012, 40, 2622–2630. [Google Scholar] [CrossRef]
- O’Croinin, D.F.; Nichol, A.D.; Hopkins, N.; Boylan, J.; O’Brien, S.; O’Connor, C.; Laffey, J.G.; McLoughlin, P. Sustained Hypercapnic Acidosis during Pulmonary Infection Increases Bacterial Load and Worsens Lung Injury. Crit. Care Med. 2008, 36, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Nichol, A.D.; O’Cronin, D.F.; Howell, K.; Naughton, F.; O’Brien, S.; Boylan, J.; O’Connor, C.; O’Toole, D.; Laffey, J.G.; McLoughlin, P. Infection-Induced Lung Injury Is Worsened after Renal Buffering of Hypercapnic Acidosis. Crit. Care Med. 2009, 37, 2953–2961. [Google Scholar] [CrossRef]
- Gates, K.L.; Howell, H.A.; Nair, A.; Vohwinkel, C.U.; Welch, L.C.; Beitel, G.J.; Hauser, A.R.; Sznajder, J.I.; Sporn, P.H.S. Hypercapnia Impairs Lung Neutrophil Function and Increases Mortality in Murine Pseudomonas Pneumonia. Am. J. Respir. Cell Mol. Biol. 2013, 49, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, H.S.; Tiangco, N.D.; Harrell, C.; Vender, R.L. Severe Hypercapnia in Critically Ill Adult Cystic Fibrosis Patients. J. Clin. Med. Res. 2011, 3, 209–212. [Google Scholar] [CrossRef]
- Casalino-Matsuda, S.M.; Nair, A.; Beitel, G.J.; Gates, K.L.; Sporn, P.H.S. Hypercapnia Inhibits Autophagy and Bacterial Killing in Human Macrophages by Increasing Expression of Bcl-2 and Bcl-xL. J. Immunol. 2015, 194, 5388–5396. [Google Scholar] [CrossRef] [PubMed]
- Vadász, I.; Dada, L.A.; Briva, A.; Trejo, H.E.; Welch, L.C.; Chen, J.; Tóth, P.T.; Lecuona, E.; Witters, L.A.; Schumacker, P.T.; et al. AMP-Activated Protein Kinase Regulates CO2-Induced Alveolar Epithelial Dysfunction in Rats and Human Cells by Promoting Na,K-ATPase Endocytosis. J. Clin. Investig. 2008. [Google Scholar] [CrossRef]
- Liu, Y.; Chacko, B.K.; Ricksecker, A.; Shingarev, R.; Andrews, E.; Patel, R.P.; Lang, J.D. Modulatory Effects of Hypercapnia on in Vitro and in Vivo Pulmonary Endothelial-Neutrophil Adhesive Responses during Inflammation. Cytokine 2008, 44, 108–117. [Google Scholar] [CrossRef]
- Ni Chonghaile, M.; Higgins, B.D.; Costello, J.F.; Laffey, J.G. Hypercapnic Acidosis Attenuates Severe Acute Bacterial Pneumonia-Induced Lung Injury by a Neutrophil-Independent Mechanism. Crit. Care Med. 2008, 36, 3135–3144. [Google Scholar] [CrossRef]
- Abolhassani, M.; Guais, A.; Chaumet-Riffaud, P.; Sasco, A.J.; Schwartz, L. Carbon Dioxide Inhalation Causes Pulmonary Inflammation. Am. J. Physiol. Cell. Mol. Physiol. 2009, 296, L657–L665. [Google Scholar] [CrossRef] [PubMed]
- Higgins, B.D.; Costello, J.; Contreras, M.; Hassett, P.; O’ Toole, D.; Laffey, J.G. Differential Effects of Buffered Hypercapnia versus Hypercapnic Acidosis on Shock and Lung Injury Induced by Systemic Sepsis. Anesthesiology 2009, 111, 1317–1326. [Google Scholar] [CrossRef]
- Wang, N.; Gates, K.L.; Trejo, H.; Favoreto, S.; Schleimer, R.P.; Sznajder, J.I.; Beitel, G.J.; Sporn, P.H.S. Elevated CO2 Selectively Inhibits interleukin-6 and Tumor Necrosis Factor Expression and Decreases Phagocytosis in the Macrophage. FASEB J. 2010, 24, 2178–2190. [Google Scholar] [CrossRef]
- Peltekova, V.; Engelberts, D.; Otulakowski, G.; Uematsu, S.; Post, M.; Kavanagh, B.P. Hypercapnic Acidosis in Ventilator-Induced Lung Injury. Intensive Care Med. 2010, 36, 869–878. [Google Scholar] [CrossRef]
- Cummins, E.P.; Oliver, K.M.; Lenihan, C.R.; Fitzpatrick, S.F.; Bruning, U.; Scholz, C.C.; Slattery, C.; Leonard, M.O.; McLoughlin, P.; Taylor, C.T. NF-κB Links CO2 Sensing to Innate Immunity and Inflammation in Mammalian Cells. J. Immunol. 2010, 185, 4439–4445. [Google Scholar] [CrossRef]
- Vohwinkel, C.U.; Lecuona, E.; Sun, H.; Sommer, N.; Vadász, I.; Chandel, N.S.; Sznajder, J.I. Elevated CO2 Levels Cause Mitochondrial Dysfunction and Impair Cell Proliferation. J. Biol. Chem. 2011, 286, 37067–37076. [Google Scholar] [CrossRef]
- Vadász, I.; Dada, L.A.; Briva, A.; Helenius, I.T.; Sharabi, K.; Welch, L.C.; Kelly, A.M.; Grzesik, B.A.; Budinger, G.R.S.; Liu, J.; et al. Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction. PLoS ONE 2012, 7, e46696. [Google Scholar] [CrossRef]
- Yang, W.-C.; Song, C.-Y.; Wang, N.; Zhang, L.-L.; Yue, Z.-Y.; Cui, X.-G.; Zhou, H.-C. Hypercapnic Acidosis Confers Antioxidant and Anti-Apoptosis Effects against Ventilator-Induced Lung Injury. Lab. Investig. 2013, 93, 1339–1349. [Google Scholar] [CrossRef]
- Nardelli, L.M.; Rzezinski, A.; Silva, J.D.; Maron-Gutierrez, T.; Ornellas, D.S.; Henriques, I.; Capelozzi, V.L.; Teodoro, W.; Morales, M.M.; Silva, P.L.; et al. Effects of Acute Hypercapnia with and without Acidosis on Lung Inflammation and Apoptosis in Experimental Acute Lung Injury. Respir. Physiol. Neurobiol. 2015, 205, 1–6. [Google Scholar] [CrossRef]
- Dada, L.A.; Trejo Bittar, H.E.; Welch, L.C.; Vagin, O.; Deiss-Yehiely, N.; Kelly, A.M.; Baker, M.R.; Capri, J.; Cohn, W.; Whitelegge, J.P.; et al. High CO2 Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation. Mol. Cell. Biol. 2015, 35, 3962–3973. [Google Scholar] [CrossRef]
- Yang, W.; Yue, Z.; Cui, X.; Guo, Y.; Zhang, L.; Zhou, H.; Li, W. Comparison of the Effects of Moderate and Severe Hypercapnic Acidosis on Ventilation-Induced Lung Injury. BMC Anesthesiol. 2015, 15, 67. [Google Scholar] [CrossRef] [PubMed]
- Masterson, C.; O’Toole, D.; Leo, A.; McHale, P.; Horie, S.; Devaney, J.; Laffey, J.G. Effects and Mechanisms by Which Hypercapnic Acidosis Inhibits Sepsis-Induced Canonical Nuclear Factor-κB Signaling in the Lung. Crit. Care Med. 2016, 44, e207–e217. [Google Scholar] [CrossRef] [PubMed]
- Horie, S.; Ansari, B.; Masterson, C.; Devaney, J.; Scully, M.; O’Toole, D.; Laffey, J.G. Hypercapnic Acidosis Attenuates Pulmonary Epithelial Stretch-Induced Injury via Inhibition of the Canonical NF-κB Pathway. Intensive Care Med. Exp. 2016, 4, 8. [Google Scholar] [CrossRef]
- Gwoździńska, P.; Buchbinder, B.A.; Mayer, K.; Herold, S.; Morty, R.E.; Seeger, W.; Vadász, I. Hypercapnia Impairs ENaC Cell Surface Stability by Promoting Phosphorylation, Polyubiquitination and Endocytosis of β-ENaC in a Human Alveolar Epithelial Cell Line. Front. Immunol. 2017, 8, 591. [Google Scholar] [CrossRef]
- Casalino-Matsuda, S.M.; Wang, N.; Ruhoff, P.T.; Matsuda, H.; Nlend, M.C.; Nair, A.; Szleifer, I.; Beitel, G.J.; Sznajder, J.I.; Sporn, P.H.S. Hypercapnia Alters Expression of Immune Response, Nucleosome Assembly and Lipid Metabolism Genes in Differentiated Human Bronchial Epithelial Cells. Sci. Rep. 2018, 8, 13508. [Google Scholar] [CrossRef]
- Cortes-Puentes, G.A.; Westerly, B.; Schiavo, D.; Wang, S.; Stroetz, R.; Walters, B.; Hubmayr, R.D.; Oeckler, R.A. Hypercapnia Alters Alveolar Epithelial Repair by a pH-Dependent and Adenylate Cyclase-Mediated Mechanism. Sci. Rep. 2019, 9, 349. [Google Scholar] [CrossRef]
- Kryvenko, V.; Wessendorf, M.; Morty, R.E.; Herold, S.; Seeger, W.; Vagin, O.; Dada, L.A.; Sznajder, J.I.; Vadász, I. Hypercapnia Impairs Na,K-ATPase Function by Inducing Endoplasmic Reticulum Retention of the β-Subunit of the Enzyme in Alveolar Epithelial Cells. Int. J. Mol. Sci. 2020, 21, 1467. [Google Scholar] [CrossRef]
- Casalino-Matsuda, S.M.; Berdnikovs, S.; Wang, N.; Nair, A.; Gates, K.L.; Beitel, G.J.; Sporn, P.H.S. Hypercapnia Selectively Modulates LPS-Induced Changes in Innate Immune and DNA Replication-Related Gene Transcription in the Macrophage. Interface Focus 2021, 11, 20200039. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, N.M.; Mazzocchi, L.C.; Kryvenko, V.; Tello, K.; Herold, S.; Morty, R.E.; Grimminger, F.; Dada, L.A.; Seeger, W.; Sznajder, J.I.; et al. TRAF2 Is a Novel Ubiquitin E3 Ligase for the Na,K-ATPase β-Subunit That Drives Alveolar Epithelial Dysfunction in Hypercapnia. Front. Cell Dev. Biol. 2021, 9, 689983. [Google Scholar] [CrossRef]
- Kryvenko, V.; Wessendorf, M.; Tello, K.; Herold, S.; Morty, R.E.; Seeger, W.; Vadász, I. Hypercapnia Induces Inositol-Requiring Enzyme 1α–Driven Endoplasmic Reticulum–associated Degradation of the Na,K-ATPase β-Subunit. Am. J. Respir. Cell Mol. Biol. 2021, 65, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Dada, L.A.; Welch, L.C.; Magnani, N.D.; Ren, Z.; Han, H.; Brazee, P.L.; Celli, D.; Flozak, A.S.; Weng, A.; Herrerias, M.M.; et al. Hypercapnia Alters Stroma-Derived Wnt Production to Limit β-Catenin Signaling and Proliferation in AT2 Cells. JCI Insight 2023, 8, e159331. [Google Scholar] [CrossRef]
- O’Toole, D.; Hassett, P.; Contreras, M.; Higgins, B.D.; McKeown, S.T.W.; McAuley, D.F.; O’Brien, T.; Laffey, J.G. Hypercapnic Acidosis Attenuates Pulmonary Epithelial Wound Repair by an NF- B Dependent Mechanism. Thorax 2009, 64, 976–982. [Google Scholar] [CrossRef]
- Curley, G.; Laffey, J.G.; Kavanagh, B.P. Bench-to-Bedside Review: Carbon Dioxide. Crit. Care 2010, 14, 220. [Google Scholar] [CrossRef] [PubMed]
- Crummy, F.; Buchan, C.; Miller, B.; Toghill, J.; Naughton, M.T. The Use of Noninvasive Mechanical Ventilation in COPD with Severe Hypercapnic Acidosis. Respir. Med. 2007, 101, 53–61. [Google Scholar] [CrossRef]
- Groenewegen, K.H.; Schols, A.M.W.J.; Wouters, E.F.M. Mortality and Mortality-Related Factors After Hospitalization for Acute Exacerbation of COPD. Chest 2003, 124, 459–467. [Google Scholar] [CrossRef]
- Tiruvoipati, R.; Pilcher, D.; Buscher, H.; Botha, J.; Bailey, M. Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients. Crit. Care Med. 2017, 45, e649–e656. [Google Scholar] [CrossRef]
- Hsieh, P.-C.; Wu, Y.-K.; Yang, M.-C.; Su, W.-L.; Kuo, C.-Y.; Lan, C.-C. Deciphering the Role of Damage-Associated Molecular Patterns and Inflammatory Responses in Acute Lung Injury. Life Sci. 2022, 305, 120782. [Google Scholar] [CrossRef] [PubMed]
- Morales-Quinteros, L.; Camprubí-Rimblas, M.; Bringué, J.; Bos, L.D.; Schultz, M.J.; Artigas, A. The Role of Hypercapnia in Acute Respiratory Failure. Intensive Care Med. Exp. 2019, 7, 39. [Google Scholar] [CrossRef]
- Stewart, T.E.; Meade, M.O.; Cook, D.J.; Granton, J.T.; Hodder, R.V.; Lapinsky, S.E.; Mazer, C.D.; McLean, R.F.; Rogovein, T.S.; Schouten, B.D.; et al. Evaluation of a Ventilation Strategy to Prevent Barotrauma in Patients at High Risk for Acute Respiratory Distress Syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N. Engl. J. Med. 1998, 338, 355–361. [Google Scholar] [CrossRef]
- Ghosh, S.; Hayden, M.S. New Regulators of NF-κB in Inflammation. Nat. Rev. Immunol. 2008, 8, 837–848. [Google Scholar] [CrossRef]
- Morales Quinteros, L.; Bringué Roque, J.; Kaufman, D.; Artigas Raventós, A. Importance of Carbon Dioxide in the Critical Patient: Implications at the Cellular and Clinical Levels. Med. Intensiv. 2019, 43, 234–242. [Google Scholar] [CrossRef]
- Vadász, I.; Hubmayr, R.D.; Nin, N.; Sporn, P.H.S.; Sznajder, J.I. Hypercapnia: A Nonpermissive Environment for the Lung. Am. J. Respir. Cell Mol. Biol. 2012, 46, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Osaki, K.; Kanamoto, M.; Nakao, Y.; Takahashi, E.; Higuchi, T.; Kamata, H. Distinct B Subunits of PP2A Regulate the NF-κB Signalling Pathway through Dephosphorylation of IKKβ, IκBα and RelA. FEBS Lett. 2017, 591, 4083–4094. [Google Scholar] [CrossRef]
- Hamacher, J.; Hadizamani, Y.; Borgmann, M.; Mohaupt, M.; Männel, D.N.; Moehrlen, U.; Lucas, R.; Stammberger, U. Cytokine–Ion Channel Interactions in Pulmonary Inflammation. Front. Immunol. 2018, 8, 1644. [Google Scholar] [CrossRef] [PubMed]
- Baloğlu, E.; Mairbäurl, H. In Search of a Sensor: How Does CO2 Regulate Alveolar Ion Transport? Am. J. Respir. Cell Mol. Biol. 2021, 65, 571–572. [Google Scholar] [CrossRef]
- Vadász, I.; Sznajder, J.I. Gas Exchange Disturbances Regulate Alveolar Fluid Clearance during Acute Lung Injury. Front. Immunol. 2017, 8, 757. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
Citation | Year | Country | Type of Study |
---|---|---|---|
Vadász I [26] | 2008 Jan | USA | Experimental |
O’Croinin DF [21] | 2008 Jul | Ireland | Experimental |
Liu Y [27] | 2008 Oct | USA | Experimental |
Chonghaile MN [10] | 2008 Nov | Ireland | Experimental |
Ni Chonghaile M [28] | 2008 Dec | Ireland | Experimental |
Abolhassani M [29] | 2009 Apr | France | Experimental |
Nichol AD [22] | 2009 Nov | Ireland | Experimental |
O’Toole D [30] | 2009 Nov | Ireland | Experimental |
Higgins BD [31] | 2009 Dec | Ireland | Experimental |
Wang N [31] | 2010 Jul | USA | Experimental |
Welch LC [18] | 2010 Sep | USA | Experimental |
Peltekova V [32] | 2010 May | Canada | Experimental |
Cummins EP [33] | 2010 Oct | Ireland | Experimental |
Vohwinkel CU [34] | 2011 Oct | USA | Experimental |
Oliver KM [17] | 2012 Apr | Ireland | Experimental |
Contreras M [20] | 2012 Sep | Ireland | Experimental |
Vadász I [35] | 2012 Oct | USA | Experimental |
Lecuona E [19] | 2013 May | USA | Experimental |
Yang WC [36] | 2013 Oct | China | Experimental |
Gates KL [23] | 2013 Nov | USA | Experimental |
Nardelli LM [37] | 2015 Jan | Brazil | Experimental |
Casalino-Matsuda SM [25] | 2015 Jun | USA | Experimental |
Dada L [38] | 2015 Dec | USA | Experimental |
Yang W [39] | 2015 Dec | China | Experimental |
Masterson C [40] | 2016 Apr | Ireland | Experimental |
Horie S [41] | 2016 Dec | Ireland | Experimental |
Gwoździńska P [42] | 2017 May | Germany | Experimental |
Keogh CE [16] | 2017 Jul | Ireland | Experimental |
Casalino-Matsuda SM [43] | 2018 Sep | USA | Experimental |
Cortes-Puentes GA [44] | 2019 Jan | USA | Experimental |
Kryvenko V [45] | 2020 Feb | Germany | Experimental |
Casalino-Matsuda SM [46] | 2021 Apr | USA | Experimental |
Gabrielli NM [47] | 2021 Jul | Germany | Experimental |
Kryvenko V [48] | 2021 Dec | Germany | Experimental |
Dada L [49] | 2023 Feb | Germany | Experimental |
Author | Model | Context | CO2 Exposure (Metric; Duration; pH) | Primary Finding |
---|---|---|---|---|
NF-κB signaling (canonical and non-canonical) | ||||
Liu Y et al., 2008 [27] | In vitro: human pulmonary microvascular endothelial cells | Non-infectious (LPS/TNF-α; infection-mimic) | FiCO2 5% and 10%; 4 h; unbuffered metabolic acidosis | Harmful: NF-κB (canonical) expression ↑ after 4 h hypercapnia + acidosis; pro-inflammatory signal |
Abolhassani M et al., 2009 [29] | In vivo (rat) + in vitro: HT-29 (human colon); A549 (alveolar type II epithelium) | Non-infectious | FiCO2 5%, 10%, 15%; 1 h (in vivo); pH n.s | Harmful: PP2A activity ↑ with p65 (NF-κB) nuclear translocation ↑ (pro-inflammatory signal) |
O’Toole D et al., 2009 [50] | In vitro: human bronchial epithelial (primary), primary small airway epithelial cells, and A549 (alveolar type II) | Non-infectious | FiCO2 5%, 10%, 15%; 24 h; unbuffered metabolic acidosis | Harmful: Hypercapnia inhibits canonical NF-κB and delays epithelial repair; confirmed with IκBα transgene (super-repressor) |
Wang N et al., 2010 [31] | In vitro: THP-1 (human), human alveolar macrophages, RAW 264.7 (mouse) | Non-infectious (LPS/TLR stimulation; infection-mimic) | FiCO2 5%, 9%, 12.5%, 20%; 6 h; pH-independent | Harmful: TNF and IL-6 mRNA induction ↓ under hypercapnia; IκBα and RelA/p65 phosphorylation unaffected → immunosuppressive signature (canonical NF-κB not the driver) |
Cummins EP et al., 2010 [33] | In vitro: mouse embryonic fibroblasts; A549 (alveolar epithelium); primary human cells | Infectious (LPS stimulation) | FiCO2 5%, 10%; 4 h; Buffered (pH 7.4) | Harmful: Hypercapnia blocks IκBα phosphorylation/degradation and p65 nuclear translocation, thereby inactivating canonical NF-κB → immunosuppressive signature |
Oliver KM et al., 2012 [17] | In vivo (rats) and in vitro: alveolar epithelial A549 cells and mouse embryonic fibroblast | Non-infectious (LPS/TLR stimulation; infection-mimic) | FiCO2 5%, 10%; 1.5 h; pH-independent | Protective: Hypercapnia promotes p100→p52 cleavage and RelB nuclear localization (non-canonical NF-κB) → anti-inflammatory/immunosuppressive effect |
Contreras M et al., 2012 [20] | In vivo (rat) + in vitro: A549 (alveolar epithelium) | Non-infectious (mechanical stretch/VILI-like) | FiCO2 5%, 8%, 10%, 15%, 20%; 4 h; unbuffered metabolic acidosis | Protective: Hypercapnia inactivates canonical NF-κB in vivo/in vitro, preserves cytoplasmic IκBα, and ↓ IL-8 → anti-inflammatory in a sterile context |
Yang W et al., 2015 [39] | In vivo (rats) + in vitro (unspecified cell models) | Non-infectious (CO2 ventilation; no injurious stimulus) | PaCO2 35–150 mmHg; 4 h; unbuffered metabolic acidosis | Protective: Hypercapnia maintains cytoplasmic IκBα and reduces canonical NF-κB activity → protective signal in a sterile context |
Masterson C et al., 2016 [40] | In vivo (rats) + in vitro: small airway epithelial (SAE), human bronchial epithelial, A549 (alveolar) | Infectious (Escherichia coli; 4 h challenge) | FiCO2 5%, 10%, 15%; 4 h; unbuffered metabolic acidosis | Protective: p65 nuclear translocation ↓; IκBβ phosphorylation ↓; IκBα preserved/↑; NF-κB remains inactivated → anti-inflammatory signature |
Horie S et al., 2016 [41] | In vitro: bronchial and alveolar A549 cells | Non-infectious (mechanical lung stretch) | FiCO2 5%, 12%; duration: 24 h; unbuffered metabolic acidosis | Protective: IκBα phosphorylation ↓; IκBα degradation ↓; NF-κB activity ↓; IL-8 ↓ |
Keogh CE et al., 2017 [16] | In vitro: alveolar epithelial A549, human embryonic kidney (HEK), mouse embryonic fibroblasts (MEFs) | Non-infectious (no LPS/inflammatory stimulation; infection-mimic) | FiCO2 5%, 8%; 1.25 h; pH: n.s. | Protective: Non-canonical NF-κB (p100→p52/RelB) ↑; RelB nuclear localization ↑ → anti-inflammatory/immunosuppressive signature |
Stress-kinase signaling (ASK1/JNK/p38) | ||||
Yang WC et al., 2013 [36] | In vivo (rats) + in vitro: alveolar type II epithelial cells (AT2) | Non-infectious (high-pressure ventilation; VILI-like) | PaCO2 80–100 mmHg; 4 h; unbuffered metabolic acidosis | Protective: Hypercapnia decreases ASK1/JNK and p38 MAPK activities → protective signal (↓ vascular leak/oxidative stress) |
Innate immunity outputs (cytokines, phagocytosis, autophagy) | ||||
O’Croinin DF et al., 2008 [21] | In vivo (rats) | Infectious (pneumonia, no antibiotics) | Inspired CO2: 5%; 48 h; unbuffered metabolic acidosis | Harmful: Neutrophil phagocytosis ↓; ALI severity ↑ → worse infection control |
Liu Y et al., 2008 [27] | In vivo (rabbits) | Non-infectious (LPS/TNF-α; infection-mimic) | FiCO2 5%, 10%; 4 h; unbuffered metabolic acidosis | Harmful: Pro-inflammatory outputs ↑ (IL-8 ↑; VCAM-1 ↑; E-selectin ↑; P-selectin ↑) |
Chonghaile MN et al., 2008 [10] | In vivo (rats): established pneumonia; antibiotics | Infectious (Escherichia coli) | FiCO2 5%; 6 h; unbuffered metabolic acidosis | Protective: BAL TNF-α ↔; IL-6 ↔; BAL neutrophils ↔ (±antibiotics); with antibiotics: bacterial count ↓; histological lung injury ↓ → beneficial with antibiotics; neutral without |
Ni Chonghaile M et al., 2008 [28] | In vivo (rats): established pneumonia, antibiotics, no antibiotics | Infectious (Escherichia coli) | FiCO2 5%; 6 h; unbuffered metabolic acidosis | Protective: Lung injury ↓; BAL neutrophils unchanged; BAL TNF-α/IL-6 unchanged; lung bacterial load unchanged → protective signature, apparently neutrophil-independent |
Abolhassani M et al., 2009 [29] | In vivo (rat) + in vitro: HT-29 (human colon); A549 (alveolar type II epithelium) | Non-infectious | FiCO2 5%, 10%, 15%; 1 h (in vivo); pH n.s | Harmful: Pro-inflammatory gene expression ↑ (RANTES, MIP-1α, MIP-1β, MCP-1, TCA-3, IP-10, IL-6, IL-8); MUC5AC ↑; airway hyperreactivity ↑ → harmful/pro-inflammatory signature. |
Nichol AD et al., 2009 [22] | In vivo (rats) | Infectious | PaCO2 64–80 mmHg; 6 h; buffered | Harmful: IL-1β ↑; BAL neutrophils ↑; lung structural damage ↑ → harmful/pro-inflammatory despite normal pH |
Higgins B et al., 2009 [30] | In vivo (rats) | Infectious—systemic sepsis (cecal ligation and puncture) | FiCO2 5%, 8%; 96 h; two conditions: BHC (buffered/normalized pH) vs. HCA (unbuffered hypercapnic acidosis) | Harmful: BHC: BAL IL-6 ↓; BAL neutrophils ↔; BAL TNF-α ↔; bacterial load ↔; neutrophil phagocytic function ↔ Protective: BAL TNF-α ↓; BAL IL-6 ↔; lung histologic injury ↓; rate of bacteremia entry ↓ |
Wang N et al., 2010 [31] | In vitro: THP-1 (human), human alveolar macrophages, RAW 264.7 (mouse) | Non-infectious (LPS/TLR stimulation; infection-mimic) | FiCO2 5%, 9%, 12.5%, 20%; 6 h; pH-independent | Harmful: Macrophage phagocytosis ↓ under hypercapnia → impaired bacterial clearance/immunosuppressive signature |
Peltekova V et al., 2010 [32] | In vivo (rats) | Non-infectious—ventilator-induced lung injury (VILI) | FiCO2 0%, 5%, 12%, 25%; 3 h; unbuffered metabolic acidosis | Protective: IL-6 ↓; KC ↓; MCP-1 ↓; TNF-α ↓; elastance rise attenuated; microvascular leak ↓; histology improved; MPO+ cells ↓; COX-2 (mRNA/protein) ↓; eicosanoids ↓ (modest); tissue nitrotyrosine ↑ → net protective signal on injury/innate inflammation with caveat (nitrotyrosine) |
Cummins EP et al., 2010 [33] | In vitro: mouse embryonic fibroblasts; A549 (alveolar epithelium); primary human cells | Infectious (LPS stimulation) | FiCO2 5%, 10%; 4 h; buffered (pH 7.4) | Harmful: CCL2/MCP-1 ↓; ICAM-1 ↓; TNF-α ↓; IL-10 ↑ → anti-inflammatory/immunosuppressive |
Oliver KM et al., 2012 [17] | In vivo (rats) and in vitro: alveolar epithelial A549 cells and mouse embryonic fibroblast | Non-infectious (LPS/TLR stimulation; infection-mimic) | FiCO2 5%, 10%; 1.5 h; pH-independent | Protective: TNF-α mRNA ↓; COX-2 ↓ under elevated CO2 (pH-independent) → anti-inflammatory/immunosuppressive signature |
Contreras M et al., 2012 [20] | In vivo (rat) + in vitro: A549 (alveolar epithelium) | Non-infectious (mechanical stretch/VILI-like) | FiCO2 5%, 8%, 10%, 15%, 20%; 4 h; unbuffered metabolic acidosis | Protective: PaO2 ↑; lung compliance ↑; BAL protein ↓; BAL neutrophils ↓; BAL IL-6/TNF-α/CINC-1 ↓ → anti-inflammatory, tissue-protective signal in sterile VILI |
Yang WC et al., 2013 [36] | In vivo (rats) + in vitro: alveolar type II epithelial cells (AT2) | Non-infectious (high-pressure ventilation; VILI-like) | PaCO2 80–100 mmHg; 4 h; unbuffered metabolic acidosis | Protective: BAL (TNF-α ↓, MIP-2 ↓, neutrophil recruitment ↓); oxidative stress/injury: MDA ↓, SOD ↑, MPO ↓, LDH ↓; apoptosis: cleaved caspase-3 ↓, early/late apoptosis ↓ → protective signal (vascular leak/oxidative stress ↓) |
Gates KL et al., 2013 [23] | In vivo (rats) | Infectious (pneumonia, no antibiotics) | Inspired CO2: 5%, 10%; 96 h; unbuffered metabolic acidosis | Harmful: Neutrophil phagocytic capacity ↓; bacterial load ↑; dissemination to other organs ↑; early cytokines (IL-6, TNF) ↓ → immunosuppressive signature with worse infection control |
Nardelli LM et al., 2015 [37] | In vivo (rats) | Non-infectious (Paraquat) | PaCO2 ventilation: 35–80 mmHg | Hypercapnia, independent of acidosis, reduces IL-6, IL-1β, and type III pro-collagen expression. It also decreases neutrophil count and apoptosis processes |
Casalino-Matsuda SM et al., 2015 [25] | In vitro: human alveolar macrophages; THP-1 (human monocytic leukemia); HeLa GFP-LC3 | Infectious | FiCO2 5%, 15% CO2; 18 h; pH n.s | Harmful: Bcl-2/Bcl-xL ↑ → Beclin-1 sequestration ↑ → autophagosome initiation ↓ /autophagic flux ↓; bacterial killing ↓ → immunosuppressive signature |
Yang W et al., 2015 [39] | In vivo (rats) + in vitro (unspecified cell models) | Non-infectious (CO2 ventilation; no injurious stimulus) | PaCO2 35–150 mmHg; 4 h; unbuffered metabolic acidosis | Protective: BAL neutrophils ↓; total BAL cells ↓; MPO ↓; TNF-α ↓; IL-1β ↓; MIP-2 ↓ → protective anti-inflammatory signal in a sterile context |
Casalino-Matsuda SM et al., 2018 [43] | In vitro: human bronchial epithelial cells | Non-infectious | FiCO2 20%; 24 h; pH: n.s. | Harmful. Immunoregulatory gene program Δ (CXCL1, CXCL2, CXCL14, CCL28, IL-6R, TLR4 altered under sustained hypercapnia; direction context-dependent) |
Casalino-Matsuda SM et al., 2021 [46] | In vitro: human monocytic leukemia THP-1 and mouse monocyte–macrophage RAW 264.7 | Non-infectious (PAMP stimulation) | 5%, 20%; 3 h; unbuffered metabolic acidosis | Harmful: LPS-upregulated innate/antiviral/type-I IFN programs ↓ (NF-κB1/2, REL/RELB, STAT1/2, IRF1/7, DDX58, IL6, CCL2, ICAM1 ↓) → net immunosuppressive signature |
cAMP/PKA–AMPK pathways and epithelial transport (ENaC; Na,K-ATPase; PKC-ζ; CaMKKβ) | ||||
Vadász I et al., 2008 [26] | In vivo (rats), ex vivo (perfused rat lung), and in vitro (primary rat AECII and human A549 cells) | Non-infectious | PaCO2: 60–120 mmHg; 24 h; unbuffered metabolic acidosis | Harmful: AFC ↓; [Ca2+]i ↑ → CaMKKβ ↑ → AMPK (Thr172) ↑ → PKC-ζ translocation/activity ↑ → Na,K-ATPase endocytosis ↑ → epithelial transport failure, edema resolution worsens |
Liu Y et al., 2008 [27] | In vivo (rabbits) | Non-infectious (sterile stimulation with LPS/TNF-α) | FiCO2 5% and 10%; 4 h; unbuffered metabolic acidosis | Alveolar transudation ↑; septal edema ↑; vascular/extravascular leak ↑; alveolar structural damage ↑ → harmful epithelial/Barrier outcome |
Nichol AD et al., 2009 [22] | In vivo (rats) | Infectious | PaCO2 64–80 mmHg; 6 h; buffered | Harmful: lung structural damage ↑; lung cell wound repair rate ↓ → harmful/pro-inflammatory despite normal pH |
O’Toole D et al., 2009 [50] | In vitro: human bronchial epithelial (primary), primary small airway epithelial cells, and A549 (alveolar type II) | Non-infectious | FiCO2 5%, 10%, 15%; 24 h; unbuffered metabolic acidosis | Harmful: hypercapnia inhibits canonical NF-κB and delays epithelial repair |
Welch LC et al., 2010 [18] | In vivo (rats) and In vitro: ATII (rats), A549 (alveolar type II) y A549–GFP–α1 | Non-infectious | FiCO2 5%, 20%; 0.25 h; buffered | Harmful: ERK1/2 ↑ (minutes) → AMPK ↑ → Na,K-ATPase endocytosis ↑ → AFC ↓ → epithelial transport failure |
Vohwinkel CU et al., 2011 [34] | In vitro: A549 (alveolar type II) and fibroblasts | Non-infectious | FiCO2 5%, 7%; 72 h; buffered | Harmful: miR-183 ↑ → IDH2 (mRNA/protein) ↓ → TCA flux ↓ → mitochondrial dysfunction ↑; epithelial proliferation/repair ↓ → harmful metabolic/repair signature |
Vadász I et al., 2012 [35] | In vitro: Alveolar epithelial cells | Non-infectious | PaCO2 60–120 mmHg; 1 h; pH: n.s. | Harmful: AMPK → PKC-ζ → JNK(Ser129)↑ → endocitosis de Na,K-ATPase ↑ → AFR ↓; pH-independent → epithelial transport failure |
Lecuona E et al., 2013 [19] | In vitro: A549 (alveolar type II), rat RLE-6TN cells, and primary rat alveolar epithelial type II | Non-infectious | PaCO2 40–120 mmHg; 0.5 h; buffered | Harmful: sAC–cAMP microdomains ↑ → PKA-RIα ↑ → α-adducin Ser726 phosphorylation ↑ → Na,K-ATPase endocytosis ↑ → AFC ↓ → epithelial transport failure |
Dada L et al., 2015 [38] | In vitro: A549 (alveolar type II) and rat type II cells | Non-infectious | FiCO2 5%, 10%, 15%, 20%; 0.5 h; buffered | Harmful: AMPK ↑ → JNK ↑ → LMO7b Ser1295-P ↑ → LMO7b–Na,K-ATPase interaction ↑ → clathrin/AP2 recruitment ↑ → Na,K-ATPase endocytosis ↑ → AFC ↓; pH-independent → epithelial transport failure |
Gwoździńska P et al., 2017 [42] | In vitro: A549 (alveolar type II) | Non-infectious | FiCO2 5%; 0.5 h; buffered | Harmful: ERK1/2 ↑; AMPK-α1 ↑; JNK1/2 ↑; Nedd4-2 pT899 ↑; β-ENaC pT615 ↑; β-ENaC poly-Ub ↑; ENaC endocytosis ↑; α-ENaC Ub ↔ → ENaC surface ↓; epithelial Na+ transport/AFC ↓ → epithelial transport failure; pH-independent |
Cortes-Puentes et al., 2019 [44] | In vitro: A549 (alveolar type II) and rat alveolar epithelial cell type I | Non-infectious | PaCO2 80 mmHg; 0.25 h; buffered | Harmful: under unbuffered HCA: AC activity ↓ → cAMP ↓ → PKA signaling ↓ → epithelial repair/restitution rate ↓ (harmful). Buffering (pH normalization) rescues AC/cAMP and epithelial repair → pH-dependent |
Kryvenko V et al., 2020 [45] | In vitro: A549 (alveolar type II) and rat type II cells | Non-infectious | FiCO2 5%, 10%, 20%; 12 h; pH: n.s. | Harmful: ER oxidation ↑ → misfolded Na,K-ATPase β retained in ER ↑ → α:β assembly ↓ → plasma-membrane Na,K-ATPase ↓ /pump activity ↓; calnexin/BiP association ↑; mitochondrial/ATP deficit component ↑ → AFC ↓→ epithelial transport failure |
Gabrielli et al., 2021 [47] | In vitro: A549 (alveolar type II) and primary rat alveolar epithelial type II | Non-infectious | FiCO2 5%, 20%; 0.5 h; buffered | Harmful: PKC-ζ-dependent β-Ser11 phosphorylation ↑ → TRAF2 (E3) recruitment ↑ → Na,K-ATPase β polyubiquitination (K5/K7) ↑ → endocytosis ↑ + proteasomal degradation ↑ → PM Na,K-ATPase ↓ → AFC ↓ → epithelial transport failure |
Kryvenko V et al., 2021 [48] | In vitro: A549 (alveolar type II) and primary rat alveolar epithelial type II | Non-infectious | FiCO2 5%, 7%, 10%, 20%; 1 h; buffered | Harmful: IP3R–Ca2+ release ↑ → IRE1α pSer724 ↑ → MAN1B1/EDEM1–ERAD ↑ → proteasomal degradation ↑ → Na,K-ATPase β in ER ↑ (retention)/at plasma membrane ↓ → AFC ↓→ epithelial transport failure |
Dada L et al., 2023 [49] | In vivo (rats) and in vitro: A549 (alveolar type II), and primary rat alveolar epithelial type II | Non-infectious | FiCO2 5%, 10%, 20% 24 h/504 h; pH: n.s. | Harmful: Wnt5a ↑; Wnt2 ↓; β-catenin signaling (Axin2) ↓ in AT2 → AT2 proliferation/repair ↓ → alveolar repair suppressed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio-Rodríguez, E.; Correa-Guerrero, J.; Rodelo-Barrios, D.; Bonilla-Llanos, M.; Rebolledo-Maldonado, C.; Patiño-Patiño, J.; Viera-Torres, J.; Arias-Gómez, M.; Gracia-Ordoñez, M.; González-Betancur, D.; et al. Hypercapnia as a Double-Edged Modulator of Innate Immunity and Alveolar Epithelial Repair: A PRISMA-ScR Scoping Review. Int. J. Mol. Sci. 2025, 26, 9622. https://doi.org/10.3390/ijms26199622
Osorio-Rodríguez E, Correa-Guerrero J, Rodelo-Barrios D, Bonilla-Llanos M, Rebolledo-Maldonado C, Patiño-Patiño J, Viera-Torres J, Arias-Gómez M, Gracia-Ordoñez M, González-Betancur D, et al. Hypercapnia as a Double-Edged Modulator of Innate Immunity and Alveolar Epithelial Repair: A PRISMA-ScR Scoping Review. International Journal of Molecular Sciences. 2025; 26(19):9622. https://doi.org/10.3390/ijms26199622
Chicago/Turabian StyleOsorio-Rodríguez, Elber, José Correa-Guerrero, Dairo Rodelo-Barrios, María Bonilla-Llanos, Carlos Rebolledo-Maldonado, Jhonny Patiño-Patiño, Jesús Viera-Torres, Mariana Arias-Gómez, María Gracia-Ordoñez, Diego González-Betancur, and et al. 2025. "Hypercapnia as a Double-Edged Modulator of Innate Immunity and Alveolar Epithelial Repair: A PRISMA-ScR Scoping Review" International Journal of Molecular Sciences 26, no. 19: 9622. https://doi.org/10.3390/ijms26199622
APA StyleOsorio-Rodríguez, E., Correa-Guerrero, J., Rodelo-Barrios, D., Bonilla-Llanos, M., Rebolledo-Maldonado, C., Patiño-Patiño, J., Viera-Torres, J., Arias-Gómez, M., Gracia-Ordoñez, M., González-Betancur, D., Nuñez-Beyeh, Y., Solano-Sopó, G., & Dueñas-Castell, C. (2025). Hypercapnia as a Double-Edged Modulator of Innate Immunity and Alveolar Epithelial Repair: A PRISMA-ScR Scoping Review. International Journal of Molecular Sciences, 26(19), 9622. https://doi.org/10.3390/ijms26199622