NGS Approaches in Clinical Diagnostics: From Workflow to Disease-Specific Applications
Abstract
1. Introduction
2. Principles and Diagnostic Workflow of NGS Gene Panels and WES
2.1. Clinical Diagnosis in the NGS Era
2.2. Overview of NGS Workflows: Targeted Gene Panels, WES, and WGS
2.3. Region of Interest (ROI) Capture in NGS
2.4. Library Preparation
2.5. Target Enrichment
2.6. Sequencing
2.7. Data Analysis
2.8. Variant Interpretation
2.9. Clinical Correlation
2.10. Reporting and Counseling
3. Clinical Applications of Targeted Gene Panels, WES and WGS
3.1. The NGS Techniques
3.1.1. Diagnostic Application
3.1.2. NGS Applications: From Clinical Diagnosis to Cohort-Based Studies
3.2. Neurodevelopmental Disorders
3.2.1. From Targeted Panels to NGS
3.2.2. Limitations of Targeted Panels
3.2.3. Novel Candidate Genes in NDDs
3.3. Psychiatric Disorders
3.3.1. Genetic Diagnosis by Using NGS Tools
3.3.2. Novel Candidate Genes in Psychiatric Disorders
3.4. Neuromuscular Disorders
3.5. Connective Tissue Disorders
3.5.1. Marfan Syndrome and Related Disorders
3.5.2. Differential Diagnoses and Additional Genes
- TGFBR1 and TGFBR2: encoding receptors for TGF-β, are commonly mutated in LDS types 1 and 2. LDS is characterised by aggressive arterial aneurysms, hypertelorism, and bifid uvula or cleft palate. Mutations often exert dominant-negative effects on TGF-β signalling [131].
- SMAD3: an intracellular transducer of TGF-β signalling, is implicated in Aneurysm–Osteoarthritis Syndrome (AOS). Mutations in SMAD3 can result in early-onset osteoarthritis, arterial tortuosity, and aneurysms [132].
- ACTA2: encoding smooth muscle α-actin, is frequently mutated in familial thoracic aortic aneurysms and dissections (FTAAD). Variants impair contractile function of vascular smooth muscle cells, predisposing to early aortic events and other cerebrovascular complications [135].
3.6. Cardiovascular Disorders and Cardiomyopathies
3.6.1. Gene-Specific and Clinical Correlates
3.6.2. Diagnostic Yield and Clinical Utility of NGS
3.6.3. Commercially Available Panels for Cardiomyopathies
- Invitae Cardiomyopathy Comprehensive Panel, which includes over 100 genes covering HCM, DCM, ACM, RCM, and LVNC. Key genes include MYH7, MYBPC3, TNNT2, LMNA, TTN, PKP2.
- Blueprint Genetics Cardiomyopathy Panel, offering high-coverage sequencing for ~150 genes with clinical-grade interpretation. Broad set includes sarcomeric, desmosomal, metabolic genes.
- Fulgent Cardiomyopathy Panel, focused on both adult and paediatric cardiomyopathies, including metabolic and mitochondrial genes. Key genes include MYBPC3, MYH7, TNNI3, SCN5A, BAG3.
- Centogene Cardio Genetics Panels, tailored for comprehensive or phenotype-specific testing with support for rare disease interpretation. Panel is customisable, and includes rare disease genes.
- CeGaT Cardiomyopathy Panel, designed with sub-panels for precise differential diagnosis, e.g., “Sarcomeric,” “Desmosomal,” or “Metabolic” subsets.
3.7. Inherited Cancer Syndromes
3.8. Metabolic Disorders
3.8.1. Inborn Errors of Metabolism (IEMs)
3.8.2. Mitochondrial Disorders
3.8.3. Novel Candidate Genes in Metabolic Disorders
3.9. Neurodegenerative Disorders
3.9.1. Clinical Applications of NGS
3.9.2. Novel Candidate Genes in Neurodegenerative Disorders
3.10. Clinical Application and Diagnostic Choice
4. Limitations and Future Perspectives
4.1. Limitations of Current Approaches
4.2. Emerging Strategies: Virtual Panels, Phenotype-Driven Tools and AI
4.3. Long-Read Sequencing and Future Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACM | Arrhythmogenic Cardiomyopathy |
ACMG | American College of Medical Genetics and Genomics |
ACTA2 | Actin Alpha 2, Smooth Muscle |
ACTC1 | Actin Alpha Cardiac Muscle 1 |
AD | Alzheimer’s Disease |
ALS | Amyotrophic Lateral Sclerosis |
AMP | Association for Molecular Pathology |
AOS | Aneurysm–Osteoarthritis Syndrome |
APOB | Apolipoprotein B |
ARVC | Arrhythmogenic Right Ventricular Cardiomyopathy |
ASD | Autism Spectrum Disorders |
BAG3 | BAG Cochaperone 3 |
BCKDHA | Branched Chain Keto Acid Dehydrogenase E1 Subunit Alpha |
BCKDHB | Branched Chain Keto Acid Dehydrogenase E1 Subunit Beta |
BRCA1 | BRCA1 DNA Repair Associated |
BRCA2 | BRCA2 DNA Repair Associated |
BrS | Brugada syndrome |
BWA | Burrows–Wheeler Aligner |
cbEGF | calcium-binding EGF-like domain |
CDG | Congenital Disorder of Glycosylation |
CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
CMA | Chromosomal Microarray |
CMT | Charcot–Marie–Tooth disease |
CNVs | Copy Number Variants |
COL3A1 | Collagen Type III Alpha 1 Chain |
CYP2C19 | Cytochrome P450 Family 2 Subfamilt C Member 19 |
CYP2D6 | Cytochrome P450 Family 2 Subfamily D Member 6 |
DBT | Dihydrolipoamide Branched Chain Transacylase E2 |
DCM | Dilated Cardiomyopathy |
DES | Desmin |
DMD | Dystrophin gene |
DSC2 | Desmocollin 2 |
DSG2 | Desmoglein 2 |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
DSP | Desmoplakin |
FBN1 | Fibrillin 1 |
FFPE | Formalin-Fixed, Paraffin-Embedded |
FLNC | Filamin C |
FMR1 | Fragile X Messenger Ribonucleoprotein 1 |
FTAAD | Familial Thoracic Aortic Aneurysms And Dissections |
GATK | Genome Analysis Toolkit |
GBA | Glucosylceramidase Beta 1 |
GJB1 | Gap Junction Protein Beta 1 |
GLA | Galactosidase Alpha |
HCM | Hypertrophic Cardiomyopathy |
HGMD | Human Gene Mutation Database |
HTT | Huntingtin |
ICD | Implantable Cardioverter-Defibrillators |
ID | Intellectual Disabilities |
IDD | Intellectual and Developmental Disabilities |
IEM | Inborn Errors of Metabolism |
JUP | Junction Plakoglobin |
KAT6B | Lysine Acetyltransferase 6B |
KCNQ1 | Potassium Voltage-Gated Channel Subfamily Q Member 1 |
LAMP2 | Lysosomal Associated Membrane Protein 2 |
LBD | Lewy Dody Dementia |
LDLR | Low Density Lipoprotein Receptor |
LDS | Loeys–Dietz Syndrome |
LMNA | Lamin A/C |
LoF | Loss-of-function |
LOVD | Leiden Open Variation Database |
LQTS | Long QT Syndrome |
LVH | Left Ventricular Hypertrophy |
LVNC | Left Ventricular Noncompaction |
MCI | Mild Cognitive Impairment |
MDT | Multidisciplinary team meetings |
MECP2 | Methyl CpG Binding Protein 2 |
MELAS | Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes |
MFS | Marfan Syndrome |
MLH1 | MutL Homolog 1 |
MLPA | Multiplex Ligation-dependent Probe Amplification |
MSH2 | MutS Homolog 2 |
MSH6 | MutS Homolog 6 |
MSUD | Maple Syrup Urine Disease |
mtDNA | mitochondrial DNA |
MYBPC3 | Myosin Binding Protein C3 |
MYBPC3 | Myosin-Binding Protein C3 |
MYH11 | Myosin Heavy Chain 11 |
MYH7 | Myosin Heavy Chain 7 |
MYLK | Myosin Light Chain Kinase |
NDDs | Neurodevelopmental disorders |
NGS | Next-generation sequencing |
NRXN1 | Neurexin 1 |
PAH | Phenylalanine Hydroxylase |
PCSK9 | Proprotein Convertase Subtilisin/Kexin Type 9 |
PD | Parkinson’s Disease |
PKP2 | Plakophilin 2 |
PKU | Phenylketonuria |
PMP22 | Peripheral Myelin Protein 2 |
PMS2 | PMS1 Homolog 2, Mismatch Repair System Component |
POLG | Mitochondrial Polymerase Gamma Catalytic Subunit |
PRKAG2 | Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2 |
PRKG1 | Protein kinase CGMP-Dependent 1 |
RBM20 | RNA Binding Motif Protein 20 |
RCM | Restrictive Cardiomyopathy |
RYR2 | Ryanodine Receptor 2 |
SCD | Sudden Cardiac Death |
SCN2A | Sodium Voltage-Gated Channel Alpha Subunit 2 |
SCN5A | Sodium Voltage-Gated Channel Alpha Subunit 5 |
SHANK3 | SH3 And Multiple Ankyrin Repeat Domains 3 |
SLCO1B1 | Solute Carrier Organic Anion Transporter Family Member 1B1 |
SMA | Spinal muscular atrophy |
SMAD3 | SMAD Family Member 3 |
SNV | Single Nucleotide Variant |
STR | Short Tandem Repeat |
SURF1 | Surfeit Locus Protein 1 |
TCF4 | Transcription Factor 4 |
TGF-β | Transforming Growth Factor-Beta |
TGFBR1 | Transforming Growth Factor Beta Receptor 1 |
TGFBR2 | Transforming Growth Factor Beta Receptor 2 |
TMEM43 | Transmembrane Protein 43 |
TNNI3 | Troponin I3, Cardiac Type |
TNNT2 | troponin T2, Cardiac Type |
TPM1 | Tropomyosin 1 |
TPMT | Thiopurine S-Methyltransferase |
TTN | Titin |
UMI | Unique Molecular Identifiers |
VCF | VCF Variant Call Format |
vEDS | vascular Ehlers–Danlos Syndrome |
VUS | Variants of Uncertain Significance |
References
- Rehm, H.L. Disease-Targeted Sequencing: A Cornerstone in the Clinic. Nat. Rev. Genet. 2013, 14, 295–300. [Google Scholar] [CrossRef]
- Mardis, E.R. DNA Sequencing Technologies: 2006–2016. Nat. Protoc. 2017, 12, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Katsanis, S.H.; Katsanis, N. Molecular Genetic Testing and the Future of Clinical Genomics. Nat. Rev. Genet. 2013, 14, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Stark, Z.; Dolman, L.; Manolio, T.A.; Ozenberger, B.; Hill, S.L.; Caulfied, M.J.; Levy, Y.; Glazer, D.; Wilson, J.; Lawler, M.; et al. Integrating Genomics into Healthcare: A Global Responsibility. Am. J. Hum. Genet. 2019, 104, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Chen, N.; Wang, L.; Zhang, F.; Ma, Z.; Li, G.; Yang, L. Application of Whole Exome and Targeted Panel Sequencing in the Clinical Molecular Diagnosis of 319 Chinese Families with Inherited Retinal Dystrophy and Comparison Study. Genes 2018, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Cifaldi, C.; Brigida, I.; Barzaghi, F.; Zoccolillo, M.; Ferradini, V.; Petricone, D.; Cicalese, M.P.; Lazarevic, D.; Cittaro, D.; Omrani, M.; et al. Targeted NGS Platforms for Genetic Screening and Gene Discovery in Primary Immunodeficiencies. Front. Immunol. 2019, 10, 316. [Google Scholar] [CrossRef]
- Nagahashi, M.; Shimada, Y.; Ichikawa, H.; Kameyama, H.; Takabe, K.; Okuda, S.; Wakai, T. Next Generation Sequencing-based Gene Panel Tests for the Management of Solid Tumors. Cancer Sci. 2019, 110, 6–15. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Correction: Satam et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. Biology 2024, 13, 286. [Google Scholar] [CrossRef]
- Boycott, K.M.; Hartley, T.; Biesecker, L.G.; Gibbs, R.A.; Innes, A.M.; Riess, O.; Belmont, J.; Dunwoodie, S.L.; Jojic, N.; Lassmann, T.; et al. A Diagnosis for All Rare Genetic Diseases: The Horizon and the Next Frontiers. Cell 2019, 177, 32–37. [Google Scholar] [CrossRef]
- Federico, C.; Brancato, D.; Bruno, F.; Coniglio, E.; Sturiale, V.; Saccone, S. Cytogenetics and Cytogenomics in Clinical Diagnostics: Genome Architecture, Structural Variants, and Translational Applications. Genes 2025, 16, 780. [Google Scholar] [CrossRef]
- Wright, C.F.; FitzPatrick, D.R.; Firth, H.V. Paediatric Genomics: Diagnosing Rare Disease in Children. Nat. Rev. Genet. 2018, 19, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Corominas, R.; Lin, G.N. De Novo Mutations from Whole Exome Sequencing in Neurodevelopmental and Psychiatric Disorders: From Discovery to Application. Front. Genet. 2019, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.; Santani, A.; Mao, R.; Ferreira-Gonzalez, A.; Weck, K.E.; Voelkerding, K.V. Development and Validation of Clinical Whole-Exome and Whole-Genome Sequencing for Detection of Germline Variants in Inherited Disease. Arch. Pathol. Lab. Med. 2017, 141, 798–805. [Google Scholar] [CrossRef]
- Thevenon, J.; Duffourd, Y.; Masurel-Paulet, A.; Lefebvre, M.; Feillet, F.; El Chehadeh-Djebbar, S.; St-Onge, J.; Steinmetz, A.; Huet, F.; Chouchane, M.; et al. Diagnostic Odyssey in Severe Neurodevelopmental Disorders: Toward Clinical Whole-exome Sequencing as a First-line Diagnostic Test. Clin. Genet. 2016, 89, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; Anyane-Yeboa, K.; Wynn, J.; Wilson, A.; Truitt Cho, M.; Guzman, E.; Sisson, R.; Egan, C.; Chung, W.K. The Usefulness of Whole-Exome Sequencing in Routine Clinical Practice. Genet. Med. 2014, 16, 922–931. [Google Scholar] [CrossRef]
- Timmermans, S.; Tietbohl, C.; Skaperdas, E. Narrating Uncertainty: Variants of Uncertain Significance (VUS) in Clinical Exome Sequencing. BioSocieties 2017, 12, 439–458. [Google Scholar] [CrossRef]
- Li, X.; Nusbaum, R.; Smith-Hicks, C.; Jamal, L.; Dixon, S.; Mahida, S. Caregivers’ Perception of and Experience with Variants of Uncertain Significance from Whole Exome Sequencing for Children with Undiagnosed Conditions. J. Genet. Couns. 2019, 28, 304–312. [Google Scholar] [CrossRef]
- Matthijs, G.; Souche, E.; Alders, M.; Corveleyn, A.; Eck, S.; Feenstra, I.; Race, V.; Sistermans, E.; Sturm, M.; Weiss, M.; et al. Guidelines for Diagnostic Next-Generation Sequencing. Eur. J. Hum. Genet. 2016, 24, 2–5. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Bagger, F.O.; Borgwardt, L.; Jespersen, A.S.; Hansen, A.R.; Bertelsen, B.; Kodama, M.; Nielsen, F.C. Whole Genome Sequencing in Clinical Practice. BMC Med. Genom. 2024, 17, 39. [Google Scholar] [CrossRef]
- Souche, E.; Beltran, S.; Brosens, E.; Belmont, J.W.; Fossum, M.; Riess, O.; Gilissen, C.; Ardeshirdavani, A.; Houge, G.; Van Gijn, M.; et al. Recommendations for Whole Genome Sequencing in Diagnostics for Rare Diseases. Eur. J. Hum. Genet. 2022, 30, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Deans, Z.C.; Ahn, J.W.; Carreira, I.M.; Dequeker, E.; Henderson, M.; Lovrecic, L.; Õunap, K.; Tabiner, M.; Treacy, R.; Van Asperen, C.J. Recommendations for Reporting Results of Diagnostic Genomic Testing. Eur. J. Hum. Genet. 2022, 30, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Saccone, S.; Brancato, D.; Bruno, F.; Coniglio, E.; Sturiale, V.; Federico, C. Origin and Evolution of Genes in Eukaryotes: Mechanisms, Dynamics, and Functional Implications. Genes 2025, 16, 702. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Petrovski, S.; Xie, P.; Ruzzo, E.K.; Lu, Y.-F.; McSweeney, K.M.; Ben-Zeev, B.; Nissenkorn, A.; Anikster, Y.; Oz-Levi, D.; et al. Whole-Exome Sequencing in Undiagnosed Genetic Diseases: Interpreting 119 Trios. Genet. Med. 2015, 17, 774–781. [Google Scholar] [CrossRef]
- Tetreault, M.; Bareke, E.; Nadaf, J.; Alirezaie, N.; Majewski, J. Whole-Exome Sequencing as a Diagnostic Tool: Current Challenges and Future Opportunities. Expert Rev. Mol. Diagn. 2015, 15, 749–760. [Google Scholar] [CrossRef]
- Posey, J.E.; Rosenfeld, J.A.; James, R.A.; Bainbridge, M.; Niu, Z.; Wang, X.; Dhar, S.; Wiszniewski, W.; Akdemir, Z.H.C.; Gambin, T.; et al. Molecular Diagnostic Experience of Whole-Exome Sequencing in Adult Patients. Genet. Med. 2016, 18, 678–685. [Google Scholar] [CrossRef]
- Retterer, K.; Juusola, J.; Cho, M.T.; Vitazka, P.; Millan, F.; Gibellini, F.; Vertino-Bell, A.; Smaoui, N.; Neidich, J.; Monaghan, K.G.; et al. Clinical Application of Whole-Exome Sequencing across Clinical Indications. Genet. Med. 2016, 18, 696–704. [Google Scholar] [CrossRef]
- Austin-Tse, C.A.; Jobanputra, V.; Perry, D.L.; Bick, D.; Taft, R.J.; Venner, E.; Gibbs, R.A.; Young, T.; Barnett, S.; Belmont, J.W.; et al. Best Practices for the Interpretation and Reporting of Clinical Whole Genome Sequencing. Npj Genom. Med. 2022, 7, 27. [Google Scholar] [CrossRef]
- Hayeems, R.Z.; Dimmock, D.; Bick, D.; Belmont, J.W.; Green, R.C.; Lanpher, B.; Jobanputra, V.; Mendoza, R.; Kulkarni, S.; Grove, M.E.; et al. Clinical Utility of Genomic Sequencing: A Measurement Toolkit. Npj Genom. Med. 2020, 5, 56. [Google Scholar] [CrossRef]
- Grimm, O.; Kranz, T.M.; Reif, A. Genetics of ADHD: What Should the Clinician Know? Curr. Psychiatry Rep. 2020, 22, 18. [Google Scholar] [CrossRef]
- Georget, M.; Pisan, E. Approches diagnostiques basées sur le séquençage à haut débit. Rev. Mal. Respir. 2023, 40, 345–358. [Google Scholar] [CrossRef]
- Singh, R.R. Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics 2022, 12, 1539. [Google Scholar] [CrossRef]
- Tan, T.Y.; Dillon, O.J.; Stark, Z.; Schofield, D.; Alam, K.; Shrestha, R.; Chong, B.; Phelan, D.; Brett, G.R.; Creed, E.; et al. Diagnostic Impact and Cost-Effectiveness of Whole-Exome Sequencing for Ambulant Children with Suspected Monogenic Conditions. JAMA Pediatr. 2017, 171, 855. [Google Scholar] [CrossRef]
- Kalia, S.S.; Adelman, K.; Bale, S.J.; Chung, W.K.; Eng, C.; Evans, J.P.; Herman, G.E.; Hufnagel, S.B.; Klein, T.E.; Korf, B.R.; et al. Recommendations for Reporting of Secondary Findings in Clinical Exome and Genome Sequencing, 2016 Update (ACMG SF v2.0): A Policy Statement of the American College of Medical Genetics and Genomics. Genet. Med. 2017, 19, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L.; Berg, J.S.; Brooks, L.D.; Bustamante, C.D.; Evans, J.P.; Landrum, M.J.; Ledbetter, D.H.; Maglott, D.R.; Martin, C.L.; Nussbaum, R.L.; et al. ClinGen—The Clinical Genome Resource. N. Engl. J. Med. 2015, 372, 2235–2242. [Google Scholar] [CrossRef] [PubMed]
- LaDuca, H.; Farwell, K.D.; Vuong, H.; Lu, H.-M.; Mu, W.; Shahmirzadi, L.; Tang, S.; Chen, J.; Bhide, S.; Chao, E.C. Exome Sequencing Covers >98% of Mutations Identified on Targeted next Generation Sequencing Panels. PLoS ONE 2017, 12, e0170843. [Google Scholar] [CrossRef] [PubMed]
- Head, S.R.; Komori, H.K.; LaMere, S.A.; Whisenant, T.; Van Nieuwerburgh, F.; Salomon, D.R.; Ordoukhanian, P. Library Construction for Next-Generation Sequencing: Overviews and Challenges. BioTechniques 2014, 56, 61–77. [Google Scholar] [CrossRef]
- Van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten Years of Next-Generation Sequencing Technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Meienberg, J.; Zerjavic, K.; Keller, I.; Okoniewski, M.; Patrignani, A.; Ludin, K.; Xu, Z.; Steinmann, B.; Carrel, T.; Rothlisberger, B.; et al. New Insights into the Performance of Human Whole-Exome Capture Platforms. Nucleic Acids Res. 2015, 43, e76. [Google Scholar] [CrossRef]
- Meienberg, J.; Bruggmann, R.; Oexle, K.; Matyas, G. Clinical Sequencing: Is WGS the Better WES? Hum. Genet. 2016, 135, 359–362. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, L.T.; Shen, T.; Choudhari, S.; Talsania, K.; Chen, X.; Shetty, J.; Kriga, Y.; Tran, B.; Zhu, B.; et al. Whole Genome and Exome Sequencing Reference Datasets from a Multi-Center and Cross-Platform Benchmark Study. Sci. Data 2021, 8, 296. [Google Scholar] [CrossRef]
- Clark, M.J.; Chen, R.; Lam, H.Y.K.; Karczewski, K.J.; Chen, R.; Euskirchen, G.; Butte, A.J.; Snyder, M. Performance Comparison of Exome DNA Sequencing Technologies. Nat. Biotechnol. 2011, 29, 908–914. [Google Scholar] [CrossRef]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of Age: Ten Years of next-Generation Sequencing Technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Nykamp, K.; Anderson, M.; Powers, M.; Garcia, J.; Herrera, B.; Ho, Y.-Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; Westbrook, M.; et al. Sherloc: A Comprehensive Refinement of the ACMG–AMP Variant Classification Criteria. Genet. Med. 2017, 19, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Zawar, A.; Manoj, G.; Nair, P.P.; Deshpande, P.; Suravajhala, R.; Suravajhala, P. Variants of Uncertain Significance: At the Crux of Diagnostic Odyssey. Gene 2025, 962, 149587. [Google Scholar] [CrossRef]
- Burke, W.; Parens, E.; Chung, W.K.; Berger, S.M.; Appelbaum, P.S. The Challenge of Genetic Variants of Uncertain Clinical Significance: A Narrative Review. Ann. Intern. Med. 2022, 175, 994–1000. [Google Scholar] [CrossRef]
- Trudsø, L.C.; Andersen, J.D.; Jacobsen, S.B.; Christiansen, S.L.; Congost-Teixidor, C.; Kampmann, M.-L.; Morling, N. A Comparative Study of Single Nucleotide Variant Detection Performance Using Three Massively Parallel Sequencing Methods. PLoS ONE 2020, 15, e0239850. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Green, R.C. Diagnostic Clinical Genome and Exome Sequencing. N. Engl. J. Med. 2014, 370, 2418–2425. [Google Scholar] [CrossRef]
- Boycott, K.M.; Rath, A.; Chong, J.X.; Hartley, T.; Alkuraya, F.S.; Baynam, G.; Brookes, A.J.; Brudno, M.; Carracedo, A.; Den Dunnen, J.T.; et al. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. Am. J. Hum. Genet. 2017, 100, 695–705. [Google Scholar] [CrossRef]
- D’Aurizio, R.; Semeraro, R.; Magi, A. Using XCAVATOR and EXCAVATOR2 to Identify CNVs from WGS, WES, and TS Data. Curr. Protoc. Hum. Genet. 2018, 98, e65. [Google Scholar] [CrossRef]
- Hatton, J.N.; Frone, M.N.; Cox, H.C.; Crowley, S.B.; Hiraki, S.; Yokoyama, N.N.; Abul-Husn, N.S.; Amatruda, J.F.; Anderson, M.J.; Bofill-De Ros, X.; et al. Specifications of the ACMG/AMP Variant Classification Guidelines for Germline DICER1 Variant Curation. Hum. Mutat. 2023, 2023, 9537832. [Google Scholar] [CrossRef]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Chapman, M.; Evans, K.; Azevedo, L.; Hayden, M.; Heywood, S.; Millar, D.S.; Phillips, A.D.; et al. The Human Gene Mutation Database (HGMD®): Optimizing Its Use in a Clinical Diagnostic or Research Setting. Hum. Genet. 2020, 139, 1197–1207. [Google Scholar] [CrossRef]
- Landrum, M.J.; Chitipiralla, S.; Brown, G.R.; Chen, C.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; Kaur, K.; Liu, C.; et al. ClinVar: Improvements to Accessing Data. Nucleic Acids Res. 2020, 48, D835–D844. [Google Scholar] [CrossRef]
- Foreman, J.; Brent, S.; Perrett, D.; Bevan, A.P.; Hunt, S.E.; Cunningham, F.; Hurles, M.E.; Firth, H.V. DECIPHER: Supporting the Interpretation and Sharing of Rare Disease Phenotype-linked Variant Data to Advance Diagnosis and Research. Hum. Mutat. 2022, 43, 682–697. [Google Scholar] [CrossRef] [PubMed]
- Banerjee-Basu, S.; Packer, A. SFARI Gene: An Evolving Database for the Autism Research Community. Dis. Models Mech. 2010, 3, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Sacristán, A.; Grosdidier, S.; Valverde, O.; Torrens, M.; Bravo, À.; Piñero, J.; Sanz, F.; Furlong, L.I. PsyGeNET: A Knowledge Platform on Psychiatric Disorders and Their Genes. Bioinformatics 2015, 31, 3075–3077. [Google Scholar] [CrossRef] [PubMed]
- Masson, E.; Zou, W.-B.; Génin, E.; Cooper, D.N.; Le Gac, G.; Fichou, Y.; Pu, N.; Rebours, V.; Férec, C.; Liao, Z.; et al. Expanding ACMG Variant Classification Guidelines into a General Framework. Hum. Genom. 2022, 16, 31. [Google Scholar] [CrossRef]
- Deignan, J.L.; Gregg, A.R.; Grody, W.W.; Guo, M.H.; Kearney, H.; Monaghan, K.G.; Raraigh, K.S.; Taylor, J.; Zepeda-Mendoza, C.J.; Ziats, C. Updated Recommendations for CFTR Carrier Screening: A Position Statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2023, 25, 100867. [Google Scholar] [CrossRef]
- Novelli, V.; Canonico, F.; Laborante, R.; Manzoni, M.; Arcudi, A.; Pompilio, G.; Mercuri, E.; Patti, G.; D’Amario, D. Unraveling the Genetic Heartbeat: Decoding Cardiac Involvement in Duchenne Muscular Dystrophy. Biomedicines 2025, 13, 102. [Google Scholar] [CrossRef]
- Zuurbier, L.C.; Defesche, J.C.; Wiegman, A. Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands. Genes 2021, 12, 1168. [Google Scholar] [CrossRef]
- Sturm, A.C.; Knowles, J.W.; Gidding, S.S.; Ahmad, Z.S.; Ahmed, C.D.; Ballantyne, C.M.; Baum, S.J.; Bourbon, M.; Carrié, A.; Cuchel, M.; et al. Clinical Genetic Testing for Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2018, 72, 662–680. [Google Scholar] [CrossRef]
- Seaby, E.G.; Pengelly, R.J.; Ennis, S. Exome Sequencing Explained: A Practical Guide to Its Clinical Application. Brief. Funct. Genom. 2016, 15, 374–384. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, Z.; Shi, P.; Martin, D.M.; Kong, X. Incorporation of Exome-based CNV Analysis Makes trio-WES a More Powerful Tool for Clinical Diagnosis in Neurodevelopmental Disorders: A Retrospective Study. Hum. Mutat. 2021, 42, 990–1004. [Google Scholar] [CrossRef] [PubMed]
- Tilemis, F.-N.; Marinakis, N.M.; Veltra, D.; Svingou, M.; Kekou, K.; Mitrakos, A.; Tzetis, M.; Kosma, K.; Makrythanasis, P.; Traeger-Synodinos, J.; et al. Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases. Genes 2023, 14, 1490. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Yang, N.; Deng, F.; Zhang, M.; Pan, X.; Tan, B.; Liu, L.; Zhang, X.; Yao, H.; Dong, X. SNV/Indel and CNV Analysis in Trio-WES for Intellectual and Developmental Disabilities: Diagnostic Yield & Cost-Effectiveness. Clin. Genet. 2025, 107, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Sener, E.F.; Canatan, H.; Ozkul, Y. Recent Advances in Autism Spectrum Disorders: Applications of Whole Exome Sequencing Technology. Psychiatry Investig. 2016, 13, 255. [Google Scholar] [CrossRef]
- Van Slobbe, M.; Van Haeringen, A.; Vissers, L.E.L.M.; Bijlsma, E.K.; Rutten, J.W.; Suerink, M.; Nibbeling, E.A.R.; Ruivenkamp, C.A.L.; Koene, S. Reanalysis of Whole-Exome Sequencing (WES) Data of Children with Neurodevelopmental Disorders in a Standard Patient Care Context. Eur. J. Pediatr. 2023, 183, 345–355. [Google Scholar] [CrossRef]
- Biesecker, L.G.; Byrne, A.B.; Harrison, S.M.; Pesaran, T.; Schäffer, A.A.; Shirts, B.H.; Tavtigian, S.V.; Rehm, H.L. ClinGen Guidance for Use of the PP1/BS4 Co-Segregation and PP4 Phenotype Specificity Criteria for Sequence Variant Pathogenicity Classification. Am. J. Hum. Genet. 2024, 111, 24–38. [Google Scholar] [CrossRef]
- Yohe, S.L.; Carter, A.B.; Pfeifer, J.D.; Crawford, J.M.; Cushman-Vokoun, A.; Caughron, S.; Leonard, D.G.B. Standards for Clinical Grade Genomic Databases. Arch. Pathol. Lab. Med. 2015, 139, 1400–1412. [Google Scholar] [CrossRef]
- Cano-Gamez, E.; Trynka, G. From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Front. Genet. 2020, 11, 424. [Google Scholar] [CrossRef]
- Murphy, T.M.; Mill, J. Epigenetics in Health and Disease: Heralding the EWAS Era. Lancet 2014, 383, 1952–1954. [Google Scholar] [CrossRef]
- Harris, J.C. New Classification for Neurodevelopmental Disorders in DSM-5. Curr. Opin. Psychiatry 2014, 27, 95–97. [Google Scholar] [CrossRef]
- Moeschler, J.B.; Shevell, M.; Committee on Genetics; Moeschler, J.B.; Shevell, M.; Saul, R.A.; Chen, E.; Freedenberg, D.L.; Hamid, R.; Jones, M.C.; et al. Comprehensive Evaluation of the Child with Intellectual Disability or Global Developmental Delays. Pediatrics 2014, 134, e903–e918. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Love-Nichols, J.A.; Dies, K.A.; Ledbetter, D.H.; Martin, C.L.; Chung, W.K.; Firth, H.V.; Frazier, T.; Hansen, R.L.; Prock, L.; et al. Meta-Analysis and Multidisciplinary Consensus Statement: Exome Sequencing Is a First-Tier Clinical Diagnostic Test for Individuals with Neurodevelopmental Disorders. Genet. Med. 2019, 21, 2413–2421. [Google Scholar] [CrossRef] [PubMed]
- Mellone, S.; Puricelli, C.; Vurchio, D.; Ronzani, S.; Favini, S.; Maruzzi, A.; Peruzzi, C.; Papa, A.; Spano, A.; Sirchia, F.; et al. The Usefulness of a Targeted Next Generation Sequencing Gene Panel in Providing Molecular Diagnosis to Patients with a Broad Spectrum of Neurodevelopmental Disorders. Front. Genet. 2022, 13, 875182. [Google Scholar] [CrossRef] [PubMed]
- Grozeva, D.; Carss, K.; Spasic-Boskovic, O.; Tejada, M.; Gecz, J.; Shaw, M.; Corbett, M.; Haan, E.; Thompson, E.; Friend, K.; et al. Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Hum. Mutat. 2015, 36, 1197–1204. [Google Scholar] [CrossRef]
- Pekeles, H.; Accogli, A.; Boudrahem-Addour, N.; Russell, L.; Parente, F.; Srour, M. Diagnostic Yield of Intellectual Disability Gene Panels. Pediatr. Neurol. 2019, 92, 32–36. [Google Scholar] [CrossRef]
- Wilfert, A.B.; Sulovari, A.; Turner, T.N.; Coe, B.P.; Eichler, E.E. Recurrent de Novo Mutations in Neurodevelopmental Disorders: Properties and Clinical Implications. Genome Med. 2017, 9, 101. [Google Scholar] [CrossRef]
- Álvarez-Mora, M.I.; Sánchez, A.; Rodríguez-Revenga, L.; Corominas, J.; Rabionet, R.; Puig, S.; Madrigal, I. Diagnostic Yield of Next-Generation Sequencing in 87 Families with Neurodevelopmental Disorders. Orphanet J. Rare Dis. 2022, 17, 60. [Google Scholar] [CrossRef]
- Martinez-Granero, F.; Blanco-Kelly, F.; Sanchez-Jimeno, C.; Avila-Fernandez, A.; Arteche, A.; Bustamante-Aragones, A.; Rodilla, C.; Rodríguez-Pinilla, E.; Riveiro-Alvarez, R.; Tahsin-Swafiri, S.; et al. Comparison of the Diagnostic Yield of aCGH and Genome-Wide Sequencing across Different Neurodevelopmental Disorders. Npj Genom. Med. 2021, 6, 25. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Huang, Y.-T.; Lai, P.-C. Genetic Testing for Diagnosing Neurodevelopmental Disorders and Epilepsy: A Systematic Review and Meta-Analysis. Syst. Rev. 2025, 14, 155. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.; Kim, Y.-G.; Ha, C.; Park, J.-H.; Kim, J.-W.; Lee, J.; Jang, J.-H. Genetic Diagnosis of Children with Neurodevelopmental Disorders Using Whole Genome Sequencing. Pediatr. Neurol. 2023, 149, 44–52. [Google Scholar] [CrossRef]
- Treccarichi, S.; Vinci, M.; Cirnigliaro, L.; Messina, A.; Palmigiano, A.; Pettinato, F.; Musumeci, A.; Chiavetta, V.; Saccone, S.; Sturiale, L.; et al. MAN2A2-Related Glycosylation Defects in Autism and Cognitive Delay. Sci. Rep. 2025, 15, 24471. [Google Scholar] [CrossRef]
- Treccarichi, S.; Vinci, M.; Musumeci, A.; Rando, R.G.; Papa, C.; Saccone, S.; Federico, C.; Failla, P.; Ruggieri, M.; Calì, F.; et al. Investigating the Role of the Zinc Finger Protein ZC2HC1C on Autism Spectrum Disorder Susceptibility. Medicina 2025, 61, 574. [Google Scholar] [CrossRef]
- Calì, F.; Virgillito, M.; Treccarichi, S.; Musumeci, A.; Failla, P.; Papa, C.; Galati Rando, R.; Federico, C.; Saccone, S.; Vinci, M. ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant. Int. J. Mol. Sci. 2025, 26, 7586. [Google Scholar] [CrossRef] [PubMed]
- Vinci, M.; Musumeci, A.; Papa, C.; Ragalmuto, A.; Saccone, S.; Federico, C.; Greco, D.; Greco, V.; Calì, F.; Treccarichi, S. Strengthening the Role of PSMC5 as a Potential Gene Associated with Neurodevelopmental Disorders. Int. J. Mol. Sci. 2025, 26, 6386. [Google Scholar] [CrossRef] [PubMed]
- Vinci, M.; Treccarichi, S.; Galati Rando, R.; Musumeci, A.; Todaro, V.; Federico, C.; Saccone, S.; Elia, M.; Calì, F. A de Novo ARIH2 Gene Mutation Was Detected in a Patient with Autism Spectrum Disorders and Intellectual Disability. Sci. Rep. 2024, 14, 15848. [Google Scholar] [CrossRef] [PubMed]
- Nicotera, A.G.; Amore, G.; Saia, M.C.; Vinci, M.; Musumeci, A.; Chiavetta, V.; Federico, C.; Spoto, G.; Saccone, S.; Di Rosa, G.; et al. Fibroblast Growth Factor Receptor 2 (FGFR2), a New Gene Involved in the Genesis of Autism Spectrum Disorder. NeuroMolecular Med. 2023, 25, 650–656. [Google Scholar] [CrossRef]
- Mooney, M.A.; Ryabinin, P.; Wilmot, B.; Bhatt, P.; Mill, J.; Nigg, J.T. Large Epigenome-Wide Association Study of Childhood ADHD Identifies Peripheral DNA Methylation Associated with Disease and Polygenic Risk Burden. Transl. Psychiatry 2020, 10, 8. [Google Scholar] [CrossRef]
- Andreassen, O.A.; Hindley, G.F.L.; Frei, O.; Smeland, O.B. New Insights from the Last Decade of Research in Psychiatric Genetics: Discoveries, Challenges and Clinical Implications. World Psychiatry 2023, 22, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Chen, H.; Lu, J.; Thompson, P.M.; Chen, J.; Wang, Z.; Xu, J.; Xu, C.; Li, X. PD_NGSAtlas: A Reference Database Combining next-Generation Sequencing Epigenomic and Transcriptomic Data for Psychiatric Disorders. BMC Med. Genom. 2014, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Jourdon, A.; Scuderi, S.; Capauto, D.; Abyzov, A.; Vaccarino, F.M. PsychENCODE and beyond: Transcriptomics and Epigenomics of Brain Development and Organoids. Neuropsychopharmacology 2021, 46, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, G.E.; Bendl, J.; Voloudakis, G.; Montgomery, K.S.; Sloofman, L.; Wang, Y.-C.; Shah, H.R.; Hauberg, M.E.; Johnson, J.S.; Girdhar, K.; et al. CommonMind Consortium Provides Transcriptomic and Epigenomic Data for Schizophrenia and Bipolar Disorder. Sci. Data 2019, 6, 180. [Google Scholar] [CrossRef]
- Merico, D.; Zarrei, M.; Costain, G.; Ogura, L.; Alipanahi, B.; Gazzellone, M.J.; Butcher, N.J.; Thiruvahindrapuram, B.; Nalpathamkalam, T.; Chow, E.W.C.; et al. Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome. G3 GenesGenomesGenetics 2015, 5, 2453–2461. [Google Scholar] [CrossRef]
- Bassett, A. Costain Clinical Applications of Schizophrenia Genetics: Genetic Diagnosis, Risk, and Counseling in the Molecular Era. Appl. Clin. Genet. 2012, 2012, 1–18. [Google Scholar] [CrossRef]
- Sedghi, M.; Nouri, N.; Abdali, H.; Memarzadeh, M.; Nouri, N. A Case Report of 22q11 Deletion Syndrome Confirmed by Array-CGH Method. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2012, 17, 310–312. [Google Scholar]
- Derks, E.M.; Thorp, J.G.; Gerring, Z.F. Ten Challenges for Clinical Translation in Psychiatric Genetics. Nat. Genet. 2022, 54, 1457–1465. [Google Scholar] [CrossRef]
- Sathyanarayanan, A.; Mueller, T.T.; Ali Moni, M.; Schueler, K.; Baune, B.T.; Lio, P.; Mehta, D.; Baune, B.T.; Dierssen, M.; Ebert, B.; et al. Multi-Omics Data Integration Methods and Their Applications in Psychiatric Disorders. Eur. Neuropsychopharmacol. 2023, 69, 26–46. [Google Scholar] [CrossRef]
- Korologou-Linden, R.; Leyden, G.M.; Relton, C.L.; Richmond, R.C.; Richardson, T.G. Multi-Omics Analyses of Cognitive Traits and Psychiatric Disorders Highlight Brain-Dependent Mechanisms. Hum. Mol. Genet. 2023, 32, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, C.B.; Bybjerg-Grauholm, J.; Pedersen, M.G.; Grove, J.; Agerbo, E.; Bækvad-Hansen, M.; Poulsen, J.B.; Hansen, C.S.; McGrath, J.J.; Als, T.D.; et al. The iPSYCH2012 Case–Cohort Sample: New Directions for Unravelling Genetic and Environmental Architectures of Severe Mental Disorders. Mol. Psychiatry 2018, 23, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Schork, A.J.; Won, H.; Appadurai, V.; Nudel, R.; Gandal, M.; Delaneau, O.; Revsbech Christiansen, M.; Hougaard, D.M.; Bækved-Hansen, M.; Bybjerg-Grauholm, J.; et al. A Genome-Wide Association Study of Shared Risk across Psychiatric Disorders Implicates Gene Regulation during Fetal Neurodevelopment. Nat. Neurosci. 2019, 22, 353–361. [Google Scholar] [CrossRef]
- Musumeci, A.; Vinci, M.; Treccarichi, S.; Greco, D.; Rizzo, B.; Gloria, A.; Federico, C.; Saccone, S.; Musumeci, S.A.; Calì, F. Potential Association of the CSMD1 Gene with Moderate Intellectual Disability, Anxiety Disorder, and Obsessive–Compulsive Personality Traits. Int. J. Mol. Sci. 2025, 26, 4297. [Google Scholar] [CrossRef] [PubMed]
- Treccarichi, S.; Failla, P.; Vinci, M.; Musumeci, A.; Gloria, A.; Vasta, A.; Calabrese, G.; Papa, C.; Federico, C.; Saccone, S.; et al. UNC5C: Novel Gene Associated with Psychiatric Disorders Impacts Dysregulation of Axon Guidance Pathways. Genes 2024, 15, 306. [Google Scholar] [CrossRef]
- Vinci, M.; Greco, D.; Treccarichi, S.; Chiavetta, V.; Figura, M.G.; Musumeci, A.; Greco, V.; Federico, C.; Calì, F.; Saccone, S. Bioinformatic Evaluation of KLF13 Genetic Variant: Implications for Neurodevelopmental and Psychiatric Symptoms. Genes 2024, 15, 1056. [Google Scholar] [CrossRef]
- Musumeci, A.; Vinci, M.; Verbinnen, I.; Treccarichi, S.; Nigliato, E.; Chiavetta, V.; Greco, D.; Vitello, G.A.; Federico, C.; Janssens, V.; et al. PPP2R5E: New Gene Potentially Involved in Specific Learning Disorders and Myopathy. Gene 2025, 933, 148945. [Google Scholar] [CrossRef]
- Vinci, M.; Greco, D.; Treccarichi, S.; Musumeci, A.; Gloria, A.; Federico, C.; Saccone, S.; Calì, F.; Sirrs, S. Investigating the Role of a Novel Hemizygous FAAH2 Variant in Neurological and Metabolic Disorders. Gene 2025, 966, 149703. [Google Scholar] [CrossRef]
- Beecroft, S.J.; Lamont, P.J.; Edwards, S.; Goullée, H.; Davis, M.R.; Laing, N.G.; Ravenscroft, G. The Impact of Next-Generation Sequencing on the Diagnosis, Treatment, and Prevention of Hereditary Neuromuscular Disorders. Mol. Diagn. Ther. 2020, 24, 641–652. [Google Scholar] [CrossRef]
- Ebert, S.E.; Meiling, J.B.; Caress, J.B.; Gandhi Mehta, R.K.; Baute Penry, V.; Puwanant, A.; Cartwright, M.S. Clinical Utility and Diagnostic Yield of Genetic Testing for Inherited Neuromuscular Disorders in a Single, Large Neuromuscular Center. Neurol. Clin. Pract. 2024, 14, e200268. [Google Scholar] [CrossRef]
- Sedlackova, L.; Sterbova, K.; Vlckova, M.; Seeman, P.; Zarubova, J.; Marusic, P.; Krsek, P.; Krijtova, H.; Musilova, A.; Lassuthova, P. Yield of Exome Sequencing in Patients with Developmental and Epileptic Encephalopathies and Inconclusive Targeted Gene Panel. Eur. J. Paediatr. Neurol. 2024, 48, 17–29. [Google Scholar] [CrossRef]
- McCray, B.A.; Scherer, S.S. Axonal Charcot-Marie-Tooth Disease: From Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021, 18, 2269–2285. [Google Scholar] [CrossRef]
- Chae, J.H.; Vasta, V.; Cho, A.; Lim, B.C.; Zhang, Q.; Eun, S.H.; Hahn, S.H. Utility of next Generation Sequencing in Genetic Diagnosis of Early Onset Neuromuscular Disorders. J. Med. Genet. 2015, 52, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Cortese, A.; Wilcox, J.E.; Polke, J.M.; Poh, R.; Skorupinska, M.; Rossor, A.M.; Laura, M.; Tomaselli, P.J.; Houlden, H.; Shy, M.E.; et al. Targeted Next-Generation Sequencing Panels in the Diagnosis of Charcot-Marie-Tooth Disease. Neurology 2020, 94, e51–e61. [Google Scholar] [CrossRef] [PubMed]
- Rexach, J.; Lee, H.; Martinez-Agosto, J.A.; Németh, A.H.; Fogel, B.L. Clinical Application of Next-Generation Sequencing to the Practice of Neurology. Lancet Neurol. 2019, 18, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Radziwonik-Fraczyk, W.; Elert-Dobkowska, E.; Karpinski, M.; Pilch, J.; Ziora-Jakutowicz, K.; Kubalska, J.; Szczesniak, D.; Stepniak, I.; Zaremba, J.; Sulek, A. Next Generation Sequencing Panel as an Effective Approach to Genetic Testing in Patients with a Highly Variable Phenotype of Neuromuscular Disorders. Neurogenetics 2024, 25, 233–247. [Google Scholar] [CrossRef]
- Ruggieri, A.; Saredi, S.; Zanotti, S.; Pasanisi, M.B.; Maggi, L.; Mora, M. DNAJB6 Myopathies: Focused Review on an Emerging and Expanding Group of Myopathies. Front. Mol. Biosci. 2016, 3, 63. [Google Scholar] [CrossRef]
- Oates, E.C.; Jones, K.J.; Donkervoort, S.; Charlton, A.; Brammah, S.; Smith, J.E.; Ware, J.S.; Yau, K.S.; Swanson, L.C.; Whiffin, N.; et al. Congenital Titinopathy: Comprehensive Characterization and Pathogenic Insights. Ann. Neurol. 2018, 83, 1105–1124. [Google Scholar] [CrossRef]
- Todd, J.J.; Razaqyar, M.S.; Witherspoon, J.W.; Lawal, T.A.; Mankodi, A.; Chrismer, I.C.; Allen, C.; Meyer, M.D.; Kuo, A.; Shelton, M.S.; et al. Novel Variants in Individuals with RYR1-Related Congenital Myopathies: Genetic, Laboratory, and Clinical Findings. Front. Neurol. 2018, 9, 118. [Google Scholar] [CrossRef]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The Revised Ghent Nosology for the Marfan Syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef]
- Judge, D.P.; Dietz, H.C. Marfan’s Syndrome. Lancet 2005, 366, 1965–1976. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, A.; Alaerts, M.; Van Laer, L.; Loeys, B. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery. Hum. Mutat. 2016, 37, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Jia, P.; Feng, X.; Zhang, D. Marfan Syndrome: Insights from Animal Models. Front. Genet. 2025, 15, 1463318. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wang, Z.; Chen, X.; Liu, Z.; Yang, Z.; Chen, Y.; Tian, P.; Li, J.; Wang, Z. Targeted Next-generation Sequencing Reveals the Genetic Mechanism of Chinese Marfan Syndrome Cohort with Ocular Manifestation. Mol. Genet. Genom. Med. 2024, 12, e2482. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, D.; Zhuang, Y.; Xia, Q.; Wen, T.; Jia, H. The Molecular Genetics of Marfan Syndrome. Int. J. Med. Sci. 2021, 18, 2752–2766. [Google Scholar] [CrossRef]
- Ramirez, F.; Dietz, H.C. Extracellular Microfibrils in Vertebrate Development and Disease Processes. J. Biol. Chem. 2009, 284, 14677–14681. [Google Scholar] [CrossRef]
- Thakker, P.D.; Braverman, A.C. Cardiogenetics: Genetic Testing in the Diagnosis and Management of Patients with Aortic Disease. Heart 2021, 107, 619–626. [Google Scholar] [CrossRef]
- Lu, X.; Wang, R.; Li, M.; Zhang, B.; Rao, H.; Huang, X.; Chen, X.; Wu, Y. Identification of Two Novel Large Deletions in FBN1 Gene by Next-Generation Sequencing and Multiplex Ligation-Dependent Probe Amplification. BMC Med. Genom. 2024, 17, 47. [Google Scholar] [CrossRef]
- Faivre, L.; Collod-Beroud, G.; Callewaert, B.; Child, A.; Binquet, C.; Gautier, E.; Loeys, B.L.; Arbustini, E.; Mayer, K.; Arslan-Kirchner, M.; et al. Clinical and Mutation-Type Analysis from an International Series of 198 Probands with a Pathogenic FBN1 Exons 24–32 Mutation. Eur. J. Hum. Genet. 2009, 17, 491–501. [Google Scholar] [CrossRef]
- MacCarrick, G.; Black, J.H.; Bowdin, S.; El-Hamamsy, I.; Frischmeyer-Guerrerio, P.A.; Guerrerio, A.L.; Sponseller, P.D.; Loeys, B.; Dietz, H.C. Loeys–Dietz Syndrome: A Primer for Diagnosis and Management. Genet. Med. 2014, 16, 576–587. [Google Scholar] [CrossRef]
- Loeys, B.L.; Chen, J.; Neptune, E.R.; Judge, D.P.; Podowski, M.; Holm, T.; Meyers, J.; Leitch, C.C.; Katsanis, N.; Sharifi, N.; et al. A Syndrome of Altered Cardiovascular, Craniofacial, Neurocognitive and Skeletal Development Caused by Mutations in TGFBR1 or TGFBR2. Nat. Genet. 2005, 37, 275–281. [Google Scholar] [CrossRef]
- Van De Laar, I.M.B.H.; Oldenburg, R.A.; Pals, G.; Roos-Hesselink, J.W.; De Graaf, B.M.; Verhagen, J.M.A.; Hoedemaekers, Y.M.; Willemsen, R.; Severijnen, L.-A.; Venselaar, H.; et al. Mutations in SMAD3 Cause a Syndromic Form of Aortic Aneurysms and Dissections with Early-Onset Osteoarthritis. Nat. Genet. 2011, 43, 121–126. [Google Scholar] [CrossRef]
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P.; et al. The 2017 International Classification of the Ehlers–Danlos Syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 8–26. [Google Scholar] [CrossRef]
- Pepin, M.; Schwarze, U.; Superti-Furga, A.; Byers, P.H. Clinical and Genetic Features of Ehlers–Danlos Syndrome Type IV, the Vascular Type. N. Engl. J. Med. 2000, 342, 673–680. [Google Scholar] [CrossRef]
- Guo, D.-C.; Papke, C.L.; Tran-Fadulu, V.; Regalado, E.S.; Avidan, N.; Johnson, R.J.; Kim, D.H.; Pannu, H.; Willing, M.C.; Sparks, E.; et al. Mutations in Smooth Muscle Alpha-Actin (ACTA2) Cause Coronary Artery Disease, Stroke, and Moyamoya Disease, Along with Thoracic Aortic Disease. Am. J. Hum. Genet. 2009, 84, 617–627. [Google Scholar] [CrossRef]
- Schwartzman, W.E.; Hujoel, M.L.A.; Channaoui, N.; Lee-Kim, V.; Loh, P.-R.; Gupta, R.M. Interpreting MYH11 Copy Number Variation in Thoracic Aortic Aneurysm and Dissection. JACC Case Rep. 2025, 30, 102973. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, P.; Cadenet, M.; Mougin, Z.; Le Goff, C.; Perbet, S.; Francois, M.; Dupuis-Girod, S.; Boileau, C.; Hanna, N. Early-Onset Aortic Dissection: Characterization of a New Pathogenic Splicing Variation in the MYH11 Gene with Several In-Frame Abnormal Transcripts. Hum. Mutat. 2023, 2023, 1410230. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.J.; Priori, S.G.; Willems, S.; Berul, C.; Brugada, R.; Calkins, H.; Camm, A.J.; Ellinor, P.T.; Gollob, M.; Hamilton, R.; et al. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies This Document Was Developed as a Partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 2011, 8, 1308–1339. [Google Scholar] [CrossRef] [PubMed]
- Ingles, J.; Goldstein, J.; Thaxton, C.; Caleshu, C.; Corty, E.W.; Crowley, S.B.; Dougherty, K.; Harrison, S.M.; McGlaughon, J.; Milko, L.V.; et al. Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. Circ. Genom. Precis. Med. 2019, 12, e002460. [Google Scholar] [CrossRef]
- Walsh, R.; Thomson, K.L.; Ware, J.S.; Funke, B.H.; Woodley, J.; McGuire, K.J.; Mazzarotto, F.; Blair, E.; Seller, A.; Taylor, J.C.; et al. Reassessment of Mendelian Gene Pathogenicity Using 7,855 Cardiomyopathy Cases and 60,706 Reference Samples. Genet. Med. 2017, 19, 192–203. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Wan, Z.; Su, M.; Zhang, Y.; Yang, T.; Ji, X.; Men, J.; Xing, G.; Han, J.; et al. Whole Genome Sequencing Identifies Pathogenic Genetic Variants in Han Chinese Patients with Familial Venous Thromboembolism. Commun. Biol. 2025, 8, 604. [Google Scholar] [CrossRef] [PubMed]
- McBenedict, B.; Hauwanga, W.N.; Amadi, E.S.; Abraham, A.A.; Sivakumar, R.; Okere, M.O.; Yau, M.C.Y.; Balla, N.; Rahumathulla, T.; Alphonse, B.; et al. Impact of Genetic Testing on the Diagnosis, Management, and Prognosis of Hypertrophic Cardiomyopathy: A Systematic Review. Cureus 2024, 16, e70993. [Google Scholar] [CrossRef] [PubMed]
- Semsarian, C.; Ingles, J.; Maron, M.S.; Maron, B.J. New Perspectives on the Prevalence of Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2015, 65, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Jacoby, D.; Cirino, A.L.; Fox, J.C.; Lakdawala, N.K.; Ware, J.S.; et al. Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy: Insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 2018, 138, 1387–1398. [Google Scholar] [CrossRef]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; De Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Heart Rhythm 2019, 16, e301–e372. [Google Scholar] [CrossRef]
- Sen-Chowdhry, S.; Syrris, P.; McKENNA, W.J. Genetics of Right Ventricular Cardiomyopathy. J. Cardiovasc. Electrophysiol. 2005, 16, 927–935. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Smith, E.; Subrahmanyan, L.; Dykas, D.; Abou Ziki, M.D.; Azari, B.; Hannah-Shmouni, F.; Jiang, Y.; Akar, J.G.; Marieb, M.; et al. Application of Whole Exome Sequencing in the Clinical Diagnosis and Management of Inherited Cardiovascular Diseases in Adults. Circ. Cardiovasc. Genet. 2017, 10, e001573. [Google Scholar] [CrossRef]
- Lavanya, K.; Mahtani, K.; Abbott, J.; Jain, A.; Selvam, P.; Atwal, H.; Farres, H.; Atwal, P.S. A Patient with a Novel Pathogenic Variant in COL5A1 Exhibiting Prominent Vascular and Cardiac Features. Am. J. Med. Genet. A 2022, 188, 2192–2197. [Google Scholar] [CrossRef]
- Sorrentino, U.; Gabbiato, I.; Canciani, C.; Calosci, D.; Rigon, C.; Zuccarello, D.; Cassina, M. Homozygous TNNI3 Mutations and Severe Early Onset Dilated Cardiomyopathy: Patient Report and Review of the Literature. Genes 2023, 14, 748. [Google Scholar] [CrossRef]
- Kühnisch, J.; Herbst, C.; Al-Wakeel-Marquard, N.; Dartsch, J.; Holtgrewe, M.; Baban, A.; Mearini, G.; Hardt, J.; Kolokotronis, K.; Gerull, B.; et al. Targeted Panel Sequencing in Pediatric Primary Cardiomyopathy Supports a Critical Role of TNNI3. Clin. Genet. 2019, 96, 549–559. [Google Scholar] [CrossRef]
- Gal, D.B.; Morales, A.; Rojahn, S.; Callis, T.; Garcia, J.; Priest, J.R.; Truty, R.; Vatta, M.; Nussbaum, R.L.; Esplin, E.D.; et al. Comprehensive Genetic Testing for Pediatric Hypertrophic Cardiomyopathy Reveals Clinical Management Opportunities and Syndromic Conditions. Pediatr. Cardiol. 2022, 43, 616–623. [Google Scholar] [CrossRef]
- Alfares, A.A.; Kelly, M.A.; McDermott, G.; Funke, B.H.; Lebo, M.S.; Baxter, S.B.; Shen, J.; McLaughlin, H.M.; Clark, E.H.; Babb, L.J.; et al. Results of Clinical Genetic Testing of 2912 Probands with Hypertrophic Cardiomyopathy: Expanded Panels Offer Limited Additional Sensitivity. Genet. Med. 2015, 17, 880–888. [Google Scholar] [CrossRef]
- Easton, D.F.; Pharoah, P.D.P.; Antoniou, A.C.; Tischkowitz, M.; Tavtigian, S.V.; Nathanson, K.L.; Devilee, P.; Meindl, A.; Couch, F.J.; Southey, M.; et al. Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. N. Engl. J. Med. 2015, 372, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Kurian, A.W.; Hare, E.E.; Mills, M.A.; Kingham, K.E.; McPherson, L.; Whittemore, A.S.; McGuire, V.; Ladabaum, U.; Kobayashi, Y.; Lincoln, S.E.; et al. Clinical Evaluation of a Multiple-Gene Sequencing Panel for Hereditary Cancer Risk Assessment. J. Clin. Oncol. 2014, 32, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Kuzbari, Z.; Bandlamudi, C.; Loveday, C.; Garrett, A.; Mehine, M.; George, A.; Hanson, H.; Snape, K.; Kulkarni, A.; Allen, S.; et al. Germline-Focused Analysis of Tumour-Detected Variants in 49,264 Cancer Patients: ESMO Precision Medicine Working Group Recommendations. Ann. Oncol. 2023, 34, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Enko, D.; Schaflinger, E.; Müller, D.J. Clinical Application Examples of a Next-Generation Sequencing based Multi-Genepanel Analysis. Dtsch. Med. Wochenschr. 2023, 148, 695–702. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.-A.; Hong, J.; Kim, Y.; Hong, G.; Baik, S.; Choi, K.; Lee, M.-K.; Lee, K.-R. Identification of Genetic Variants Related to Metabolic Syndrome by Next-Generation Sequencing. Diabetol. Metab. Syndr. 2022, 14, 119. [Google Scholar] [CrossRef]
- Ferreira, C.R.; van Karnebeek, C.D.M.; Vockley, J.; Blau, N. A Proposed Nosology of Inborn Errors of Metabolism. Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 102–106. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Shyr, C.; Ross, C.J.; Horvath, G.A.; Salvarinova, R.; Ye, X.C.; Zhang, L.-H.; Bhavsar, A.P.; Lee, J.J.Y.; Drögemöller, B.I.; et al. Exome Sequencing and the Management of Neurometabolic Disorders. N. Engl. J. Med. 2016, 374, 2246–2255. [Google Scholar] [CrossRef]
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef]
- Grabowski, G.A.; Kishnani, P.S.; Alcalay, R.N.; Prakalapakorn, S.G.; Rosenbloom, B.E.; Tuason, D.A.; Weinreb, N.J. Challenges in Gaucher Disease: Perspectives from an Expert Panel. Mol. Genet. Metab. 2025, 145, 109074. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, X.; Feng, Y.; Bai, Y.; Zhao, X.; Liu, N.; Kong, X. Genetic Analysis by Targeted Next-Generation Sequencing and Novel Variation Identification of Maple Syrup Urine Disease in Chinese Han Population. Sci. Rep. 2021, 11, 18939. [Google Scholar] [CrossRef]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial Diseases. Nat. Rev. Dis. Primer 2016, 2, 16080. [Google Scholar] [CrossRef]
- Barretta, F.; Uomo, F.; Caldora, F.; Mocerino, R.; Adamo, D.; Testa, F.; Simonelli, F.; Scudiero, O.; Tinto, N.; Frisso, G.; et al. Combined MITOchondrial-NUCLEAR (MITO-NUCLEAR) Analysis for Mitochondrial Diseases Diagnosis: Validation and Implementation of a One-Step NGS Method. Genes 2023, 14, 1087. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, C.; Pereira, C.; Silva, L.; Laranjeira, M.; Lopes, A.; Neiva, R.; Rodrigues, E.; Campos, T.; Martins, E.; Bandeira, A.; et al. The Genetic Landscape of Mitochondrial Diseases in the Next-Generation Sequencing Era: A Portuguese Cohort Study. Front. Cell Dev. Biol. 2024, 12, 1331351. [Google Scholar] [CrossRef] [PubMed]
- Gorman, E.; Dai, H.; Feng, Y.; Craigen, W.J.; Chen, D.C.Y.; Xia, F.; Meng, L.; Liu, P.; Rigobello, R.; Neogi, A.; et al. Experiences from Dual Genome Next-Generation Sequencing Panel Testing for Mitochondrial Disorders: A Comprehensive Molecular Diagnosis. Front. Genet. 2025, 16, 1488956. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Huang, W.; Wang, L.; Wu, J.; Zhao, G.; Ren, H.; Liu, L.; Kong, X. Molecular Findings in Patients for Whole Exome Sequencing and Mitochondrial Genome Assessment. Clin. Chim. Acta 2024, 561, 119774. [Google Scholar] [CrossRef]
- Barresi, M.; Dal Santo, G.; Izzo, R.; Zauli, A.; Lamantea, E.; Caporali, L.; Ghezzi, D.; Legati, A. Bioinformatics Tools for NGS-Based Identification of Single Nucleotide Variants and Large-Scale Rearrangements in Mitochondrial DNA. BioTech 2025, 14, 9. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Yeo, G.S.H. The Bigger Picture of FTO—The First GWAS-Identified Obesity Gene. Nat. Rev. Endocrinol. 2014, 10, 51–61. [Google Scholar] [CrossRef]
- Del Bosque-Plata, L.; Martínez-Martínez, E.; Espinoza-Camacho, M.Á.; Gragnoli, C. The Role of TCF7L2 in Type 2 Diabetes. Diabetes 2021, 70, 1220–1228. [Google Scholar] [CrossRef]
- Xi, B.; Chandak, G.R.; Shen, Y.; Wang, Q.; Zhou, D. Association between Common Polymorphism near the MC4R Gene and Obesity Risk: A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7, e45731. [Google Scholar] [CrossRef]
- Jiao, H.; Kulyté, A.; Näslund, E.; Thorell, A.; Gerdhem, P.; Kere, J.; Arner, P.; Dahlman, I. Whole-Exome Sequencing Suggests LAMB3 as a Susceptibility Gene for Morbid Obesity. Diabetes 2016, 65, 2980–2989. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.; Cheung, Y.H.; Shen, Y.; Lanzano, P.; Mirza, N.M.; Ten, S.; Maclaren, N.K.; Motaghedi, R.; Han, J.C.; Yanovski, J.A.; et al. Whole-Exome Sequencing Identifies Novel LEPR Mutations in Individuals with Severe Early Onset Obesity: Exome Sequencing Identifies LEPR Mutations. Obesity 2014, 22, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Paz-Filho, G.; Boguszewski, M.; Mastronardi, C.; Patel, H.; Johar, A.; Chuah, A.; Huttley, G.; Boguszewski, C.; Wong, M.-L.; Arcos-Burgos, M.; et al. Whole Exome Sequencing of Extreme Morbid Obesity Patients: Translational Implications for Obesity and Related Disorders. Genes 2014, 5, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Zou, Y.; Yang, M.; Lu, Q.; Chen, M.; Liu, W.; Zhao, S.; Sun, Y.; Shi, J.; Ma, Q.; et al. Genetic Interaction of DGAT2 and FAAH in the Development of Human Obesity. Endocrine 2017, 56, 366–378. [Google Scholar] [CrossRef]
- Day, S.E.; Traurig, M.; Kumar, P.; Piaggi, P.; Koroglu, C.; Kobes, S.; Hanson, R.L.; Bogardus, C.; Baier, L.J. Functional Variants in Cytochrome B5 Type A (CYB5A) Are Enriched in Southwest American Indian Individuals and Associate with Obesity. Obesity 2022, 30, 546–552. [Google Scholar] [CrossRef]
- Steinthorsdottir, V.; Thorleifsson, G.; Sulem, P.; Helgason, H.; Grarup, N.; Sigurdsson, A.; Helgadottir, H.T.; Johannsdottir, H.; Magnusson, O.T.; Gudjonsson, S.A.; et al. Identification of Low-Frequency and Rare Sequence Variants Associated with Elevated or Reduced Risk of Type 2 Diabetes. Nat. Genet. 2014, 46, 294–298. [Google Scholar] [CrossRef]
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef]
- Erkkinen, M.G.; Kim, M.-O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018, 10, a033118. [Google Scholar] [CrossRef]
- Logroscino, G.; Urso, D.; Savica, R. Descriptive Epidemiology of Neurodegenerative Diseases: What Are the Critical Questions? Neuroepidemiology 2022, 56, 309–318. [Google Scholar] [CrossRef]
- Beck, J.; Pittman, A.; Adamson, G.; Campbell, T.; Kenny, J.; Houlden, H.; Rohrer, J.D.; De Silva, R.; Shoai, M.; Uphill, J.; et al. Validation of Next-Generation Sequencing Technologies in Genetic Diagnosis of Dementia. Neurobiol. Aging 2014, 35, 261–265. [Google Scholar] [CrossRef]
- Hsu, J.; Lin, C.; Chen, P.; Lin, K.; Chen, T. Genetic Study of YOUNG-ONSET Dementia Using Targeted Gene Panel Sequencing in Taiwan. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2021, 186, 67–76. [Google Scholar] [CrossRef]
- Nicolas, G.; Wallon, D.; Charbonnier, C.; Quenez, O.; Rousseau, S.; Richard, A.-C.; Rovelet-Lecrux, A.; Coutant, S.; Le Guennec, K.; Bacq, D.; et al. Screening of Dementia Genes by Whole-Exome Sequencing in Early-Onset Alzheimer Disease: Input and Lessons. Eur. J. Hum. Genet. 2016, 24, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, X.; Shen, J.; Tian, W.; Fang, R.; Li, B.; Ma, J.; Cao, L.; Chen, S.; Li, G.; et al. The Whole Exome Sequencing Clarifies the Genotype-Phenotype Correlations in Patients with Early-Onset Dementia. Aging Dis. 2018, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, N.S.; Brickman, A.M.; Andrews, H.; Manly, J.J.; Schupf, N.; Lantigua, R.; Wolock, C.J.; Kamalakaran, S.; Petrovski, S.; Tosto, G.; et al. Whole-exome Sequencing in 20,197 Persons for Rare Variants in Alzheimer’s Disease. Ann. Clin. Transl. Neurol. 2018, 5, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, J.; Su, N.; Zhang, S.; Yan, F.; Lin, X.; Yu, J.; Li, W.; Li, X.; Xiao, S. Analysis of Genotype-Phenotype Correlations in Patients with Degenerative Dementia Through the Whole Exome Sequencing. Front. Aging Neurosci. 2021, 13, 745407. [Google Scholar] [CrossRef]
- Huq, A.J.; Thompson, B.; Bennett, M.F.; Bournazos, A.; Bommireddipalli, S.; Gorelik, A.; Schultz, J.; Sexton, A.; Purvis, R.; West, K.; et al. Clinical Impact of Whole-Genome Sequencing in Patients with Early-Onset Dementia. J. Neurol. Neurosurg. Psychiatry 2022, 93, 1181–1189. [Google Scholar] [CrossRef]
- Fung, J.L.F.; Yu, M.H.C.; Huang, S.; Chung, C.C.Y.; Chan, M.C.Y.; Pajusalu, S.; Mak, C.C.Y.; Hui, V.C.C.; Tsang, M.H.Y.; Yeung, K.S.; et al. A Three-Year Follow-up Study Evaluating Clinical Utility of Exome Sequencing and Diagnostic Potential of Reanalysis. Npj Genom. Med. 2020, 5, 37. [Google Scholar] [CrossRef]
- Seo, G.H.; Kim, T.; Choi, I.H.; Park, J.; Lee, J.; Kim, S.; Won, D.; Oh, A.; Lee, Y.; Choi, J.; et al. Diagnostic Yield and Clinical Utility of Whole Exome Sequencing Using an Automated Variant Prioritization System, EVIDENCE. Clin. Genet. 2020, 98, 562–570. [Google Scholar] [CrossRef]
- Pandey, R.; Brennan, N.F.; Trachana, K.; Katsandres, S.; Bodamer, O.; Belmont, J.; Veenstra, D.L.; Peng, S. A Meta-Analysis of Diagnostic Yield and Clinical Utility of Genome and Exome Sequencing in Pediatric Rare and Undiagnosed Genetic Diseases. Genet. Med. 2025, 27, 101398. [Google Scholar] [CrossRef]
- Brancato, D.; Coniglio, E.; Bruno, F.; Agostini, V.; Saccone, S.; Federico, C. Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction. Genes 2023, 14, 1604. [Google Scholar] [CrossRef]
- Brancato, D.; Bruno, F.; Coniglio, E.; Sturiale, V.; Saccone, S.; Federico, C. The Chromatin Organization Close to SNP Rs12913832, Involved in Eye Color Variation, Is Evolutionary Conserved in Vertebrates. Int. J. Mol. Sci. 2024, 25, 6602. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E. ACMG Clinical Laboratory Standards for Next-Generation Sequencing. Genet. Med. 2013, 15, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Juan, A.; Stephens, J.; French, C.E.; Gleadall, N.; Mégy, K.; Penkett, C.; Shamardina, O.; Stirrups, K.; Delon, I.; Dewhurst, E.; et al. Complex Structural Variants in Mendelian Disorders: Identification and Breakpoint Resolution Using Short- and Long-Read Genome Sequencing. Genome Med. 2018, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.C.; Martin, H.C.; Lise, S.; Broxholme, J.; Cazier, J.-B.; Rimmer, A.; Kanapin, A.; Lunter, G.; Fiddy, S.; Allan, C.; et al. Factors Influencing Success of Clinical Genome Sequencing across a Broad Spectrum of Disorders. Nat. Genet. 2015, 47, 717–726. [Google Scholar] [CrossRef]
- Choon, Y.W.; Choon, Y.F.; Nasarudin, N.A.; Al Jasmi, F.; Remli, M.A.; Alkayali, M.H.; Mohamad, M.S. Artificial Intelligence and Database for NGS-Based Diagnosis in Rare Disease. Front. Genet. 2024, 14, 1258083. [Google Scholar] [CrossRef]
- Sheikh Hassani, M.; Jain, R.; Ramaswamy, S.; Sinha, S.; El Naofal, M.; Halabi, N.; Alyafei, S.; Alfalasi, R.; Shenbagam, S.; Taylor, A.; et al. Virtual Gene Panels Have a Superior Diagnostic Yield for Inherited Rare Diseases Relative to Static Panels. Clin. Chem. 2025, 71, 169–184. [Google Scholar] [CrossRef]
- Robertson, A.J.; Tran, K.; Patel, C.; Sullivan, C.; Stark, Z.; Waddell, N. Evolution of Virtual Gene Panels over Time and Implications for Genomic Data Re-Analysis. Genet. Med. Open 2023, 1, 100820. [Google Scholar] [CrossRef]
- Gargano, M.A.; Matentzoglu, N.; Coleman, B.; Addo-Lartey, E.B.; Anagnostopoulos, A.V.; Anderton, J.; Avillach, P.; Bagley, A.M.; Bakštein, E.; Balhoff, J.P.; et al. The Human Phenotype Ontology in 2024: Phenotypes around the World. Nucleic Acids Res. 2024, 52, D1333–D1346. [Google Scholar] [CrossRef]
- Natarajan, S.; Kundapuram, N.; Bhaskar, N.; Policharla, S.S.; Das, B. A Hypergraph Powered Approach to Phenotype-Driven Gene Prioritization and Rare Disease Prediction. Sci. Rep. 2025, 15, 23780. [Google Scholar] [CrossRef]
- Pengelly, R.J.; Alom, T.; Zhang, Z.; Hunt, D.; Ennis, S.; Collins, A. Evaluating Phenotype-Driven Approaches for Genetic Diagnoses from Exomes in a Clinical Setting. Sci. Rep. 2017, 7, 13509. [Google Scholar] [CrossRef]
- Kavak, E.; Aslan, T.; Karaman, R.; Aydin, C.; Ozer, T.; Sunnetci Akkoyunlu, D.; Savli, H.; Cine, N.; Seker, T. Genomize-SEQ: An NGS Data Analysis Platform for Genomic Variant Classification and Prioritization. medRxiv 2025. [Google Scholar] [CrossRef]
- Duong, D.; Solomon, B.D. Artificial Intelligence in Clinical Genetics. Eur. J. Hum. Genet. 2025, 33, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Poplin, R.; Chang, P.-C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P.T.; et al. A Universal SNP and Small-Indel Variant Caller Using Deep Neural Networks. Nat. Biotechnol. 2018, 36, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef]
- Frazer, J.; Notin, P.; Dias, M.; Gomez, A.; Min, J.K.; Brock, K.; Gal, Y.; Marks, D.S. Disease Variant Prediction with Deep Generative Models of Evolutionary Data. Nature 2021, 599, 91–95. [Google Scholar] [CrossRef]
- Dias, R.; Torkamani, A. Artificial Intelligence in Clinical and Genomic Diagnostics. Genome Med. 2019, 11, 70. [Google Scholar] [CrossRef]
- Olivucci, G.; Iovino, E.; Innella, G.; Turchetti, D.; Pippucci, T.; Magini, P. Long Read Sequencing on Its Way to the Routine Diagnostics of Genetic Diseases. Front. Genet. 2024, 15, 1374860. [Google Scholar] [CrossRef]
- Zheng, P.; Zhou, C.; Ding, Y.; Liu, B.; Lu, L.; Zhu, F.; Duan, S. Nanopore Sequencing Technology and Its Applications. MedComm 2023, 4, e316. [Google Scholar] [CrossRef]
- Hiatt, S.M.; Lawlor, J.M.J.; Handley, L.H.; Ramaker, R.C.; Rogers, B.B.; Partridge, E.C.; Boston, L.B.; Williams, M.; Plott, C.B.; Jenkins, J.; et al. Long-Read Genome Sequencing for the Molecular Diagnosis of Neurodevelopmental Disorders. Hum. Genet. Genom. Adv. 2021, 2, 100023. [Google Scholar] [CrossRef]
- Conlin, L.K.; Aref-Eshghi, E.; McEldrew, D.A.; Luo, M.; Rajagopalan, R. Long-read Sequencing for Molecular Diagnostics in Constitutional Genetic Disorders. Hum. Mutat. 2022, 43, 1531–1544. [Google Scholar] [CrossRef]
- Chintalaphani, S.R.; Pineda, S.S.; Deveson, I.W.; Kumar, K.R. An Update on the Neurological Short Tandem Repeat Expansion Disorders and the Emergence of Long-Read Sequencing Diagnostics. Acta Neuropathol. Commun. 2021, 9, 98. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, C.; Zhang, S.; Liu, Y.; Yu, M.; Zheng, Y.; Meng, L.; Acharya, A.; Cornejo-Sanchez, D.M.; Wang, G.; et al. Long-read Whole-genome Sequencing for the Genetic Diagnosis of Dystrophinopathies. Ann. Clin. Transl. Neurol. 2020, 7, 2041–2046. [Google Scholar] [CrossRef]
- Cohen, A.S.A.; Farrow, E.G.; Abdelmoity, A.T.; Alaimo, J.T.; Amudhavalli, S.M.; Anderson, J.T.; Bansal, L.; Bartik, L.; Baybayan, P.; Belden, B.; et al. Genomic Answers for Children: Dynamic Analyses of >1000 Pediatric Rare Disease Genomes. Genet. Med. 2022, 24, 1336–1348. [Google Scholar] [CrossRef]
- Miao, H.; Zhou, J.; Yang, Q.; Liang, F.; Wang, D.; Ma, N.; Gao, B.; Du, J.; Lin, G.; Wang, K.; et al. Long-Read Sequencing Identified a Causal Structural Variant in an Exome-Negative Case and Enabled Preimplantation Genetic Diagnosis. Hereditas 2018, 155, 32. [Google Scholar] [CrossRef]
- Gómez-Cebrián, N.; Domingo-Ortí, I.; Poveda, J.L.; Vicent, M.J.; Puchades-Carrasco, L.; Pineda-Lucena, A. Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers 2021, 13, 4544. [Google Scholar] [CrossRef] [PubMed]
- Sturm, D.; Capper, D.; Andreiuolo, F.; Gessi, M.; Kölsche, C.; Reinhardt, A.; Sievers, P.; Wefers, A.K.; Ebrahimi, A.; Suwala, A.K.; et al. Multiomic Neuropathology Improves Diagnostic Accuracy in Pediatric Neuro-Oncology. Nat. Med. 2023, 29, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhan, X. The Crucial Role of Multiomic Approach in Cancer Research and Clinically Relevant Outcomes. EPMA J. 2018, 9, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.S.; Pereira, C.; Aanicai, R.; Schröder, S.; Bochinski, T.; Kaune, A.; Urzi, A.; Spohr, T.C.L.S.; Viceconte, N.; Oppermann, S.; et al. An Integrated Multiomic Approach as an Excellent Tool for the Diagnosis of Metabolic Diseases: Our First 3720 Patients. Eur. J. Hum. Genet. 2022, 30, 1029–1035. [Google Scholar] [CrossRef]
Feature | Targeted Gene Panels | WES | WGS |
---|---|---|---|
Analyzed region | 50–500 selected genes | All coding exons (~1–2% of genome) | Entire genome (coding + non-coding) |
Average coverage (depth) | 500–1000× | 80–150× | 30–50× |
Average number of mapped reads | 5–20 million | 50–100 million | 600–900 million |
Coverage uniformity | Very high (targeted) | Variable (depends on capture efficiency) | High and uniform |
Sensitivity for low-frequency variants | High (ideal for mosaicism or VAF < 10%) | Moderate | Lower unless sequenced at high depth |
Risk of incidental findings | Low | Moderate | High |
Mosaicism detection | Excellent (due to high coverage) | Moderate (depends on depth and region) | Limited at standard coverage; better with >60× |
Detection of CNVs/structural variants | Limited | Partial (depends on pipeline) | Excellent |
Analysis turnaround time | Fast | Moderate | Slow |
Average cost | Low | Moderate | High |
Primary clinical indications | Conditions with clear phenotype and known genes | Rare diseases, neuropsychiatric disorders, complex phenotypes | Unresolved cases, complex/multifactorial diseases |
Potential for novel gene discovery | None | Moderate | High |
Data management burden | Low | Moderate | High (large data volume) |
Workflow Phase | Description | Technologies/Tools | Critical Aspects |
---|---|---|---|
Sample Preparation | DNA extraction and quantification | Qubit, Nanodrop, PCR | DNA integrity, purity, contamination |
Library Preparation | DNA fragmentation and adapter ligation | Enzymatic kits, sonicators | Bias in representation, ligation efficiency |
Target Enrichment | Capture or amplification of regions of interest (ROI) | Agilent SureSelect, Haloplex | Uniformity, off-target effects |
Sequencing | High-throughput parallel sequencing | Illumina, Ion Torrent | Read depth, sequencing errors |
Bioinformatics | Alignment, variant calling, annotation | BWA, GATK, ANNOVAR | Pipelines, thresholds, filtering strategy |
Interpretation | Clinical classification and reporting | ACMG guidelines | VUS management, evidence strength |
Evidence | Criteria Summary |
---|---|
Very Strong (PVS1) | Predicted loss-of-function (LoF) variant in a gene with established LoF disease mechanism (e.g., nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon loss, large deletions). Use caution with uncertain LoF mechanisms or exon skipping. |
Strong (PS1–PS4) | PS1: Same amino acid change as a known pathogenic variant, but caused by a different nucleotide change. PS2: De novo variant (with confirmed maternity and paternity) in a patient with the disease and no family history. PS3: Functional studies support a damaging effect on the gene or protein. PS4: Increased prevalence of the variant in affected individuals vs. controls. |
Moderate (PM1–PM6) | PM1: Located in a mutational hotspot or critical functional domain. PM2: Absent or rare in population databases. PM3: Detected in trans (compound heterozygous) with a known pathogenic variant in recessive disease. PM4: Protein length changes (in-frame indels or stop-loss variants). PM5: Missense change at same amino acid as another known pathogenic missense variant. PM6: Assumed de novo (without confirmed maternity/paternity). |
Supporting (PP1–PP5) | PP1: Cosegregation with disease in multiple affected family members. PP2: Missense variant in gene with low rate of benign variation and known disease mechanism. PP3: Multiple computational tools predict deleterious effect. PP4: Patient’s phenotype/family history is highly specific to the gene. PP5: Previously reported as pathogenic by reputable source (without primary evidence). |
Variant Type | Targeted Gene Panels | WES | WGS | Main Limitations |
---|---|---|---|---|
SNVs | High sensitivity | High sensitivity | High sensitivity | High sensitivity overall; may be affected by low coverage regions |
Indels | ≤50 bp | ≤50 bp | Up to larger indels | May miss complex/longer indels |
CNVs | Known or large CNVs | Variable (coverage/tool-dependent) | Genome-wide | Suboptimal in targeted/WES |
SVs | Not detected | Not detected | Detectable (algorithms/depth required) | Needs high-quality data + dedicated tools |
Intronic/Regulatory | Not covered | Near-exon only | Genome-wide | Not assessed in targeted/WES |
Repeat Expansions | Only if specifically targeted | Low sensitivity | Better, but still challenging | Limitations across all platforms |
Disease Category | Example Disorders | Key Genes | Available Panels |
---|---|---|---|
Monogenic Disorders | Cystic fibrosis, Duchenne MD | CFTR, DMD | Panels target full gene |
Neurological Disorders | Huntington, Charcot-Marie-Tooth | HTT, PMP22, GJB1 | Often combined with CNV tools |
Cardiovascular Disorders | HCM, DCM, ACM | MYH7, TTN, LMNA, PKP2 | Covered in cardiomyopathy panels |
Cancer Syndromes | BRCA-related, Lynch syndrome | BRCA1, BRCA2, MLH1, MSH2 | Some panels cover >100 genes |
Metabolic Disorders | PKU, Gaucher disease | PAH, GBA | Often phenotype-driven |
Intellectual Disabilities | Rett syndrome, Fragile X, ASD | MECP2, FMR1, SHANK3, SCN2A | Broad panels often include >500 genes |
Mitochondrial Disorders | MELAS, Leigh syndrome | MT-ND genes, POLG, SURF1 | Panels may include both nuclear and mtDNA genes |
Rare and Undiagnosed Conditions | Atypical syndromes, variable presentations | Varies widely; e.g., TCF4, NRXN1, KAT6B | Ultra-rare disease panels or exome-based panels |
Pharmacogenetics (a) | Drug metabolism response | CYP2D6, CYP2C19, TPMT, SLCO1B1 | Targeted pharmacogenetics panels |
Gene | Cardiomyopathies | RefSeq No. | Chr. band | Chr. Position (a) | Size, bp | Exons | MOI |
---|---|---|---|---|---|---|---|
ACTC1 * | HCM, RCM/LVNC | NM_005159.5 | 15q14 | 34,790,230 | 5320 | 7 | AD |
BAG3 * | DCM | NM_004281.4 | 10q26.11 | 119,651,380 | 26,440 | 4 | AD |
DSC2 | ACM | NM_024422.6 | 18q12.1 | 31,058,840 | 43,582 | 16 | AR, AD |
DSG2 | ACM | NM_001943.5 | 18q12.1 | 31,498,177 | 50,832 | 15 | AD |
DSP * | DCM | NM_004415.4 | 6p24.3 | 7,541,671 | 45,044 | 24 | AD, AR |
FLNC * | DCM, ACM, RCM/LVNC | NM_001458.5 | 7q32.1 | 128,830,406 | 28,867 | 48 | AD |
GLA | HCM | NM_000169.3 | Xq22.1 | 101,397,803 | 10,123 | 7 | X-linked |
JUP | ACM | NM_002230.4 | 17q21.2 | 41,754,609 | 32,103 | 14 | AR, AD |
LAMP2 | HCM | NM_002294.3 | Xq24 | 120,426,148 | 43,149 | 9 | X-linked |
LMNA * | DCM, ACM | NM_170707.4 | 1q22 | 156,114,711 | 25,371 | 12 | AD |
MYBPC3 * | HCM | NM_000256.3 | 11p11.2 | 47,331,406 | 21,297 | 35 | AD |
MYH7 * | DCM, HCM, RCM/LVNC | NM_000257.4 | 14q11.2 | 23,412,740 | 22,921 | 40 | AD |
PKP2 * | ACM | NM_001407159.1 | 12p11.21 | 32,790,755 | 106,023 | 13 | AD |
PRKAG2 | HCM | NM_016203.4 | 7q36.1 | 151,556,127 | 320,989 | 16 | AD |
RBM20 * | DCM | NM_001134363.3 | 10q25.2 | 110,644,336 | 195,133 | 14 | AD |
SCN5A * | DCM | NM_000335.5 | 3p22.2 | 38,548,062 | 101,626 | 28 | AD |
TMEM43 | ACM | NM_024334.3 | 3p25.1 | 14,125,052 | 18,629 | 12 | AD |
TNNI3 | HCM, RCM/LVNC | NM_000363.5 | 19q13.42 | 55,151,767 | 5966 | 8 | AD |
TNNT2 | HCM | NM_001276345.2 | 1q32.1 | 201,359,014 | 18,667 | 17 | AD |
TPM1 | HCM | NM_001018005.2 | 15q22.2 | 63,042,747 | 23,432 | 10 | AD |
TTN * | DCM, RCM/LVNC | NM_001267550.2 | 2q31.2 | 178,525,989 | 281,435 | 363 | AD, AR (b) |
Gene (1) | RefSeq | Chr | MOI | ND | OMIM ID |
---|---|---|---|---|---|
PRNP | NM_000311 | 20p13 | ADo | Prion disease | 176640 |
PSEN1 | NM_000021 | 14q24.2 | ADo | Early-onset AD | 104311 |
PSEN2 | NM_000447 | 1q42.13 | ADo | Early-onset AD | 600759 |
APP | NM_000484 | 21q21.3 | ADo | Early-onset AD | 104760 |
GRN | NM_002087 | 17q21.31 | ADo | Frontotemporal dementia | 138945 |
MAPT | NM_005910 | 17q21.31 | ADo | FTD, PSP, PPND | 157140 |
TREM2 | NM_018965 | 6p21.1 | AR; H | Nasu–Hakola; H: risk for AD/FTD | 605086 |
CHMP2B | NM_014043 | 3p11.2 | ADo | FTD-3 | 609215 |
CSF1R | NM_005211 | 5q32 | ADo | Adult-onset leukoencephalopathy | 164770 |
FUS | NM_004960 | 16p11.2 | ADo | ALS, FTD overlap | 137070 |
ITM2B | NM_004534 | 13q14.2 | Ado | Familial Danish/Belgian dementia | 605637 |
NOTCH3 | NM_000435 | 19p13.12 | ADo | CADASIL | 600276 |
SERPINI1 | NM_000605 | 3q26.1 | Ado | Familial encephalopathy with neuroserpin inclusion bodies | 602445 |
TARDBP | NM_007375 | 1p36.22 | ADo | ALS, FTD overlap | 605078 |
TYROBP | NM_003332 | 19q13.12 | AR; H | Nasu–Hakola disease; H: risk in dementia | 604195 |
VCP | NM_007126 | 9p13.3 | ADo | IBMPFD, ALS, FTD | 601023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brancato, D.; Treccarichi, S.; Bruno, F.; Coniglio, E.; Vinci, M.; Saccone, S.; Calì, F.; Federico, C. NGS Approaches in Clinical Diagnostics: From Workflow to Disease-Specific Applications. Int. J. Mol. Sci. 2025, 26, 9597. https://doi.org/10.3390/ijms26199597
Brancato D, Treccarichi S, Bruno F, Coniglio E, Vinci M, Saccone S, Calì F, Federico C. NGS Approaches in Clinical Diagnostics: From Workflow to Disease-Specific Applications. International Journal of Molecular Sciences. 2025; 26(19):9597. https://doi.org/10.3390/ijms26199597
Chicago/Turabian StyleBrancato, Desiree, Simone Treccarichi, Francesca Bruno, Elvira Coniglio, Mirella Vinci, Salvatore Saccone, Francesco Calì, and Concetta Federico. 2025. "NGS Approaches in Clinical Diagnostics: From Workflow to Disease-Specific Applications" International Journal of Molecular Sciences 26, no. 19: 9597. https://doi.org/10.3390/ijms26199597
APA StyleBrancato, D., Treccarichi, S., Bruno, F., Coniglio, E., Vinci, M., Saccone, S., Calì, F., & Federico, C. (2025). NGS Approaches in Clinical Diagnostics: From Workflow to Disease-Specific Applications. International Journal of Molecular Sciences, 26(19), 9597. https://doi.org/10.3390/ijms26199597