Dose-Dependent Effects of ZnO Nanoparticles Towards the Microalgae Lobosphaera: Compensation of Salt Stress at Low Concentration and Toxicity at High Concentrations
Abstract
1. Introduction
2. Results
2.1. Results of the Study of ZnO NPs and Their Suspensions
2.2. ZnO NPs Effect upon Lobosphaera sp.
2.2.1. Analysis of Total Cell Numbers and Cell Viability
2.2.2. Analysis of Pigment Content and Photosynthesis Activity
2.2.3. Oxidative Stress Analysis
2.2.4. Protein Content
2.2.5. Zn Content
3. Discussion
4. Materials and Methods
4.1. ZnO NPs and Their Suspensions
4.2. Cell Culture and Culture Conditions
4.3. Experiment Design
4.4. Cell Indicators
4.4.1. Cell Numbers and Cell Viability
4.4.2. Analysis of Pigment Content and Assessment of Photosynthetic Activity
4.4.3. Oxidative Stress Determination
4.4.4. Protein Content Analysis
4.4.5. Zn Accumulation Analysis in Microalgae
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajak, P.; Ganguly, A.; Nanda, S.; Mandi, M.; Ghanty, S.; Das, K.; Biswas, G.; Sarkar, S. Toxic contaminants and their impacts on aquatic ecology and habitats. In Spatial Modeling of Environmental Pollution and Ecological Risk; Shit, P.K., Datta, D.K., Bera, B., Islam, A., Adhikary, P.P., Eds.; Woodhead Publishing: Sawston, UK, Cambridge, UK; 2024; pp. 255–273. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Loyau, A.; Bao, K.; Brack, W.; Chatzinotas, A.; De Vleeschouwer, F.; Friesen, J.; Gandois, L.; Hansson, S.V.; Haver, M.; et al. People, pollution and pathogens—Global change impacts in mountain freshwater ecosystems. Sci. Total Environ. 2018, 622–623, 756–763. [Google Scholar] [CrossRef]
- UNESCO; UN-Water; World Water Assessment Programme. The United Nations World Water Development Report 2. Section 2: Changing Natural Systems, Chapter 4, Part 3. Human Impacts, 3b. Pollution; UNESCO & WMO, with IAEA: Paris, France, 2006; 137p. [Google Scholar]
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus 2023, 6, 74–95. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O.; Bilgili, M.S. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Saf. Environ. Prot. 2019, 130, 238–249. [Google Scholar] [CrossRef]
- Singh, S.; Prasad, S.M.; Bashri, G. Fate and toxicity of nanoparticles in aquatic systems. Acta Geochim. 2023, 42, 63–76. [Google Scholar] [CrossRef]
- Wu, F.; Harper, B.J.; Harper, S.L. Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environ. Toxicol. Chem. 2019, 38, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Stoller, M.; Ochando-Pulido, J.M. ZnO nano-particles production intensification by means of a spinning disk reactor. Nanomaterials 2020, 10, 1321. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef] [PubMed]
- Kannan, M.; Bojan, N.; Swaminathan, J.; Zicarelli, G.; Hemalatha, D.; Zhang, Y.; Ramesh, M.; Faggio, C. Nanopesticides in agricultural pest management and their environmental risks: A review. Int. J. Environ. Sci. Technol. 2023, 20, 10507–10532. [Google Scholar] [CrossRef]
- Razooki, S.; Rabee, A. Evaluation of the toxicological effects of zinc oxide nanoparticles in albino male mice. Iraqi J. Sci. 2020, 61, 42–58. [Google Scholar] [CrossRef]
- Bordin, E.R.; Ramsdorf, W.A.; Domingos, L.M.L.; de Souza Miranda, L.P.; Filho, N.P.M.; Cestari, M.M. Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends. J. Environ. Manag. 2024, 349, 119396. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Suhendra, E.; Chang, C.-H.; Hou, W.-C. Dissolution behavior of ZnO nanoparticles at environmentally relevant low concentrations in surface waters: Equilibrium and kinetics. Sci. Total Environ. 2023, 888, 164091. [Google Scholar] [CrossRef]
- Noor, M.N.; Wu, F.; Sokolov, E.P.; Falfushynska, H.; Timm, S.; Haider, F.; Sokolova, I.M. Salinity-dependent effects of ZnO nanoparticles on bioenergetics and intermediate metabolite homeostasis in a euryhaline marine bivalve, Mytilus edulis. Sci. Total Environ. 2021, 774, 145195. [Google Scholar] [CrossRef]
- Kahru, A.; Dubourguier, H.C. From ecotoxicology to nanoecotoxicology. Toxicology 2010, 269, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Hazeem, L. Single and combined toxicity effects of zinc oxide nanoparticles: Uptake and accumulation in marine microalgae, toxicity mechanisms, and their fate in the marine environment. Water 2022, 14, 2669. [Google Scholar] [CrossRef]
- Saravanan, P.; Saravanan, V.; Rajeshkannan, R.; Arnica, G.; Rajasimman, M.; Baskar, G.; Pugazhendhi, A. Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environ. Res. 2024, 258, 119440. [Google Scholar] [CrossRef]
- Singh, V.; Ahmed, G.; Vedika, S.; Kumar, P.; Chaturvedi, S.K.; Rai, S.N.; Vamanu, E.; Kumar, A. Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: Isotherms, thermodynamics and kinetics study. Sci. Rep. 2024, 14, 7595. [Google Scholar] [CrossRef]
- Singh, S.; Rawat, M.; Malyan, S.K.; Singh, R.; Tyagi, V.K.; Singh, K.; Kashyap, S.; Kumar, S.; Sharma, M.; Panday, B.K.; et al. Global distribution of pesticides in freshwater resources and their remediation approaches. Environ. Res. 2023, 225, 115605. [Google Scholar] [CrossRef]
- de Araújo, E.P.; Caldas, E.D. Pesticides in surface freshwater: A critical review. Environ. Monit. Assess. 2022, 194, 452. [Google Scholar] [CrossRef]
- Lekamge, S.; Ball, A.S.; Shukla, R.; Nugegoda, D. The toxicity of nanoparticles to organisms in freshwater. Rev. Environ. Contam. Toxicol. 2020, 248, 1–80. [Google Scholar] [CrossRef] [PubMed]
- Dube, E.; Okuthe, G.E. Engineered nanoparticles in aquatic systems: Toxicity and mechanism of toxicity in fish. Emerg. Contam. 2023, 9, 100212. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B. Salt in freshwaters: Causes, effects and prospects—Introduction to the theme issue. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 374, 20180002. [Google Scholar] [CrossRef]
- Röthig, T.; Trevathan-Tackett, S.M. Human-induced salinity changes impact marine organisms and ecosystems. Glob. Change Biol. 2023, 29, 4731–4749. [Google Scholar] [CrossRef]
- Williams, W.D. Salinization: Unplumbed salt in a parched landscape. Water Sci. Technol. 2001, 43, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Gutiérrez-Cánovas, T.; Botella-Cruz, M.; Sánchez-Fernández, D.; Arribas, P.; Carbonell, J.; Millán, A.; Pallarés, S. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 374, 20180011. [Google Scholar] [CrossRef]
- Farias, L.; Beszteri, B.; Castellanos, A.M.B.; Doliwa, A.; Enss, J.; Feld, C.K.; Grabner, D.; Lampert, K.P.; Mayombo, N.A.S.; Prati, S.; et al. Influence of salinity on the thermal tolerance of aquatic organisms. Sci. Total Environ. 2024, 953, 176120. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Huang, K.-X.; Zhang, Y.-R.; Yang, L.; Zhou, J.-L.; Yang, Q.; Gao, F. Efficient microalgal lipid production driven by salt stress and phytohormones synergistically. Bioresour. Technol. 2023, 367, 128270. [Google Scholar] [CrossRef]
- Chen, F.; Ma, J.; Pan, K. Synergistic effect of silicon availability and salinity on metal adsorption in a common estuarine diatom. J. Environ. Sci. 2025, 148, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Johari, S.A.; Sarkheil, M.; Tayemeh, M.B.; Veisi, S. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and Silver Nitrate (AgNO3) in halophilic microalgae, Dunaliella salina. Chemosphere 2018, 209, 156–162. [Google Scholar] [CrossRef]
- Canuel, E.; Vaz, C.; Matias, W.; Dewez, D. Interaction effect of EDTA, salinity, and oxide nanoparticles on alga Chlamydomonas reinhardtii and Chlamydomonas euryale. Plants 2021, 10, 2118. [Google Scholar] [CrossRef]
- Yung, M.M.N.; Wong, S.W.Y.; Kwok, K.W.H.; Liu, F.Z.; Leung, Y.H.; Chan, W.T.; Li, X.Y.; Djurišić, A.B.; Leung, K.M.Y. Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat. Toxicol. 2015, 165, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sadri, S.; Khoei, A.J. Ambient salinity affects silver nanoparticles (AgNPs) induced toxicity in the marine bivalve, the rock oyster, Saccostrea cucullata. Aquac. Rep. 2023, 30, 101596. [Google Scholar] [CrossRef]
- Rotini, A.; Tornambè, A.; Cossi, R.; Iamunno, F.; Benvenuto, G.; Berducci, M.T.; Maggi, C.; Thaller, M.C.; Cicero, A.M.; Manfra, L.; et al. Salinity-based toxicity of CuO nanoparticles, CuO-bulk and Cu ion to Vibrio anguillarum. Front. Microbiol. 2017, 8, 2076. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef]
- Baalousha, M.; Sikder, M.; Prasad, A.; Lead, J.; Merrifield, R.; Chandler, G. The concentration-dependent behaviour of nanoparticles. Environ. Chem. 2016, 13, 1–3. [Google Scholar] [CrossRef]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- Fal, S.; Aasfar, A.; Rabie, R.; Smouni, A.; Arroussi, H.E.L. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon 2022, 8, e08811. [Google Scholar] [CrossRef]
- Qiao, T.; Zhao, Y.; Zhong, D.-B.; Yu, X. Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Res. 2021, 53, 102017. [Google Scholar] [CrossRef]
- Ji, X.; Cheng, J.; Gong, D.; Zhao, X.; Qi, Y.; Su, Y.; Ma, W. The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus Xj002. Sci. Total Environ. 2018, 633, 593–599. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Li, H. Strategies of NaCl Tolerance in saline-alkali-tolerant green microalga Monoraphidium dybowskii LB50. Plants 2023, 12, 3495. [Google Scholar] [CrossRef] [PubMed]
- Khawla, L.; Nothof, M.; Tazart, Z.; Filker, S.; Berger, E.; Mouhri, K.; Loudiki, M. Salt stress responses of microalgae biofilm communities under controlled microcosm conditions. Algal Res. 2024, 78, 103430. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; El-Sawah, A.; Ulhassan, Z.; Hussain, S.; Shaghaleh, H.; Jośko, I.; Hamoud, Y.A.; Khan, A.R.; Abdelgawad, H.; Zhou, W. Chapter 6—Roles of zinc in alleviating environmental stress on plant photosynthesis: Challenges and future outlook. In Zinc in Plants; Tripathi, D.K., Singh, V.P., Pandey, S., Sharma, S., Chauhan, D.K., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 149–172. [Google Scholar] [CrossRef]
- Rahman, M.A.; Islam, M.R.; Azim, M.A.; Skalicky, M.; Hossain, A. Role of Zinc for Abiotic Stress Tolerance in Plants; Academic Press: Cambridge, MA, USA, 2025; pp. 95–148. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Chattha, M.U.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The critical role of zinc in plants facing the drought stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Shao, J.; Tang, W.; Huang, K.; Ding, C.; Wang, H.; Zhang, W.; Li, R.; Aamer, M.; Hassan, M.U.; Elnour, R.O.; et al. How does zinc improve salinity tolerance? Mechanisms and future prospects. Plants 2023, 12, 3207. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bharati, R.; Kubes, J.; Popelkova, D.; Praus, L.; Yang, X.; Severova, L.; Skalicky, M.; Brestic, M. Zinc oxide nanoparticles application alleviates salinity stress by modulating plant growth, biochemical attributes and nutrient homeostasis in Phaseolus vulgaris L. Front. Plant Sci. 2024, 15, 1432258. [Google Scholar] [CrossRef]
- Shetty, P.; Gitau, M.; Maróti, G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 2019, 8, 1657. [Google Scholar] [CrossRef]
- Zhang, H.; Miao, C.; Huo, Z.; Luo, T. Effects of zinc oxide nanoparticles transformation in sulfur-containing water on its toxicity to microalgae: Physicochemical analysis, photosynthetic efficiency and potential mechanisms. Water Res. 2022, 223, 119030. [Google Scholar] [CrossRef]
- Li, J.; Schiavo, S.; Rametta, G.; Rametta, G.; Miglietta, M.L.; La Ferrara, V.; Wu, C.; Manzo, S. Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum. Environ. Sci. Pollut. Res. 2017, 24, 6543–6553. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, S.; Wang, Z.; Ye, N.; Fang, H. Algal toxicity of binary mixtures of zinc oxide nanoparticles and tetrabromobisphenol a: Roles of dissolved organic matters. Environ. Toxicol. Pharmacol. 2018, 64, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lobakova, E.S.; Selyakh, I.O.; Semenova, L.R.; Chivkunova, O.B.; Shcherbakov, P.N.; Solovchenko, A.E. Screening of the culture media with different concentrations of nutrients for cultivation of the microalgae associated with the invertebrates of the white sea. Mosc. Univ. Biol. Sci. Bull. 2016, 71, 102–107. [Google Scholar] [CrossRef]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef]
- Rioboo, C.; O’Connor, J.E.; Prado, R.; Herrero, C.; Cid, Á. Cell Proliferation alterations in Chlorella cells under stress conditions. Aquat. Toxicol. 2009, 94, 229–237. [Google Scholar] [CrossRef]
- Solovchenko, A.; Merzlyak, M.N.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5 desaturase by nitrogen starvation and high light. J. Phycol. 2010, 46, 763–772. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar] [CrossRef]
- Salmeron Covarrubias, L.P.; Beluri, K.; Mohammadi, Y.; Easmin, N.; Palacios, O.A.; Sharifan, H. Advanced nanoenabled microalgae systems: Integrating oxidative stress-induced metabolic reprogramming and enhanced lipid biosynthesis for next-generation biofuel production. ACS Appl. Bio Mater. 2025, 8, 3513–3524. [Google Scholar] [CrossRef] [PubMed]
- Connan, S. Spectrophotometric assays of major compounds extracted from algae. Methods Mol. Biol. 2015, 1308, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Harnedy, P.A.; FitzGerald, R.J. Extraction and enrichment of protein from red and green macroalgae. Methods Mol. Biol. 2015, 1308, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef] [PubMed]
- Eixenberger, J.E.; Anders, C.B.; Hermann, R.J.; Brown, R.J.; Reddy, K.M.; Punnoose, A.; Wingett, D.G. Rapid dissolution of ZnO nanoparticles induced by biological buffers significantly impacts cytotoxicity. Chem Res Toxicol. 2017, 30, 1641–1651. [Google Scholar] [CrossRef]
- Kürsteiner, R.; Ritter, M.; Ding, Y.; Panzarasa, G. Dissolution of Zinc oxide nanoparticles in the presence of slow acid generators. Materials 2022, 15, 1166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharova, O.V.; Vasyukova, I.A.; Chebotaryova, S.P.; Koiava, E.Y.; Razlivalova, S.S.; Grigoriev, G.V.; Baranchikov, P.A.; Gusev, A.A. Dose-Dependent Effects of ZnO Nanoparticles Towards the Microalgae Lobosphaera: Compensation of Salt Stress at Low Concentration and Toxicity at High Concentrations. Int. J. Mol. Sci. 2025, 26, 9455. https://doi.org/10.3390/ijms26199455
Zakharova OV, Vasyukova IA, Chebotaryova SP, Koiava EY, Razlivalova SS, Grigoriev GV, Baranchikov PA, Gusev AA. Dose-Dependent Effects of ZnO Nanoparticles Towards the Microalgae Lobosphaera: Compensation of Salt Stress at Low Concentration and Toxicity at High Concentrations. International Journal of Molecular Sciences. 2025; 26(19):9455. https://doi.org/10.3390/ijms26199455
Chicago/Turabian StyleZakharova, Olga V., Inna A. Vasyukova, Svetlana P. Chebotaryova, Elina Yu. Koiava, Svetlana S. Razlivalova, Grigory V. Grigoriev, Petr A. Baranchikov, and Alexander A. Gusev. 2025. "Dose-Dependent Effects of ZnO Nanoparticles Towards the Microalgae Lobosphaera: Compensation of Salt Stress at Low Concentration and Toxicity at High Concentrations" International Journal of Molecular Sciences 26, no. 19: 9455. https://doi.org/10.3390/ijms26199455
APA StyleZakharova, O. V., Vasyukova, I. A., Chebotaryova, S. P., Koiava, E. Y., Razlivalova, S. S., Grigoriev, G. V., Baranchikov, P. A., & Gusev, A. A. (2025). Dose-Dependent Effects of ZnO Nanoparticles Towards the Microalgae Lobosphaera: Compensation of Salt Stress at Low Concentration and Toxicity at High Concentrations. International Journal of Molecular Sciences, 26(19), 9455. https://doi.org/10.3390/ijms26199455