Rewinding the Clock: Emerging Pharmacological Strategies for Human Anti-Aging Therapy
Abstract
1. Introduction
2. Hallmarks of Aging: Pharmacological Targets
3. Key Anti-Aging Drug Classes and Mechanisms
3.1. Senolytics: Dasatinib, Quercetin, and Fisetin
Drug Class | Common Side Effects | Long-Term Safety Concerns | Contraindications/Notes | Ref. |
---|---|---|---|---|
Metformin | Gastrointestinal upset, vitamin B12 deficiency | Rare lactic acidosis (in renal impairment) | Avoid in patients with severe kidney disease | [23] |
Rapamycin/Rapalogs | Mouth ulcers, insulin resistance, hyperlipidemia | Immunosuppression, wound healing | Intermittent dosing may reduce risks | [31] |
Senolytics (Dasatinib + Quercetin, Fisetin) | Fatigue, gastro-intestinal distress (Dasatinib + Quercetin); well-tolerated (Fisetin) | Potential off-target apoptosis, cytopenia | May require personalized or pulsed regimens | [27] |
NAD+ precursors (NMN, NR) | Mild flushing, nausea | Theoretical tumor-promoting risk (ongoing debate) | Well-tolerated in trials up to 900 mg/day | [32] |
Senomorphics (JAK inhibitors) | Headache, anemia, and infection risk | Long-term immunosuppression, possible malignancy risk | Monitor liver function, use in low doses if chronic | [33] |
3.2. NAD+ Precursors: Nicotinamide Riboside (NR) and Nicotinamide Mononucleotide (NMN)
3.3. mTOR Inhibitors: Rapamycin and Rapalogs
3.4. Metformin: AMPK Activation and Longevity Potential
3.5. Senomorphics and Anti-Inflammatory Agents
3.6. SGLT2 Inhibitors
4. Comparative Analysis of Drug Classes
5. Current Clinical Trials and Evidence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AMPK | AMP-Activated Protein Kinase |
ATP | Adenosine Triphosphate |
BCL-2 | B-Cell Lymphoma 2 |
CML | Chronic Myeloid Leukemia |
CD38 | Cluster of Differentiation 38 |
COX | Cyclooxygenase |
DALY | Disability-Adjusted Life Year |
DKD | Diabetic Kidney Disease |
DNMT | DNA Methyltransferase |
EPO | Erythropoietin |
eNOS | Endothelial Nitric Oxide Synthase |
FDA | Food and Drug Administration |
G-CSF | Granulocyte Colony-Stimulating Factor |
HALE | Healthy Life Expectancy |
HDAC | Histone Deacetylase |
HSP | Heat Shock Protein |
IL | Interleukin |
JAK | Janus Kinase |
MDSC | Myeloid-Derived Suppressor Cell |
MMP | Matrix Metalloproteinase |
mTOR | Mechanistic Target of Rapamycin |
mTORC1 | Mechanistic Target of Rapamycin Complex 1 |
mTORC2 | Mechanistic Target of Rapamycin Complex 2 |
NAM | Nicotinamide |
NAD+ | Nicotinamide Adenine Dinucleotide |
NADH | Nicotinamide Adenine Dinucleotide (Reduced Form) |
NADase | Nicotinamide Adenine Dinucleotide Hydrolase |
NAMPT | Nicotinamide Phosphoribosyltransferase |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells |
NK | Natural Killer (cell) |
NMN | Nicotinamide Mononucleotide |
NMNH | Reduced Nicotinamide Mononucleotide |
NMNAT | Nicotinamide Mononucleotide Adenylyltransferase |
NR | Nicotinamide Riboside |
NRH | Dihydronicotinamide Riboside |
NRK | Nicotinamide Riboside Kinase |
NSAID | Non-Steroidal Anti-Inflammatory Drug |
OSKM | Oct4, Sox2, Klf4, c-Myc |
PARP | Poly(ADP-Ribose) Polymerase |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha |
PI3K | Phosphoinositide 3-Kinase |
PKB/AKT | Protein Kinase B |
RCT | Randomized Controlled Trial |
ROS | Reactive Oxygen Species |
SASP | Senescence-Associated Secretory Phenotype |
SIRT | Sirtuin |
SIRT1 | Sirtuin 1 |
SkQ1 | 10-(6′-Plastoquinonyl)decyltriphenylphosphonium |
STAC | Sirtuin-Activating Compound |
TAME | Targeting Aging with Metformin (trial) |
TNF-α | Tumor Necrosis Factor-alpha |
TSC2 | Tuberous Sclerosis Complex 2 |
ULK1 | Unc-51-like Kinase 1 |
WHO | World Health Organization |
References
- Chen, Q. Neurobiological and Anti-Aging Benefits of Yoga: A Comprehensive Review of Recent Advances in Non-Pharmacological Therapy. Exp. Gerontol. 2024, 196, 112550. [Google Scholar] [CrossRef]
- Covarrubias-Pinto, A.; Acuña, A.; Beltrán, F.; Torres-Díaz, L.; Castro, M. Old Things New View: Ascorbic Acid Protects the Brain in Neurodegenerative Disorders. Int. J. Mol. Sci. 2015, 16, 28194–28217. [Google Scholar] [CrossRef]
- Harrison, F.E.; Bowman, G.L.; Polidori, M.C. Ascorbic Acid and the Brain: Rationale for the Use against Cognitive Decline. Nutrients 2014, 6, 1752–1781. [Google Scholar] [CrossRef]
- Khan, H.T.A.; Addo, K.M.; Findlay, H. Public Health Challenges and Responses to the Growing Ageing Populations. Public Health Chall. 2024, 3, e213. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, M.; Zhou, R.; Ou, W.; Yao, P. How Heavy Is the Medical Expense Burden among the Older Adults and What Are the Contributing Factors? A Literature Review and Problem-Based Analysis. Front. Public Health 2023, 11, 1165381. [Google Scholar] [CrossRef]
- Garmany, A.; Yamada, S.; Terzic, A. Longevity Leap: Mind the Healthspan Gap. NPJ Regen. Med. 2021, 6, 57. [Google Scholar] [CrossRef]
- Demaria, M. Rethinking Healthcare through Aging Biology. Aging 2025, 17, 1077–1079. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.C.; Yan, Z. Targeting Healthspan to Optimally Combat Non-Communicable Disease in an Aging World. Sports Med. Health Sci. 2019, 1, 59–60. [Google Scholar] [CrossRef]
- Barry, H.E.; Hughes, C.M. An Update on Medication Use in Older Adults: A Narrative Review. Curr. Epidemiol. Rep. 2021, 8, 108–115. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Li, K.; Zong, X.; Eun, S.; Morimoto, N.; Guo, S. Hallmarks of Skin Aging: Update. Aging Dis. 2023, 14, 2167. [Google Scholar] [CrossRef]
- Swer, P.B.; Sharma, R. ATP-Dependent Chromatin Remodelers in Ageing and Age-Related Disorders. Biogerontology 2021, 22, 1–17. [Google Scholar] [CrossRef]
- Mishra, S.K.; Balendra, V.; Esposto, J.; Obaid, A.A.; Maccioni, R.B.; Jha, N.K.; Perry, G.; Moustafa, M.; Al-Shehri, M.; Singh, M.P.; et al. Therapeutic Antiaging Strategies. Biomedicines 2022, 10, 2515. [Google Scholar] [CrossRef]
- Nunkoo, V.S.; Cristian, A.; Jurcau, A.; Diaconu, R.G.; Jurcau, M.C. The Quest for Eternal Youth: Hallmarks of Aging and Rejuvenating Therapeutic Strategies. Biomedicines 2024, 12, 2540. [Google Scholar] [CrossRef]
- Rebelo-Marques, A.; De Sousa Lages, A.; Andrade, R.; Ribeiro, C.F.; Mota-Pinto, A.; Carrilho, F.; Espregueira-Mendes, J. Aging Hallmarks: The Benefits of Physical Exercise. Front. Endocrinol. 2018, 9, 258. [Google Scholar] [CrossRef]
- Minoretti, P.; Emanuele, E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus 2024, 16, e52548. [Google Scholar] [CrossRef]
- Schmauck-Medina, T.; Molière, A.; Lautrup, S.; Zhang, J.; Chlopicki, S.; Madsen, H.B.; Cao, S.; Soendenbroe, C.; Mansell, E.; Vestergaard, M.B.; et al. New Hallmarks of Ageing: A 2022 Copenhagen Ageing Meeting Summary. Aging 2022, 14, 6829–6839. [Google Scholar] [CrossRef]
- Kirkland, J.L.; Tchkonia, T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R. Exploring the Emerging Bidirectional Association between Inflamm-aging and Cellular Senescence in Organismal Aging and Disease. Cell Biochem. Funct. 2024, 42, e3970. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, T.V.; Markina, Y.V.; Markin, A.M.; Vasilyev, V.S.; Hua, H.; Li, D.; Woo, A.Y.-H.; Deev, R.V.; Eremin, I.I.; Kotenko, K.V. Functional Features of Senescent Cells and Implications for Therapy. Int. J. Mol. Sci. 2025, 26, 5390. [Google Scholar] [CrossRef] [PubMed]
- Majewska, J.; Krizhanovsky, V. Immune Surveillance of Senescent Cells in Aging and Disease. Nat. Aging 2025, 5, 1415–1424. [Google Scholar] [CrossRef]
- Yousefzadeh, M.J.; Zhu, Y.; McGowan, S.J.; Angelini, L.; Fuhrmann-Stroissnigg, H.; Xu, M.; Ling, Y.Y.; Melos, K.I.; Pirtskhalava, T.; Inman, C.L.; et al. Fisetin Is a Senotherapeutic That Extends Health and Lifespan. EBioMedicine 2018, 36, 18–28. [Google Scholar] [CrossRef]
- Wang, C.; Chen, B.; Feng, Q.; Nie, C.; Li, T. Clinical Perspectives and Concerns of Metformin as an Anti-Aging Drug. Aging Med. 2020, 3, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Tuday, E.; Allen, S.; Kim, J.; Trott, D.W.; Holland, W.L.; Donato, A.J.; Lesniewski, L.A. Senolytic Drugs, Dasatinib and Quercetin, Attenuate Adipose Tissue Inflammation, and Ameliorate Metabolic Function in Old Age. Aging Cell 2023, 22, e13767. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, V.R.; Tran, S.; Glassman, J.E.; Kirkland, J.L.; Musi, N.; Seshadri, S.; Orr, M.E. A Head-to-head Comparison between Senolytic Therapies, Dasatinib plus Quercetin and Fisetin, Indicates Sex- and Genotype-specific Differences in Translationally Relevant Outcomes: Developing Topics. Alzheimer’s Dement. 2020, 16, e047607. [Google Scholar] [CrossRef]
- Hambright, W.S.; Mu, X.; Gao, X.; Guo, P.; Kawakami, Y.; Mitchell, J.; Mullen, M.; Nelson, A.-L.; Bahney, C.; Nishimura, H.; et al. The Senolytic Drug Fisetin Attenuates Bone Degeneration in the Zmpste24−/−Progeria Mouse Model. J. Osteoporos. 2023, 2023, 1–12. [Google Scholar] [CrossRef]
- Hickson, L.J.; Langhi Prata, L.G.P.; Bobart, S.A.; Evans, T.K.; Giorgadze, N.; Hashmi, S.K.; Herrmann, S.M.; Jensen, M.D.; Jia, Q.; Jordan, K.L.; et al. Senolytics Decrease Senescent Cells in Humans: Preliminary Report from a Clinical Trial of Dasatinib plus Quercetin in Individuals with Diabetic Kidney Disease. EBioMedicine 2019, 47, 446–456. [Google Scholar] [CrossRef]
- Aprahamian, I.; Pain, A.; Moreira, V.G. Moving from an “Anti-Aging” Paradigm toward the Concept of “Disease-Free Aging”: The Role of Senolytics in Modern Medicine. Geriatr. Gerontol. Aging 2024, 18, 1–5. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C Pharmacokinetics: Implications for Oral and Intravenous Use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef]
- Walsh, D.M.; Selkoe, D.J. Aβ Oligomers—A Decade of Discovery. J. Neurochem. 2007, 101, 1172–1184. [Google Scholar] [CrossRef]
- Lee, D.J.W.; Hodzic Kuerec, A.; Maier, A.B. Targeting Ageing with Rapamycin and Its Derivatives in Humans: A Systematic Review. Lancet Healthy Longev. 2024, 5, e152–e162. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Liu, Y. NAD+ Therapy in Age-Related Degenerative Disorders: A Benefit/Risk Analysis. Exp. Gerontol. 2020, 132, 110831. [Google Scholar] [CrossRef]
- Xu, M.; Tchkonia, T.; Ding, H.; Ogrodnik, M.; Lubbers, E.R.; Pirtskhalava, T.; White, T.A.; Johnson, K.O.; Stout, M.B.; Mezera, V.; et al. JAK Inhibition Alleviates the Cellular Senescence-Associated Secretory Phenotype and Frailty in Old Age. Proc. Natl. Acad. Sci. USA 2015, 112, E6301–E6310. [Google Scholar] [CrossRef]
- Hu, L.; Li, H.; Zi, M.; Li, W.; Liu, J.; Yang, Y.; Zhou, D.; Kong, Q.-P.; Zhang, Y.; He, Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front. Cell Dev. Biol. 2022, 10, 822816. [Google Scholar] [CrossRef] [PubMed]
- Raffaele, M.; Vinciguerra, M. Targeting Anxiety and Senescence with Senolytics. Aging 2022, 14, 2438–2439. [Google Scholar] [CrossRef]
- Lagoumtzi, S.M.; Chondrogianni, N. Senolytics and Senomorphics: Natural and Synthetic Therapeutics in the Treatment of Aging and Chronic Diseases. Free Radic. Biol. Med. 2021, 171, 169–190. [Google Scholar] [CrossRef]
- Gasek, N.S.; Kuchel, G.A.; Kirkland, J.L.; Xu, M. Strategies for Targeting Senescent Cells in Human Disease. Nat. Aging 2021, 1, 870–879. [Google Scholar] [CrossRef]
- García-Fleitas, J.; García-Fernández, A.; Martí-Centelles, V.; Sancenón, F.; Bernardos, A.; Martínez-Máñez, R. Chemical Strategies for the Detection and Elimination of Senescent Cells. Acc. Chem. Res. 2024, 57, 1238–1253. [Google Scholar] [CrossRef] [PubMed]
- Yaku, K.; Nakagawa, T. NAD+ Precursors in Human Health and Disease: Current Status and Future Prospects. Antioxid. Redox Signal. 2023, 39, 1133–1149. [Google Scholar] [CrossRef]
- Okabe, K.; Yaku, K.; Tobe, K.; Nakagawa, T. Implications of Altered NAD Metabolism in Metabolic Disorders. J. Biomed. Sci. 2019, 26, 34. [Google Scholar] [CrossRef]
- Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; et al. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab. 2016, 24, 795–806. [Google Scholar] [CrossRef]
- Yoshino, J.; Baur, J.A.; Imai, S. NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018, 27, 513–528. [Google Scholar] [CrossRef]
- Reiten, O.K.; Wilvang, M.A.; Mitchell, S.J.; Hu, Z.; Fang, E.F. Preclinical and Clinical Evidence of NAD+ Precursors in Health, Disease, and Ageing. Mech. Ageing Dev. 2021, 199, 111567. [Google Scholar] [CrossRef]
- Airhart, S.E.; Shireman, L.M.; Risler, L.J.; Anderson, G.D.; Nagana Gowda, G.A.; Raftery, D.; Tian, R.; Shen, D.D.; O’Brien, K.D. An Open-Label, Non-Randomized Study of the Pharmacokinetics of the Nutritional Supplement Nicotinamide Riboside (NR) and Its Effects on Blood NAD+ Levels in Healthy Volunteers. PLoS ONE 2017, 12, e0186459. [Google Scholar] [CrossRef]
- Nadeeshani, H.; Li, J.; Ying, T.; Zhang, B.; Lu, J. Nicotinamide Mononucleotide (NMN) as an Anti-Aging Health Product—Promises and Safety Concerns. J. Adv. Res. 2022, 37, 267–278. [Google Scholar] [CrossRef]
- Martens, C.R.; Denman, B.A.; Mazzo, M.R.; Armstrong, M.L.; Reisdorph, N.; McQueen, M.B.; Chonchol, M.; Seals, D.R. Chronic Nicotinamide Riboside Supplementation Is Well-Tolerated and Elevates NAD+ in Healthy Middle-Aged and Older Adults. Nat. Commun. 2018, 9, 1286. [Google Scholar] [CrossRef]
- Yoshino, M.; Yoshino, J.; Kayser, B.D.; Patti, G.J.; Franczyk, M.P.; Mills, K.F.; Sindelar, M.; Pietka, T.; Patterson, B.W.; Imai, S.-I.; et al. Nicotinamide Mononucleotide Increases Muscle Insulin Sensitivity in Prediabetic Women. Science 2021, 372, 1224–1229. [Google Scholar] [CrossRef]
- Nakazzi, F.; Zarei, M.; Hajihassani, O.; Graor, H.J.; Sunita, P.; Dey, G.; Shalaby, A.S.; Winter, J.M. Abstract 2326: Nicotinamide Adenine Dinucleotide Precursors Delay Pancreatic Cancer Initiation and Progression by Promoting DNA Repair and Improving Mitochondrial Function. Cancer Res. 2025, 85, 2326. [Google Scholar] [CrossRef]
- Sharma, A.; Chabloz, S.; Lapides, R.A.; Roider, E.; Ewald, C.Y. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023, 15, 445. [Google Scholar] [CrossRef]
- Fernandes, S.A.; Demetriades, C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. Front. Aging 2021, 2, 707372. [Google Scholar] [CrossRef]
- Fu, W.; Wu, G. Targeting mTOR for Anti-Aging and Anti-Cancer Therapy. Molecules 2023, 28, 3157. [Google Scholar] [CrossRef]
- Kaeberlein, M. Targeting mTOR Signaling to Promote Healthy Longevity. FASEB J. 2017, 31, 256.4. [Google Scholar] [CrossRef]
- Hurez, V.; Dao, V.; Liu, A.; Pandeswara, S.; Gelfond, J.; Sun, L.; Bergman, M.; Orihuela, C.J.; Galvan, V.; Padrón, Á.; et al. Chronic mTOR Inhibition in Mice with Rapamycin Alters T, B, Myeloid, and Innate Lymphoid Cells and Gut Flora and Prolongs Life of Immune-deficient Mice. Aging Cell 2015, 14, 945–956. [Google Scholar] [CrossRef]
- Salmon, A.B. Intervention with rapamycin to improve healthy aging and longevity in a non-human primate. Innov. Aging 2019, 3, S108. [Google Scholar] [CrossRef]
- Kraig, E.; Linehan, L.A.; Liang, H.; Romo, T.Q.; Liu, Q.; Wu, Y.; Benavides, A.D.; Curiel, T.J.; Javors, M.A.; Musi, N.; et al. A Randomized Control Trial to Establish the Feasibility and Safety of Rapamycin Treatment in an Older Human Cohort: Immunological, Physical Performance, and Cognitive Effects. Exp. Gerontol. 2018, 105, 53–69. [Google Scholar] [CrossRef]
- Cau, S.B.A.; Tostes, R.C. mTOR Inhibition: A Promise for a Young Heart. Front. Physiol. 2012, 3, 31. [Google Scholar] [CrossRef]
- Piguet, A.-C.; Martins, P.J.F.; Kozma, S.C. Rapamycin Impacts Positively on Longevity, despite Glucose Intolerance Induction. J. Hepatol. 2012, 57, 1368–1369. [Google Scholar] [CrossRef]
- Schreiber, K.H.; Arriola Apelo, S.I.; Yu, D.; Brinkman, J.A.; Velarde, M.C.; Syed, F.A.; Liao, C.-Y.; Baar, E.L.; Carbajal, K.A.; Sherman, D.S.; et al. A Novel Rapamycin Analog Is Highly Selective for mTORC1 in Vivo. Nat. Commun. 2019, 10, 3194. [Google Scholar] [CrossRef]
- Meng, D.; Zhao, X.; Yang, Y.C.; Navickas, A.; Helland, C.; Goodarzi, H.; Singh, M.; Bandyopadhyay, S. A Bi-Steric mTORC1-Selective Inhibitor Overcomes Drug Resistance in Breast Cancer. Oncogene 2023, 42, 2207–2217. [Google Scholar] [CrossRef]
- Apelo, S.A.; Pumper, C.; Baar, E.; Cummings, N.; Brar, H.; Kimple, M.; Lamming, D.; Neuman, J. Alternative Rapamycin Treatment Regimens Mitigate the Impact of Rapamycin on Glucose Homeostasis and the Immune System, and Extends Lifespan. J. Investig. Med. 2016, 64, 932–933. [Google Scholar] [CrossRef]
- Blagosklonny, M.V. Rapamycin for Longevity: Opinion Article. Aging 2019, 11, 8048–8067. [Google Scholar] [CrossRef]
- Liu, H.; Scholz, C.; Zang, C.; Schefe, J.H.; Habbel, P.; Regierer, A.-C.; Schulz, C.-O.; Possinger, K.; Eucker, J. Metformin and the mTOR Inhibitor Everolimus (RAD001) Sensitize Breast Cancer Cells to the Cytotoxic Effect of Chemotherapeutic Drugs in Vitro. Anticancer Res. 2012, 32, 1627–1637. [Google Scholar]
- Kulkarni, A.S.; Gubbi, S.; Barzilai, N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab. 2020, 32, 15–30. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-Activated Protein Kinase in Mechanism of Metformin Action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef]
- Bannister, C.A.; Holden, S.E.; Jenkins-Jones, S.; Morgan, C.L.; Halcox, J.P.; Schernthaner, G.; Mukherjee, J.; Currie, C.J. Can People with Type 2 Diabetes Live Longer than Those without? A Comparison of Mortality in People Initiated with Metformin or Sulphonylurea Monotherapy and Matched, Non-diabetic Controls. Diabetes Obes. Metab. 2014, 16, 1165–1173. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, L.; Makarczyk, M.J.; Feng, P.; Zhang, J. The Anti-Aging Mechanism of Metformin: From Molecular Insights to Clinical Applications. Molecules 2025, 30, 816. [Google Scholar] [CrossRef]
- Barzilai, N.; Crandall, J.P.; Kritchevsky, S.B.; Espeland, M.A. Metformin as a Tool to Target Aging. Cell Metab. 2016, 23, 1060–1065. [Google Scholar] [CrossRef]
- Cuollo, L.; Antonangeli, F.; Santoni, A.; Soriani, A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology 2020, 9, 485. [Google Scholar] [CrossRef]
- Balistreri, C.R.; Madonna, R.; Ferdinandy, P. Is It the Time of Seno-Therapeutics Application in Cardiovascular Pathological Conditions Related to Ageing? Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100027. [Google Scholar] [CrossRef]
- Matacchione, G.; Gurău, F.; Silvestrini, A.; Tiboni, M.; Mancini, L.; Valli, D.; Rippo, M.R.; Recchioni, R.; Marcheselli, F.; Carnevali, O.; et al. Anti-SASP and Anti-Inflammatory Activity of Resveratrol, Curcumin and β-Caryophyllene Association on Human Endothelial and Monocytic Cells. Biogerontology 2021, 22, 297–313. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Wu, P.; Wang, L.; Hong, D.; Wang, J.; Liu, Y. Targeted Regulation of Senescence-Associated Secretory Phenotype with an Aptamer-Conjugated Activatable Senomorphic. Aging Pathobiol. Ther. 2023, 5, 59–65. [Google Scholar] [CrossRef]
- Katsuumi, G.; Shimizu, I.; Suda, M.; Yoshida, Y.; Furihata, T.; Joki, Y.; Hsiao, C.-L.; Jiaqi, L.; Fujiki, S.; Abe, M.; et al. SGLT2 Inhibition Eliminates Senescent Cells and Alleviates Pathological Aging. Nat. Aging 2024, 4, 926–938. [Google Scholar] [CrossRef]
- Durante, W.; Behnammanesh, G.; Peyton, K.J. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int. J. Mol. Sci. 2021, 22, 8786. [Google Scholar] [CrossRef]
- Leng, W.; Wu, M.; Pan, H.; Lei, X.; Chen, L.; Wu, Q.; Ouyang, X.; Liang, Z. The SGLT2 Inhibitor Dapagliflozin Attenuates the Activity of ROS-NLRP3 Inflammasome Axis in Steatohepatitis with Diabetes Mellitus. Ann. Transl. Med. 2019, 7, 429. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Wang, Q. Effects and Mechanisms of SGLT2 Inhibitors on the NLRP3 Inflammasome, with a Focus on Atherosclerosis. Front. Endocrinol. 2022, 13, 992937. [Google Scholar] [CrossRef]
- Lee, S.A.; Riella, L.V. Narrative Review of Immunomodulatory and Anti-Inflammatory Effects of Sodium-Glucose Cotransporter 2 Inhibitors: Unveiling Novel Therapeutic Frontiers. Kidney Int. Rep. 2024, 9, 1601–1613. [Google Scholar] [CrossRef]
- Luna-Marco, C.; Iannantuoni, F.; Hermo-Argibay, A.; Devos, D.; Salazar, J.D.; Víctor, V.M.; Rovira-Llopis, S. Cardiovascular Benefits of SGLT2 Inhibitors and GLP-1 Receptor Agonists through Effects on Mitochondrial Function and Oxidative Stress. Free Radic. Biol. Med. 2024, 213, 19–35. [Google Scholar] [CrossRef]
- Cannarella, R.; Rubulotta, M.; Cannarella, V.; La Vignera, S.; Calogero, A.E. A Holistic View of SGLT2 Inhibitors: From Cardio-Renal Management to Cognitive and Andrological Aspects. Eur. J. Intern. Med. 2025, 138, 6–28. [Google Scholar] [CrossRef]
- Mei, J.; Li, Y.; Niu, L.; Liang, R.; Tang, M.; Cai, Q.; Xu, J.; Zhang, D.; Yin, X.; Liu, X.; et al. SGLT2 Inhibitors: A Novel Therapy for Cognitive Impairment via Multifaceted Effects on the Nervous System. Transl. Neurodegener. 2024, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021, 26, 7213. [Google Scholar] [CrossRef]
- Magurno, M.; Cassano, V.; Maruca, F.; Pastura, C.A.; Divino, M.; Fazio, F.; Severini, G.; Clausi, E.; Armentaro, G.; Miceli, S.; et al. Effects of SGLT2-Inhibitors on Comprehensive Geriatric Assessment, Biomarkers of Oxidative Stress, and Platelet Activation in Elderly Diabetic Patients with Heart Failure with Preserved Ejection Fraction. Int. J. Mol. Sci. 2024, 25, 8811. [Google Scholar] [CrossRef] [PubMed]
- Armentaro, G.; Cassano, V.; Condoleo, V.; Magurno, M.; Divino, M.; Pastura, C.A.; Miceli, S.; Maio, R.; Arturi, F.; Hribal, M.L.; et al. Association of Sodium–Glucose Cotransporter 2 Inhibitors with Changes in Comprehensive Geriatric Assessment in Elderly Diabetic Patients with Heart Failure: Data from MAGIC-HF. Eur. J. Heart Fail. 2024, 26, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Armentaro, G.; Cassano, V.; Magurno, M.; Pastura, C.A.; Divino, M.; Severini, G.; Martire, D.; Miceli, S.; Maio, R.; Mazza, E.; et al. Gliflozines as Add-on to Arni in Echocardiographic, Sarcopenic and Oxidative Stress Parameters in Elderly Patients with Chronic Heart Failure. Aging Clin. Exp. Res. 2025, 37, 158. [Google Scholar] [CrossRef]
- Chai, S.-Y.; Zhang, R.-Y.; Ning, Z.-Y.; Zheng, Y.-M.; Swapnil, R.; Ji, L.-N. Sodium-Glucose Co-Transporter 2 Inhibitors Improve Insulin Resistance and β-Cell Function in Type 2 Diabetes: A Meta-Analysis. World J. Diabetes 2025, 16, 107335. [Google Scholar] [CrossRef]
- Wei, H.; Ye, L.; Li, M.; Huang, S.; Mo, Z. Effect of GLP-1 RA and SGLT2I on Biomarkers of Oxidative Stress in T2DM: A Systematic Review and Meta-Analysis. J. Endocr. Soc. 2025, 9, bvaf075. [Google Scholar] [CrossRef]
- Gao, M.; Bhatia, K.; Kapoor, A.; Badimon, J.; Pinney, S.P.; Mancini, D.M.; Santos-Gallego, C.G.; Lala, A. SGLT2 Inhibitors, Functional Capacity, and Quality of Life in Patients With Heart Failure: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e245135. [Google Scholar] [CrossRef]
- Kirkland, J.L.; Tchkonia, T. Cellular Senescence: A Translational Perspective. EBioMedicine 2017, 21, 21–28. [Google Scholar] [CrossRef]
- Imai, S.; Guarente, L. NAD+ and Sirtuins in Aging and Disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef]
- Harrison, D.E.; Strong, R.; Sharp, Z.D.; Nelson, J.F.; Astle, C.M.; Flurkey, K.; Nadon, N.L.; Wilkinson, J.E.; Frenkel, K.; Carter, C.S.; et al. Rapamycin Fed Late in Life Extends Lifespan in Genetically Heterogeneous Mice. Nature 2009, 460, 392–395. [Google Scholar] [CrossRef]
- Johnson, S.C.; Rabinovitch, P.S.; Kaeberlein, M. mTOR Is a Key Modulator of Ageing and Age-Related Disease. Nature 2013, 493, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Childs, B.G.; Baker, D.J.; Wijshake, T.; Conover, C.A.; Campisi, J.; Van Deursen, J.M. Senescent Intimal Foam Cells Are Deleterious at All Stages of Atherosclerosis. Science 2016, 354, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Mannick, J.B.; Del Giudice, G.; Lattanzi, M.; Valiante, N.M.; Praestgaard, J.; Huang, B.; Lonetto, M.A.; Maecker, H.T.; Kovarik, J.; Carson, S.; et al. mTOR Inhibition Improves Immune Function in the Elderly. Sci. Transl. Med. 2014, 6, 268ra179. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Childs, B.G.; Durik, M.; Wijers, M.E.; Sieben, C.J.; Zhong, J.; Saltness, R.A.; Jeganathan, K.B.; Verzosa, G.C.; Pezeshki, A.; et al. Naturally Occurring p16Ink4a-Positive Cells Shorten Healthy Lifespan. Nature 2016, 530, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Pirtskhalava, T.; Farr, J.N.; Weigand, B.M.; Palmer, A.K.; Weivoda, M.M.; Inman, C.L.; Ogrodnik, M.B.; Hachfeld, C.M.; Fraser, D.G.; et al. Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nat. Med. 2018, 24, 1246–1256. [Google Scholar] [CrossRef]
- Justice, J.N.; Nambiar, A.M.; Tchkonia, T.; LeBrasseur, N.K.; Pascual, R.; Hashmi, S.K.; Prata, L.; Masternak, M.M.; Kritchevsky, S.B.; Musi, N.; et al. Senolytics in Idiopathic Pulmonary Fibrosis: Results from a First-in-Human, Open-Label, Pilot Study. EBioMedicine 2019, 40, 554–563. [Google Scholar] [CrossRef]
- Johnson, S.C.; Yanos, M.E.; Kayser, E.-B.; Quintana, A.; Sangesland, M.; Castanza, A.; Uhde, L.; Hui, J.; Wall, V.Z.; Gagnidze, A.; et al. mTOR Inhibition Alleviates Mitochondrial Disease in a Mouse Model of Leigh Syndrome. Science 2013, 342, 1524–1528. [Google Scholar] [CrossRef]
- Ryu, D.; Zhang, H.; Ropelle, E.R.; Sorrentino, V.; Mázala, D.A.G.; Mouchiroud, L.; Marshall, P.L.; Campbell, M.D.; Ali, A.S.; Knowels, G.M.; et al. NAD+ Repletion Improves Muscle Function in Muscular Dystrophy and Counters Global PARylation. Sci. Transl. Med. 2016, 8, 361ra139. [Google Scholar] [CrossRef]
- Yamaoka, K. Janus Kinase Inhibitors for Rheumatoid Arthritis. Curr. Opin. Chem. Biol. 2016, 32, 29–33. [Google Scholar] [CrossRef]
- McNeil, J.J.; Nelson, M.R.; Woods, R.L.; Lockery, J.E.; Wolfe, R.; Reid, C.M.; Kirpach, B.; Shah, R.C.; Ives, D.G.; Storey, E.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1519–1528. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An Epigenetic Biomarker of Aging for Lifespan and Healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Horvath, S. DNA Methylation Age of Human Tissues and Cell Types. Genome Biol. 2013, 14, 3156. [Google Scholar] [CrossRef] [PubMed]
Drug Class | Primary Mechanism(s) | Evidence in Aging/Age-Related Disease Models | Ref. |
---|---|---|---|
Metformin | AMPK activation, inhibition of mTOR, reduction in ROS, and improved insulin sensitivity | Extends lifespan in multiple species; reduces cancer risk, frailty markers, and cardiovascular events in humans | [23,63,65,67] |
Rapamycin/mTOR inhibitors | Direct inhibition of mTORC1 modulates autophagy and proteostasis | Extends lifespan in yeast, worms, flies, and mice; delays age-related decline | [31,50,52,53,54,92] |
NAD+ precursors (NMN, NR) | Boost NAD+ levels; activate sirtuins and PARPs; enhance mitochondrial function | Improve metabolism, DNA repair, and vascular function in preclinical models; early human data suggest improved muscle and cognitive function | [32,39,41,44,45,46,47,88] |
Senolytics (dasatinib, quercetin, fisetin, etc.) | Selective elimination of senescent cells; reduce SASP factors | Improve physical function, delay frailty, and extend healthspan in mice; early clinical trials ongoing | [18,22,24,25,26,27,28,93,94,95] |
SGLT2 inhibitors (empagliflozin, dapagliflozin, etc.) | Lower glucotoxicity, improve insulin sensitivity, reduce ROS and NLRP3 inflammasome activation, improve endothelial and mitochondrial function | Improve survival, reduce heart failure hospitalizations, preserve renal function; recent studies show improved cognition, mood, and functional outcomes in elderly HF patients | [72,73,74,75,76,77,78,79,80,81,82,83,84,85,86] |
Drug Class | Compound | Trial Name/ID | Target Population | Primary Endpoint | Ref. |
---|---|---|---|---|---|
Metformin | Metformin | TAME trial | Older adults (non-diabetic) | Delay of age-related diseases | [67] |
Senolytics | Dasatinib + Quercetin | NCT02848131 | Diabetic kidney disease | Senescent cell markers, physical function | [46] |
NAD+ precursors | Nicotinamide, riboside | NCT02678611 | Older adults | Arterial stiffness, NAD+ levels | [46] |
NAD+ precursors | Nicotinamide, mononucleotide | NCT03151239 | Postmenopausal women | Insulin sensitivity, muscle gene expression | [47] |
mTOR inhibitors | Everolimus | NCT01190620 | Elderly (65+) | Vaccine response, cytokines | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; Speeckaert, R.; Speeckaert, M.M. Rewinding the Clock: Emerging Pharmacological Strategies for Human Anti-Aging Therapy. Int. J. Mol. Sci. 2025, 26, 9372. https://doi.org/10.3390/ijms26199372
Delrue C, Speeckaert R, Speeckaert MM. Rewinding the Clock: Emerging Pharmacological Strategies for Human Anti-Aging Therapy. International Journal of Molecular Sciences. 2025; 26(19):9372. https://doi.org/10.3390/ijms26199372
Chicago/Turabian StyleDelrue, Charlotte, Reinhart Speeckaert, and Marijn M. Speeckaert. 2025. "Rewinding the Clock: Emerging Pharmacological Strategies for Human Anti-Aging Therapy" International Journal of Molecular Sciences 26, no. 19: 9372. https://doi.org/10.3390/ijms26199372
APA StyleDelrue, C., Speeckaert, R., & Speeckaert, M. M. (2025). Rewinding the Clock: Emerging Pharmacological Strategies for Human Anti-Aging Therapy. International Journal of Molecular Sciences, 26(19), 9372. https://doi.org/10.3390/ijms26199372