13q Deletion Syndrome Presenting with Lymphopenia Detected Through Newborn Screening for Primary Immunodeficiencies
Abstract
1. Introduction
2. Materials and Methods
3. Clinical Report
- seq[GRCh38] del(13)(q31.2)dn
- NC_000013.11:g.88512689_(qter)del
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mantravadi, V.; Bednarski, J.J.; Ritter, M.A.; Gu, H.; Kolicheski, A.L.; Horner, C.; Cooper, M.A.; Kitcharoensakkul, M. Immunological findings and clinical outcomes of infants with positive newborn screening for severe combined immunodeficiency from a tertiary care center in the U.S. Front. Immunol. 2021, 12, 734096. [Google Scholar] [CrossRef]
- Poli, M.C.; Aksentijevich, I.; Bousfiha, A.; Cunningham-Rundles, C.; Hambleton, S.; Klein, C.; Morio, T.; Picard, C.; Puel, A.; Rezaei, N.; et al. Human inborn errors of immunity: 2024 update on the classification from the international union of immunological societies expert committee. J. Hum. Immun. 2025, 1, e20250003. [Google Scholar] [CrossRef]
- Blom, M.; Bredius, R.G.M.; van der Burg, M. Efficient screening strategies for severe combined immunodeficiencies in newborns. Expert Rev. Mol. Diagn. 2023, 23, 815–825. [Google Scholar] [CrossRef] [PubMed]
- van der Spek, J.; Groenwold, R.H.; van der Burg, M.; van Montfrans, J.M. Trec based newborn screening for severe combined immunodeficiency disease: A systematic review. J. Clin. Immunol. 2015, 35, 416–430. [Google Scholar] [CrossRef] [PubMed]
- Kanegae, M.P.P.; Barreiros, L.A.; Sousa, J.L.; Brito, M.A.S.; Oliveira, E.B.J.; Soares, L.P.; Mazzucchelli, J.T.L.; Fernandes, D.Q.; Hadachi, S.M.; Holanda, S.M.; et al. Newborn screening for severe combined immunodeficiencies using TRECs and KRECs: Second pilot study in Brazil. Rev. Paul. Pediatr. 2017, 35, 25–32. [Google Scholar] [CrossRef]
- Göngrich, C.; Ekwall, O.; Sundin, M.; Brodszki, N.; Fasth, A.; Marits, P.; Dysting, S.; Jonsson, S.; Barbaro, M.; Wedell, A.; et al. First year of TREC-based national SCID screening in Sweden. Int. J. Neonatal. Screen. 2021, 7, 59. [Google Scholar] [CrossRef]
- Kwan, A.; Abraham, R.S.; Currier, R.; Brower, A.; Andruszewski, K.; Abbott, J.K.; Baker, M.; Ballow, M.; Bartoshesky, L.E.; Bonilla, F.A.; et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the united states. JAMA 2014, 312, 729–738, Erratum in JAMA 2014, 312, 2169. [Google Scholar] [CrossRef]
- Mauracher, A.A.; Pagliarulo, F.; Faes, L.; Vavassori, S.; Gungor, T.; Bachmann, L.M.; Pachlopnik Schmid, J. Causes of low neonatal t-cell receptor excision circles: A systematic review. J. Allergy Clin. Immunol. Pract. 2017, 5, 1457–1460.e22. [Google Scholar] [CrossRef]
- Marakhonov, A.; Mukhina, A.; Vlasova, E.; Efimova, I.; Balinova, N.; Rodina, Y.; Pershin, D.; Markova, Z.; Minzhenkova, M.; Shilova, N.; et al. Decreased TREC and KREC levels in newborns with trisomy 21. Front. Pediatr. 2024, 12, 1468635. [Google Scholar] [CrossRef]
- Kubala, S.A.; Sandhu, A.; Palacios-Kibler, T.; Ward, B.; Harmon, G.; DeFelice, M.L.; Bundy, V.; Younger, M.E.M.; Lederman, H.; Liang, H.; et al. Natural history of infants with non-SCID T cell lymphopenia identified on newborn screen. Clin. Immunol. 2022, 245, 109182. [Google Scholar] [CrossRef]
- Marakhonov, A.; Serebryakova, E.; Mukhina, A.; Vechkasova, A.; Prokhorov, N.; Efimova, I.; Balinova, N.; Lobenskaya, A.; Vasilyeva, T.; Zabnenkova, V.; et al. A rare case of tp63-associated lymphopenia revealed by newborn screening using TREC. Int. J. Mol. Sci. 2024, 25, 10844. [Google Scholar] [CrossRef] [PubMed]
- Thakar, M.S.; Hintermeyer, M.K.; Gries, M.G.; Routes, J.M.; Verbsky, J.W. A practical approach to newborn screening for severe combined immunodeficiency using the t cell receptor excision circle assay. Front. Immunol. 2017, 8, 1470. [Google Scholar] [CrossRef] [PubMed]
- Voronin, S.V.; Zakharova, E.Y.; Baydakova, G.V.; Marakhonov, A.V.; Shchagina, O.A.; Ryzhkova, O.P.; Shilova, N.V.; Rumyantsev, A.G.; Shcherbina, A.Y.; Mukhina, A.A.; et al. Advanced neonatal screening for hereditary diseases in Russia: First results and future prospects. Pediatr. J. Named After G.N. Speransky 2024, 103, 16–29. (In Russian) [Google Scholar] [CrossRef]
- Marakhonov, A.; Kalinina, E.; Larin, S.; Khadzhieva, M.; Dudina, E.; Mukhina, A.; Rodina, Y.; Efimova, I.; Balinova, N.; Sermyagina, I.; et al. Harmonizing TREC thresholds in newborn screening for SCID: Insights from Russian validation cohort. J. Clin. Lab. Anal. 2025, 39, e70078. [Google Scholar] [CrossRef]
- Marakhonov, A.V.; Efimova, I.Y.; Mukhina, A.A.; Zinchenko, R.A.; Balinova, N.V.; Rodina, Y.; Pershin, D.; Ryzhkova, O.P.; Orlova, A.A.; Zabnenkova, V.V.; et al. Newborn screening for severe t and b cell lymphopenia using TREC/KREC detection: A large-scale pilot study of 202,908 newborns. J. Clin. Immunol. 2024, 44, 93. [Google Scholar] [CrossRef]
- Sozonova, T.A.; Vedmedskaya, V.A.; Kalinina, E.V.; Lodoeva, O.B.; Musaeva, E.Y.; Fadeeva, M.S.; Malakhova, E.A.; Kulakovskaya, E.A.; Samykina, E.A.; Russiyanov, A.V.; et al. Reference values formation for the extended subpopulation composition of leukocytes in a Russian resident cohort of both children and adults. Pediatr. J. Named After G.N. Speransky 2025, 104, 8–33. (In Russian) [Google Scholar] [CrossRef]
- Dunham, A.; Matthews, L.H.; Burton, J.; Ashurst, J.L.; Howe, K.L.; Ashcroft, K.J.; Beare, D.M.; Burford, D.C.; Hunt, S.E.; Griffiths-Jones, S.; et al. The DNA sequence and analysis of human chromosome 13. Nature 2004, 428, 522–528. [Google Scholar] [CrossRef]
- Orphadata. Prevalence of Rare Diseases: Bibliographic Data—January 2019; Orphadata: Paris, France, 2019. [Google Scholar]
- Brown, S.; Gersen, S.; Anyane-Yeboa, K.; Warburton, D. Preliminary definition of a “critical region” of chromosome 13 in q32: Report of 14 cases with 13q deletions and review of the literature. Am. J. Med. Genet. 1993, 45, 52–59. [Google Scholar] [CrossRef]
- Bartsch, O.; Kuhnle, U.; Wu, L.L.; Schwinger, E.; Hinkel, G.K. Evidence for a critical region for penoscrotal inversion, hypospadias, and imperforate anus within chromosomal region 13q32.2q34. Am. J. Med. Genet. 1996, 65, 218–221. [Google Scholar] [CrossRef]
- Brown, S.; Russo, J.; Chitayat, D.; Warburton, D. The 13q- syndrome: The molecular definition of a critical deletion region in band 13q32. Am. J. Hum. Genet. 1995, 57, 859–866. [Google Scholar]
- Van Buggenhout, G.; Trommelen, J.; Hamel, B.; Fryns, J.P. 13q deletion syndrome in an adult mentally retarded patient. Genet. Couns. 1999, 10, 177–181. [Google Scholar] [PubMed]
- Alanay, Y.; Aktas, D.; Utine, E.; Talim, B.; Onderoglu, L.; Caglar, M.; Tuncbilek, E. Is dandy-walker malformation associated with “distal 13q deletion syndrome”? Findings in a fetus supporting previous observations. Am. J. Med. Genet. A 2005, 136, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Ballarati, L.; Rossi, E.; Bonati, M.T.; Gimelli, S.; Maraschio, P.; Finelli, P.; Giglio, S.; Lapi, E.; Bedeschi, M.F.; Guerneri, S.; et al. 13q deletion and central nervous system anomalies: Further insights from karyotype-phenotype analyses of 14 patients. J. Med. Genet. 2007, 44, e60. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Walczak-Sztulpa, J.; Wisniewska, M.; Latos-Bielenska, A.; Linne, M.; Kelbova, C.; Belitz, B.; Pfeiffer, L.; Kalscheuer, V.; Erdogan, F.; Kuss, A.W.; et al. Chromosome deletions in 13q33-34: Report of four patients and review of the literature. Am. J. Med. Genet. A 2008, 146A, 337–342. [Google Scholar] [CrossRef]
- Mitter, D.; Ullmann, R.; Muradyan, A.; Klein-Hitpass, L.; Kanber, D.; Ounap, K.; Kaulisch, M.; Lohmann, D. Genotype-phenotype correlations in patients with retinoblastoma and interstitial 13q deletions. Eur. J. Hum. Genet. 2011, 19, 947–958. [Google Scholar] [CrossRef]
- Brown, L.Y.; Odent, S.; David, V.; Blayau, M.; Dubourg, C.; Apacik, C.; Delgado, M.A.; Hall, B.D.; Reynolds, J.F.; Sommer, A.; et al. Holoprosencephaly due to mutations in zic2: Alanine tract expansion mutations may be caused by parental somatic recombination. Hum. Mol. Genet. 2001, 10, 791–796. [Google Scholar] [CrossRef]
- Brown, S.A.; Warburton, D.; Brown, L.Y.; Yu, C.Y.; Roeder, E.R.; Stengel-Rutkowski, S.; Hennekam, R.C.; Muenke, M. Holoprosencephaly due to mutations in zic2, a homologue of drosophila odd-paired. Nat. Genet. 1998, 20, 180–183. [Google Scholar] [CrossRef]
- Barratt, K.S.; Arkell, R.M. Zic2 in holoprosencephaly. Adv. Exp. Med. Biol. 2018, 1046, 269–299. [Google Scholar] [CrossRef]
- Levy, J.; Haye, D.; Marziliano, N.; Casu, G.; Guimiot, F.; Dupont, C.; Teissier, N.; Benzacken, B.; Gressens, P.; Pipiras, E.; et al. Efnb2 haploinsufficiency causes a syndromic neurodevelopmental disorder. Clin. Genet. 2018, 93, 1141–1147. [Google Scholar] [CrossRef]
- Guey, S.; Herve, D. Main features of col4a1-col4a2 related cerebral microangiopathies. Cereb. Circ. Cogn. Behav. 2022, 3, 100140. [Google Scholar] [CrossRef]
- Plaisier, E.; Ronco, P. Col4a1-related disorders. In Genereviews(r); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Gasparini, S.; Balestrini, S.; Saccaro, L.F.; Bacci, G.; Panichella, G.; Montomoli, M.; Cantalupo, G.; Bigoni, S.; Mancano, G.; Pellacani, S.; et al. Multiorgan manifestations of col4a1 and col4a2 variants and proposal for a clinical management protocol. Am. J. Med. Genet. C Semin. Med. Genet. 2024, 196, e32099. [Google Scholar] [CrossRef]
- Bersani, I.; Ronci, S.; Savarese, I.; Piersigilli, F.; Micalizzi, A.; Maddaloni, C.; Dotta, A.; Braguglia, A.; Longo, D.; Campi, F. Col4a1 gene mutations and perinatal intracranial hemorrhage in neonates: Case reports and literature review. Front. Pediatr. 2024, 12, 1417873. [Google Scholar] [CrossRef]
- Capurro, M.; Izumikawa, T.; Suarez, P.; Shi, W.; Cydzik, M.; Kaneiwa, T.; Gariepy, J.; Bonafe, L.; Filmus, J. Glypican-6 promotes the growth of developing long bones by stimulating hedgehog signaling. J. Cell Biol. 2017, 216, 2911–2926. [Google Scholar] [CrossRef] [PubMed]
- Crenshaw, M.M.; Meyers, M.L.; Brown, K.; Slegesky, V.; Duis, J.; Elias, E.R.; Saenz, M.; Shi, W.; Filmus, J.; Meeks, N.J.L. Five siblings expand the spectrum of gpc6-related skeletal dysplasia. Am. J. Med. Genet. A 2023, 191, 2571–2577. [Google Scholar] [CrossRef] [PubMed]
- de Pontual, L.; Yao, E.; Callier, P.; Faivre, L.; Drouin, V.; Cariou, S.; Van Haeringen, A.; Genevieve, D.; Goldenberg, A.; Oufadem, M.; et al. Germline deletion of the mir-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat. Genet. 2011, 43, 1026–1030. [Google Scholar] [CrossRef]
- Sagi-Dain, L.; Goldberg, Y.; Peleg, A.; Sukenik-Halevy, R.; Sofrin-Drucker, E.; Appelman, Z.; Josefsberg, B.Y.S.; Ben-Shachar, S.; Vinkler, C.; Basel-Salmon, L.; et al. The rare 13q33-q34 microdeletions: Eight new patients and review of the literature. Hum. Genet. 2019, 138, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Wang, D.J.; Niu, Z.B.; Cui, W.T. Chromosome 13q deletion syndrome involving 13q31-qter: A case report. Mol. Med. Rep. 2017, 15, 3658–3664. [Google Scholar] [CrossRef]
- He, X.; Shen, H.; Fu, H.; Feng, C.; Liu, Z.; Jin, Y.; Mao, J. Reduced anogenital distance, hematuria and left renal hypoplasia in a patient with 13q33.1-34 deletion: Case report and literature review. BMC Pediatr. 2020, 20, 327. [Google Scholar] [CrossRef]
- Schatorje, E.; van der Flier, M.; Seppanen, M.; Browning, M.; Morsheimer, M.; Henriet, S.; Neves, J.F.; Vinh, D.C.; Alsina, L.; Grumach, A.; et al. Primary immunodeficiency associated with chromosomal aberration—An ESID survey. Orphanet J. Rare Dis. 2016, 11, 110. [Google Scholar] [CrossRef][Green Version]
- Giannotti, C.C.P.; do Nascimento, R.; Terreri, M.T.; Andrade, L.E.C.; Perazzio, S.F. Chromosome aberrations and autoimmunity: Immune-mediated diseases associated with 18p deletion and other chromosomal aberrations. Autoimmun. Rev. 2025, 24, 103740. [Google Scholar] [CrossRef]
- Kuzmenko, N.B.; Mukhina, A.A.; Rodina, Y.A.; Deripapa, E.V.; Khoreva, A.L.; Shvets, O.A.; Deordieva, E.A.; Burlakov, V.I.; Roppelt, A.A.; Yukhacheva, D.V.; et al. Chromosomal aberrations as the cause of a complex phenotype in children with primary immunodeficiencies. Pediatr. Hematol./Oncol. Immunopathol. 2020, 19, 62–67. (In Russian) [Google Scholar] [CrossRef]
- Efimova, E.Y.; Mukhina, A.A.; Balinova, N.V.; Matulevich, S.A.; Pershin, D.E.; Khoreva, A.L.; Marakhonov, A.V.; Voronin, S.V.; Zinchenko, R.A.; Shcherbina, A.Y.; et al. Newborn screening for primary immunodeficiencies as a way to detect syndromal disorders in neonates: A clinical case of 22q11.2ds syndrome. Pediatr. Hematol./Oncol. Immunopathol. 2022, 21, 158–162. [Google Scholar] [CrossRef]
- Gemen, E.F.; Verstegen, R.H.; Leuvenink, J.; de Vries, E. Increased circulating apoptotic lymphocytes in children with down syndrome. Pediatr. Blood Cancer 2012, 59, 1310–1312. [Google Scholar] [CrossRef] [PubMed]
- Ballestar, E. Epigenetics lessons from twins: Prospects for autoimmune disease. Clin. Rev. Allergy Immunol. 2010, 39, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, Q.; Jiang, J.; Tang, W.; Ding, Y.; Zhou, L.; Yu, J.; Tang, X.; An, Y.; Zhao, X. Characterization of a cohort of patients with lig4 deficiency reveals the founder effect of p.R278l, unique to the Chinese population. Front. Immunol. 2021, 12, 695993. [Google Scholar] [CrossRef]
- Jauch, A.J.; Bignucolo, O.; Seki, S.; Ghraichy, M.; Delmonte, O.M.; von Niederhausern, V.; Higgins, R.; Ghosh, A.; Nishizawa, M.; Tanaka, M.; et al. Autoimmunity and immunodeficiency associated with monoallelic lig4 mutations via haploinsufficiency. J. Allergy Clin. Immunol. 2023, 152, 500–516. [Google Scholar] [CrossRef]
- Wu, Y.; Schutt, S.; Paz, K.; Zhang, M.; Flynn, R.P.; Bastian, D.; Sofi, M.H.; Nguyen, H.; Dai, M.; Liu, C.; et al. Microrna-17-92 is required for t-cell and b-cell pathogenicity in chronic graft-versus-host disease in mice. Blood 2018, 131, 1974–1986. [Google Scholar] [CrossRef]
- Mogilyansky, E.; Rigoutsos, I. The mir-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013, 20, 1603–1614. [Google Scholar] [CrossRef]
- Kuo, G.; Wu, C.Y.; Yang, H.Y. Mir-17-92 cluster and immunity. J. Formos. Med. Assoc. 2019, 118, 2–6. [Google Scholar] [CrossRef]
- Cejalvo, T.; Munoz, J.J.; Tobajas, E.; Fanlo, L.; Alfaro, D.; Garcia-Ceca, J.; Zapata, A. Ephrin-b-dependent thymic epithelial cell-thymocyte interactions are necessary for correct t cell differentiation and thymus histology organization: Relevance for thymic cortex development. J. Immunol. 2013, 190, 2670–2681. [Google Scholar] [CrossRef]
- Luo, H.; Charpentier, T.; Wang, X.; Qi, S.; Han, B.; Wu, T.; Terra, R.; Lamarre, A.; Wu, J. Efnb1 and efnb2 proteins regulate thymocyte development, peripheral t cell differentiation, and antiviral immune responses and are essential for interleukin-6 (il-6) signaling. J. Biol. Chem. 2011, 286, 41135–41152. [Google Scholar] [CrossRef]
- Tambala, D.; Vassar, R.; Snow, J.; Balestrini, S.; Bersano, A.; Guey, S.; Bonaventura, E.; Signorini, S.; Sartori, S.; Bertini, E.; et al. Col4a1 and col4a2-related disorders: Clinical features, diagnostic guidelines, and management. Genet. Med. 2025, 27, 101514. [Google Scholar] [CrossRef]
- McGhee, S.A.; Kobayashi, R.H. What does screening newborns for t-cell lymphopenia find? J. Allergy Clin. Immunol. Pract. 2017, 5, 1461–1462. [Google Scholar] [CrossRef]
- Juhan, C.; Cornillon, B.; Tobiana, F.; Schlama, S.; Barthelemy, P.; Denjean-Massia, J.P. Patency after iliofemoral and iliocaval venous thrombectomy. Ann. Vasc. Surg. 1987, 1, 529–533. [Google Scholar] [CrossRef]
- Routes, J.M.; Grossman, W.J.; Verbsky, J.; Laessig, R.H.; Hoffman, G.L.; Brokopp, C.D.; Baker, M.W. Statewide newborn screening for severe t-cell lymphopenia. JAMA 2009, 302, 2465–2470. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.; Church, J.A.; Cowan, M.J.; Agarwal, R.; Kapoor, N.; Kohn, D.B.; Lewis, D.B.; McGhee, S.A.; Moore, T.B.; Stiehm, E.R.; et al. Newborn screening for severe combined immunodeficiency and t-cell lymphopenia in California: Results of the first 2 years. J. Allergy Clin. Immunol. 2013, 132, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Patrawala, M.; Kobrynski, L. Nonsevere combined immunodeficiency t-cell lymphopenia identified through newborn screening. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 586–593. [Google Scholar] [CrossRef]
- Ohori, S.; Tsuburaya, R.S.; Kinoshita, M.; Miyagi, E.; Mizuguchi, T.; Mitsuhashi, S.; Frith, M.C.; Matsumoto, N. Long-read whole-genome sequencing identified a partial mbd5 deletion in an exome-negative patient with neurodevelopmental disorder. J. Hum. Genet. 2021, 66, 697–705. [Google Scholar] [CrossRef] [PubMed]
Parameter | % | Cells (×106/mL) | Normal % | Normal Cell Count (×106/mL) |
---|---|---|---|---|
White Blood Cells (WBC) | - | 7.09 | - | 6.2–12.1 |
Granulocytes | 59.0 | 4.18 | 14.7–35.7 | 1.0–3.2 |
Monocytes | 15.0 | 1.06 | 4.2–11.6 | 0.3–1.0 |
Lymphocytes | 25.0 | 1.77 | 57.5–79.5 | 4.0–8.0 |
% | Cells (×109/L) | Normal % | Normal cell count (×106/mL) | |
T-cells CD3+Lym | 76.8 | 1.361 | 58.3–73.9 | 2.7–5.1 |
CD3+CD4+Lym | 70.3 | 0.957 | 56.6–79.1 | 1.7–3.6 |
T-naïve cells CD4+CD45RA+CD197+ | 72.3 | 0.692 | 73.4–87.5 | 1.393–2.896 |
T-central memory cells CD4+CD45RA−CD197+ | 10.6 | 0.101 | 4.8–15.8 | 0.110–0.499 |
Effector memory cells CD4+CD45RA−CD197− | 11.2 | 0.107 | 4.0–12.6 | 0.107–0.342 |
TEMRA CD4+CD45RA+CD197− | 6.0 | 0.057 | 1.0–6.1 | 0.027–0.169 |
CD3+CD8+Lym | 24.9 | 0.339 | 17.9–38.9 | 0.6–1.8 |
T-naïve cells CD8+CD45RA+CD197+ | 93.1 | 0.316 | 47.6–85.1 | 0.381–1.182 |
T-central memory cells CD8+CD45RA−CD197+ | 0.2 | 0.001 | 0.3–5.6 | 0.003–0.074 |
Effector memory cells CD8+CD45RA−CD197− | 0.1 | 0.000 | 2.6–20.9 | 0.028–0.281 |
TEMRA CD8+CD45RA+CD197− | 6.7 | 0.023 | 6.2–35.9 | 0.067–0.497 |
B-cells CD19+Lym | 4.5 | 0.080 | 18.7–33.3 | 0.8–2.3 |
NK-cells CD3−CD16+CD56+Lym | 18.7 | 0.331 | 3.0–12.9 | 0.2–0.9 |
CD56+high NK | 16.6 | 0.055 | 4.1–19.4 | 0.01–0.08 |
T-NK-cells CD3+CD56+Lym | 0.4 | 0.007 | 0.1–0.6 | 0.00–0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efimova, I.; Mukhina, A.; Markova, Z.; Mordanov, S.; Soprunova, I.; Pershin, D.; Balinova, N.; Petrusenko, Y.; Meleshko, D.; Zinchenko, R.; et al. 13q Deletion Syndrome Presenting with Lymphopenia Detected Through Newborn Screening for Primary Immunodeficiencies. Int. J. Mol. Sci. 2025, 26, 9302. https://doi.org/10.3390/ijms26199302
Efimova I, Mukhina A, Markova Z, Mordanov S, Soprunova I, Pershin D, Balinova N, Petrusenko Y, Meleshko D, Zinchenko R, et al. 13q Deletion Syndrome Presenting with Lymphopenia Detected Through Newborn Screening for Primary Immunodeficiencies. International Journal of Molecular Sciences. 2025; 26(19):9302. https://doi.org/10.3390/ijms26199302
Chicago/Turabian StyleEfimova, Irina, Anna Mukhina, Zhanna Markova, Sergey Mordanov, Irina Soprunova, Dmitry Pershin, Natalya Balinova, Yunna Petrusenko, Dmitry Meleshko, Rena Zinchenko, and et al. 2025. "13q Deletion Syndrome Presenting with Lymphopenia Detected Through Newborn Screening for Primary Immunodeficiencies" International Journal of Molecular Sciences 26, no. 19: 9302. https://doi.org/10.3390/ijms26199302
APA StyleEfimova, I., Mukhina, A., Markova, Z., Mordanov, S., Soprunova, I., Pershin, D., Balinova, N., Petrusenko, Y., Meleshko, D., Zinchenko, R., Shilova, N., Voronin, S., Shcherbina, A., Kutsev, S., & Marakhonov, A. (2025). 13q Deletion Syndrome Presenting with Lymphopenia Detected Through Newborn Screening for Primary Immunodeficiencies. International Journal of Molecular Sciences, 26(19), 9302. https://doi.org/10.3390/ijms26199302