Cardiovascular Ischemia: Advancement and Potential Use of Collagen-Based Therapeutic Strategy
Abstract
1. Introduction
2. Collagens in the Heart and Blood Vessels
3. Collagen-Based Therapies for Cardiovascular Healing
4. Sources and Types of Collagen-Derived Materials
- Animal-Derived Collagen: Bovine-derived collagen, primarily extracted from dermis or tendons, is one of the most widely used types in biomedical research and clinical practice. It offers a high yield of type I collagen, making it suitable for producing gels, films, and sponges. However, concerns about zoonotic disease transmission and immunogenic responses have led to strict purification and cross-linking processes [57]. Porcine skin and small intestinal submucosa (SIS) are also common sources, offering types I and III collagens. Porcine collagen is often used in wound dressings, dental membranes, and vascular grafts due to its similarity to human tissue structure [58]. Marine collagen, extracted from fish skin, scales, or jellyfish, is gaining attention due to lower disease transmission risk and religious/cultural acceptability. While marine collagen generally has lower thermal stability, it has proven useful in cosmetic, pharmaceutical, and biomedical applications, particularly in hydrogels and scaffolds for soft tissue engineering [59]. It is important to note that collagen’s structure and sequence are highly conserved across mammalian species, which is why collagen is generally biocompatible and has a low risk of immune rejection. For instance, the primary amino acid sequence of fibrillar collagens (especially type I and III, which are abundant in heart and blood vessels) is highly conserved between species such as bovine, porcine, and human [57,58]. Structurally, the triple-helical assembly of collagen (Gly–X–Y repeats, often Gly–Pro–Hyp) is a key determinant of its mechanical stability and is preserved across vertebrates. This structural conservation means that the epitopes recognized by immune cells are minimal or masked in the native triple helix. Nonetheless, even though collagen is highly conserved across species, it displays variations in its amino acid sequences that can create unique epitopes; these species-specific epitopes may trigger an immune response [60].
- Recombinant and Synthetic Collagen: This collagen is produced using genetically engineered microorganisms (e.g., yeast, bacteria) to express human collagen genes. This approach eliminates risks associated with animal-derived products and allows for precise control of molecular composition. Recombinant collagens are still under development but show promise in ophthalmic, dermal, and cardiac applications [61].
5. Collagen-Based Materials in Support of Angiogenesis
6. Bioactive Collagen Materials in Support of Myocardial Repair
7. Dietary Intervention of Collagen Supplements in Cardiac Ischemia
8. Current Research and Applications
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CI | Cardiac Ischemia |
ECM | Extracellular Matrix |
FACITs | Fibril-associated collagens with interrupted triple helices |
AGE | Advanced glycation end product |
LOX | Lysyl oxidase |
TEVAR | Thoracic endovascular aortic repair |
EVAR | Endovascular aneurysm repair |
VEGF | Vascular endothelial growth factor |
EDC/NHS | EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) and NHS (N-hydroxysuccinimide) |
ESCs | Embryonic Stem Cells Induced |
iPSCs | Pluripotent Stem Cells |
MSCs | Mesenchymal Stem Cells |
ADSCs | Adipose-Derived Stem Cells |
CSCs | Cardiac Stem Cells |
bFGF | basic Fibroblast Growth Factor |
UV | Ultraviolet |
DDRs | Discoidin domain receptors |
MMPs | Matrix metalloproteinases |
HUVECs | Human Umbilical Vein Endothelial Cells |
PlGF | Placental growth factor |
PLGA | poly(lactic-co-glycolic acid) |
MALDI | Matrix-assisted laser desorption/ionization |
CTP | Collagen tripeptide |
CPS | Collagen peptide supplementation |
LDL | Low density lipoprotein |
HDL | High density lipoprotein |
EF | Ejection fraction |
FS | Fraction shortening |
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Suwaidi, S.K.B.M.A.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Darmaki, R.S.A.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef]
- Sun, J.; Qiao, Y.; Zhao, M.; Magnussen, C.G.; Xi, B. Global, regional, and national burden of cardiovascular diseases in youths and young adults aged 15–39 years in 204 countries/territories, 1990–2019: A systematic analysis of Global Burden of Disease Study 2019. BMC Med. 2023, 21, 222. [Google Scholar] [CrossRef]
- Shahjehan, R.D.; Sharma, S.; Bhutta, B.S. Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK564304/ (accessed on 8 April 2025).
- Keepers, B.; Liu, J.; Qian, L. What’s in a cardiomyocyte—And how do we make one through reprogramming? Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2020, 1867, 118464. [Google Scholar] [CrossRef]
- Santini, M.P.; Forte, E.; Harvey, R.P.; Kovacic, J.C. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016, 143, 1242–1258. [Google Scholar] [CrossRef]
- Frangogiannis, N.G.; Kovacic, J.C. Extracellular Matrix in Ischemic Heart Disease, Part 4/4. JACC 2020, 75, 2219–2235. [Google Scholar] [CrossRef] [PubMed]
- Avila Rodríguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef]
- Wu, W.; Peng, S.; Song, Z.; Lin, S. Collagen biomaterial for the treatment of myocardial infarction: An update on cardiac tissue engineering and myocardial regeneration. Drug Deliv. Transl. Res. 2019, 9, 920–934. [Google Scholar] [CrossRef]
- Copes, F.; Pien, N.; Vlierberghe, S.V.; Boccafoschi, F.; Mantovani, D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front. Bioeng. Biotechnol. 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Li, R.; Bai, H.; Zhu, Z.; Zhu, L.; Zhu, C.; Che, Z.; Liu, H.; Wang, J.; et al. Collagen-based biomaterials for bone tissue engineering. Mater. Des. 2021, 210, 110049. [Google Scholar] [CrossRef]
- Singh, D.; Rai, V.; Agrawal, D.K. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol. Cardiovasc. Med. 2023, 7, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Abou Neel, E.A.; Bozec, L.; Knowles, J.C.; Syed, O.; Mudera, V.; Day, R.; Hyun, J.K. Collagen—Emerging collagen based therapies hit the patient. Adv. Drug Deliv. Rev. 2013, 65, 429–456. [Google Scholar] [CrossRef]
- Howard, P.S.; Macarak, E.J. Localization of collagen types in regional segments of the fetal bovine aorta. Lab. Investig. 1989, 61, 548–555. [Google Scholar]
- Cheah, K.S.; Stoker, N.G.; Griffin, J.R.; Grosveld, F.G.; Solomon, E. Identification and characterization of the human type II collagen gene (COL2A1). Proc. Natl. Acad. Sci. USA 1985, 82, 2555–2559. [Google Scholar] [CrossRef]
- Abreu-Velez, A.M.; Howard, M.S. Collagen IV in Normal Skin and in Pathological Processes. N. Am. J. Med. Sci. 2012, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Dilworth, D.J.; Weng, Y.-C.; Gould, D.B. Developmental distribution of collagen IV isoforms and relevance to ocular diseases. Matrix Biol. J. Int. Soc. Matrix Biol. 2009, 28, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Rhodes, R.K.; Miller, E.J. Isolation of three collagenous components of probable basement membrane origin from several tissues. Biochem. Biophys. Res. Commun. 1976, 71, 1167–1174. [Google Scholar] [CrossRef]
- Rhodes, R.K.; Miller, E.J. Physicochemical characterization and molecular organization of the collagen A and B chains. Biochemistry 1978, 17, 3442–3448. [Google Scholar] [CrossRef] [PubMed]
- Cescon, M.; Gattazzo, F.; Chen, P.; Bonaldo, P. Collagen VI at a glance. J. Cell Sci. 2015, 128, jcs.169748. [Google Scholar] [CrossRef]
- Cheng, I.H.; Lin, Y.-C.; Hwang, E.; Huang, H.-T.; Chang, W.-H.; Liu, Y.-L.; Chao, C.-Y. Collagen VI protects against neuronal apoptosis elicited by ultraviolet irradiation via an Akt/phosphatidylinositol 3-kinase signaling pathway. Neuroscience 2011, 183, 178–188. [Google Scholar] [CrossRef]
- Conradt, G.; Hausser, I.; Nyström, A. Epidermal or Dermal Collagen VII Is Sufficient for Skin Integrity: Insights to Anchoring Fibril Homeostasis. J. Investig. Dermatol. 2024, 144, 1301–1310.e7. [Google Scholar] [CrossRef]
- Li, Q.; Tintut, Y.; Demer, L.L.; Vazquez-Padron, R.I.; Bendeck, M.P.; Hsu, J.J. Collagen VIII in Vascular Diseases. Matrix Biol. J. Int. Soc. Matrix Biol. 2024, 133, 64–76. [Google Scholar] [CrossRef]
- Kamakura, T.; Jin, Y.; Nishio, M.; Nagata, S.; Fukuda, M.; Sun, L.; Kawai, S.; Toguchida, J. Collagen X Is Dispensable for Hypertrophic Differentiation and Endochondral Ossification of Human iPSC-Derived Chondrocytes. JBMR Plus 2023, 7, e10737. [Google Scholar] [CrossRef]
- Smith, G.N., Jr.; Gerald, N.; Hasty, K.A.; Brandt, K.D. Type XI Collagen is Associated with the Chondrocyte Surface in Suspension Culture. Matrix 1989, 9, 186–192. [Google Scholar] [CrossRef]
- Myers, J.C.; Dion, A.S.; Abraham, V.; Amenta, P.S. Type XV collagen exhibits a widespread distribution in human tissues but a distinct localization in basement membrane zones. Cell Tissue Res 1996, 286, 493–505. [Google Scholar] [CrossRef]
- Saarela, J.; Rehn, M.; Oikarinen, A.; Autio-Harmainen, H.; Pihlajaniemi, T. The Short and Long Forms of Type XVIII Collagen Show Clear Tissue Specificities in Their Expression and Location in Basement Membrane Zones in Humans. Am. J. Pathol. 1998, 153, 611–626. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Yau, T.M.; Weisel, R.D.; Kiani, C.G.; Li, R.-K. Elastin Stabilizes an Infarct and Preserves Ventricular Function. Circulation 2005, 112, I-81–I-88. [Google Scholar] [CrossRef]
- Robinson, T.F.; Geraci, M.A.; Sonnenblick, E.H.; Factor, S.M. Coiled perimysial fibers of papillary muscle in rat heart: Morphology, distribution, and changes in configuration. Circ. Res. 1988, 63, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tedder, M.E.; Perez, C.E.; Wang, G.; de Jongh Curry, A.L.; To, F.; Elder, S.H.; Williams, L.N.; Simionescu, D.T.; Liao, J. Structural and biomechanical characterizations of porcine myocardial extracellular matrix. J. Mater. Sci. Mater. Med. 2012, 23, 1835–1847. [Google Scholar] [CrossRef]
- Bashey, R.I.; Martinez-Hernandez, A.; Jimenez, S.A. Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ. Res. 1992, 70, 1006–1017. [Google Scholar] [CrossRef]
- Medugorac, I.; Jacob, R. Characterisation of left ventricular collagen in the rat. Cardiovasc. Res. 1983, 17, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, J.B.; Norton, P.; Weaver, R.D. Cardiac dilatation associated with collagen alterations. Mol. Cell. Biochem. 1992, 116, 171–179. [Google Scholar] [CrossRef]
- Weber, K.T.; Sun, Y.; Bhattacharya, S.K.; Ahokas, R.A.; Gerling, I.C. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 2013, 10, 15–26. [Google Scholar] [CrossRef]
- Depes, D.; Mennander, A.; Paavonen, T.; Sheppard, M.N.; Kholová, I. Detailed study of collagen, vasculature, and innervation in the human cardiac conduction system. Cardiovasc. Pathol. 2024, 69, 107603. [Google Scholar] [CrossRef] [PubMed]
- Baicu, C.F.; Stroud, J.D.; Livesay, V.A.; Hapke, E.; Holder, J.; Spinale, F.G.; Zile, M.R. Changes in extracellular collagen matrix alter myocardial systolic performance. Am. J. Physiol.-Heart Circ. Physiol. 2003, 284, H122–H132. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Spinale, F.G.; Tanaka, R.; Johnson, W.; Cooper, G.; Zile, M.R. Inhibition of collagen cross-linking: Effects on fibrillar collagen and ventricular diastolic function. Am. J. Physiol.-Heart Circ. Physiol. 1995, 269, H863–H868. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Ding, C.; Wilson, E.; Marcus, G.M.; Olgin, J.E. Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm 2010, 7, 1438–1445. [Google Scholar] [CrossRef]
- Goldsmith, E.C.; Bradshaw, A.D.; Spinale, F.G. Cellular Mechanisms of Tissue Fibrosis. 2. Contributory pathways leading to myocardial fibrosis: Moving beyond collagen expression. Am. J. Physiol.-Cell Physiol. 2013, 304, C393–C402. [Google Scholar] [CrossRef]
- Horn, M.A.; Trafford, A.W. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. J. Mol. Cell. Cardiol. 2016, 93, 175–185. [Google Scholar] [CrossRef]
- Añazco, C.; Riedelsberger, J.; Vega-Montoto, L.; Rojas, A. Exploring the Interplay between Polyphenols and Lysyl Oxidase Enzymes for Maintaining Extracellular Matrix Homeostasis. Int. J. Mol. Sci. 2023, 24, 10985. [Google Scholar] [CrossRef]
- Twarda-Clapa, A.; Olczak, A.; Białkowska, A.M.; Koziołkiewicz, M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022, 11, 1312. [Google Scholar] [CrossRef]
- Manon-Jensen, T.; Kjeld, N.G.; Karsdal, M.A. Collagen-mediated hemostasis. J. Thromb. Haemost. 2016, 14, 438–448. [Google Scholar] [CrossRef]
- Berdiaki, A.; Neagu, M.; Tzanakakis, P.; Spyridaki, I.; Pérez, S.; Nikitovic, D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024, 14, 1186. [Google Scholar] [CrossRef]
- Di, X.; Gao, X.; Peng, L.; Ai, J.; Jin, X.; Qi, S.; Li, H.; Wang, K.; Luo, D. Cellular mechanotransduction in health and diseases: From molecular mechanism to therapeutic targets. Signal. Transduct. Target Ther. 2023, 8, 282. [Google Scholar] [CrossRef]
- Libby, J.R.; Royce, H.; Walker, S.R.; Li, L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. Biomater. Biosyst. 2024, 15, 100097. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.C.; King, A.; Björk, V.; English, B.W.; Fedintsev, A.; Ewald, C.Y. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am. J. Physiol.-Cell Physiol. 2023, 325, C90–C128. [Google Scholar] [CrossRef]
- Urbanczyk, M.; Layland, S.L.; Schenke-Layland, K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol. 2020, 85–86, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Xiao, Y.; Yang, J.; He, Y.; He, Y.; Liu, K.; Chen, X.; Guo, J. Engineering collagen-based biomaterials for cardiovascular medicine. Collagen Leather 2024, 6, 33. [Google Scholar] [CrossRef]
- Panagrosso, M.; Cavallo, E.; Bracale, U.M.; Peluso, A.; Silvestri, O.; Intrieri, F.; Molinari, V.; Esposito, A.; Trimarchi, S.; Settembrini, A.M.; et al. Collagen-Based Vascular Closure Device Multicenter Italian Experience in Endovascular Aortic Aneurysm Repair Compared With Suture-Mediated Closure Vascular Device. J. Endovasc. Ther. 2024, 2024, 15266028241275804. [Google Scholar] [CrossRef]
- Yu, X. Application of Hydrogels in Cardiac Regeneration. Cardiol. Ther. 2023, 12, 637–674. [Google Scholar] [CrossRef]
- Giraud, M.-N.; Ayuni, E.; Cook, S.; Siepe, M.; Carrel, T.P.; Tevaearai, H.T. Hydrogel-based Engineered Skeletal Muscle Grafts Normalize Heart Function Early After Myocardial Infarction. Artif. Organs 2008, 32, 692–700. [Google Scholar] [CrossRef]
- Sakai, S.; Yamanari, M.; Miyazawa, A.; Matsumoto, M.; Nakagawa, N.; Sugawara, T.; Kawabata, K.; Yatagai, T.; Yasuno, Y. In vivo Three-Dimensional Birefringence Analysis Shows Collagen Differences between Young and Old Photo-Aged Human Skin. J. Investig. Dermatol. 2008, 128, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Seif-Naraghi, S.B.; Singelyn, J.M.; Salvatore, M.A.; Osborn, K.G.; Wang, J.J.; Sampat, U.; Kwan, O.L.; Strachan, G.M.; Wong, J.; Schup-Magoffin, P.J.; et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 2013, 5, 173ra25, Erratum in Sci. Transl. Med. 2014, 6, 233er2. [Google Scholar] [CrossRef] [PubMed]
- Nitescu, B.; Dumitrescu, A.; Stanescu, F.R.; Cintacioiu, D.; Lates, G.; Parasca, S.V. A Collagen–Elastin Regenerative Dermal Matrix May Generate Unfavorable Results in Head and Neck Postburn Scar Reconstruction: A Case Series. Medicina 2025, 61, 744. [Google Scholar] [CrossRef]
- Alberts, A.; Bratu, A.G.; Niculescu, A.-G.; Grumezescu, A.M. Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications. Gels 2025, 11, 271. [Google Scholar] [CrossRef]
- Wang, H. The Potential of Collagen Treatment for Comorbid Diseases. Polymers 2023, 15, 3999. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raines, R.T. Review collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.F.M.R.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef]
- Iribe, H.; Kabashima, H.; Ishii, Y.; Koga, T. Epitope specificity of antibody response against human type II collagen in the mouse susceptible to collagen-induced arthritis and patients with rheumatoid arthritis. Clin. Exp. Immunol. 1988, 73, 443–448. [Google Scholar]
- He, Q.; Feng, T.; Xie, Y.; Swamiappan, S.; Zhou, Y.; Zhou, Y.; Zhou, H.; Peng, X. Recent Advances in the Development and Application of Cell-Loaded Collagen Scaffolds. Int. J. Mol. Sci. 2025, 26, 4009. [Google Scholar] [CrossRef] [PubMed]
- Norahan, M.H.; Pedroza-González, S.C.; Sánchez-Salazar, M.G.; Álvarez, M.M.; Trujillo de Santiago, G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 2023, 24, 197–235. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, H.; Zhang, X.; Chen, Z.; Zhao, D.; Ma, J. A comparative study of two porous sponge scaffolds prepared by collagen derived from porcine skin and fish scales as burn wound dressings in a rabbit model. Regen. Biomater. 2019, 7, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Yammine, P.; El Safadi, A.; Kassab, R.; El-Nakat, H.; Obeid, P.J.; Nasr, Z.; Tannous, T.; Sari-Chmayssem, N.; Mansour, A.; Chmayssem, A. Types of Crosslinkers and Their Applications in Biomaterials and Biomembranes. Chemistry 2025, 7, 61. [Google Scholar] [CrossRef]
- Geanaliu-Nicolae, R.-E.; Andronescu, E. Blended Natural Support Materials—Collagen Based Hydrogels Used in Biomedicine. Materials 2020, 13, 5641. [Google Scholar] [CrossRef]
- Elango, J.; Hou, C.; Bao, B.; Wang, S.; de Val, J.E.M.S.; Wenhui, W. The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers 2022, 14, 876. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.R.; Shahid, M.A.; Alimuzzaman, S.; Khan, A.N. Sources, extractions and applications of bio-maker collagen—A review. Biomed. Eng. Adv. 2022, 4, 100064. [Google Scholar] [CrossRef]
- Wosicka-Frąckowiak, H.; Poniedziałek, K.; Woźny, S.; Kuprianowicz, M.; Nyga, M.; Jadach, B.; Milanowski, B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers 2024, 16, 2668. [Google Scholar] [CrossRef]
- Sweeney, S.M.; DiLullo, G.; Slater, S.J.; Martinez, J.; Iozzo, R.V.; Lauer-Fields, J.L.; Fields, G.B.; Antonio, J.D.S. Angiogenesis in Collagen I Requires α2β1 Ligation of a GFP*GER Sequence and Possibly p38 MAPK Activation and Focal Adhesion Disassembly*. J. Biol. Chem. 2003, 278, 30516–30524. [Google Scholar] [CrossRef]
- Mahabeleshwar, G.H.; Feng, W.; Phillips, D.R.; Byzova, T.V. Integrin signaling is critical for pathological angiogenesis. J. Exp. Med. 2006, 203, 2495–2507. [Google Scholar] [CrossRef]
- Senk, A.; Djonov, V. Collagen fibers provide guidance cues for capillary regrowth during regenerative angiogenesis in zebrafish. Sci. Rep. 2021, 11, 19520. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Mabeta, P.; Hull, R.; Dlamini, Z. LncRNAs and the Angiogenic Switch in Cancer: Clinical Significance and Therapeutic Opportunities. Genes 2022, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Upton, Z.; Leavesley, D.; Fan, C.; Wang, X.-Q. Vascular and Collagen Target: A Rational Approach to Hypertrophic Scar Management. Adv. Wound Care 2022, 12, 38–55. [Google Scholar] [CrossRef]
- Bravo, G.M.; Annarapu, G.; Carmona, E.; Nawarskas, J.; Clark, R.; Novelli, E.; Alvidrez, R.I.M. Platelets in Thrombosis and Atherosclerosis: A Double-Edged Sword. Am. J. Pathol. 2024, 194, 1608–1621. [Google Scholar] [CrossRef]
- Darby, I.A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 2014, 7, 301–311. [Google Scholar] [CrossRef]
- Hamdani, N.; Paulus, W.J. Myocardial Titin and Collagen in Cardiac Diastolic Dysfunction. Circulation 2013, 128, 5–8. [Google Scholar] [CrossRef]
- Hinz, B. The role of myofibroblasts in wound healing. Curr. Res. Transl. Med. 2016, 64, 171–177. [Google Scholar] [CrossRef]
- Hinz, B.; McCulloch, C.A.; Coelho, N.M. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp. Cell Res. 2019, 379, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Naugle, J.E.; Olson, E.R.; Zhang, X.; Mase, S.E.; Pilati, C.F.; Maron, M.B.; Folkesson, H.G.; Horne, W.I.; Doane, K.J.; Meszaros, J.G. Type VI collagen induces cardiac myofibroblast differentiation: Implications for postinfarction remodeling. Am. J. Physiol.-Heart Circ. Physiol. 2006, 290, H323–H330. [Google Scholar] [CrossRef]
- Conroy, K.P.; Kitto, L.J.; Henderson, N.C. αv integrins: Key regulators of tissue fibrosis. Cell Tissue Res. 2016, 365, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Badenhorst, D.; Maseko, M.; Tsotetsi, O.J.; Naidoo, A.; Brooksbank, R.; Norton, G.R.; Woodiwiss, A.J. Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc. Res. 2003, 57, 632–641. [Google Scholar] [CrossRef]
- Yokota, T.; McCourt, J.; Ma, F.; Ren, S.; Li, S.; Kim, T.-H.; Kurmangaliyev, Y.Z.; Nasiri, R.; Ahadian, S.; Nguyen, T.; et al. Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell 2020, 182, 545–562.e23. [Google Scholar] [CrossRef]
- Trombino, S.; Curcio, F.; Cassano, R.; Curcio, M.; Cirillo, G.; Iemma, F. Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics 2021, 13, 1038. [Google Scholar] [CrossRef] [PubMed]
- Abbadessa, A.; Nuñez Bernal, P.; Buttitta, G.; Ronca, A.; D’Amora, U.; Zihlmann, C.; Stiefel, N.; Ambrosio, L.; Malda, J.; Levato, R.; et al. Biofunctionalization of 3D printed collagen with bevacizumab-loaded microparticles targeting pathological angiogenesis. J. Control. Release 2023, 360, 747–758. [Google Scholar] [CrossRef]
- Chen, S.; Liu, B.; Carlson, M.A.; Gombart, A.F.; Reilly, D.A.; Xie, J. Recent Advances in Electrospun Nanofibers for Wound Healing. Nanomedicine 2017, 12, 1335–1352. [Google Scholar] [CrossRef] [PubMed]
- Grilo, G.A.; Cakir, S.N.; Shaver, P.R.; Iyer, R.P.; Whitehead, K.; McClung, J.M.; Vahdati, A.; de Castro Brás, L.E. Collagen matricryptin promotes cardiac function by mediating scar formation. Life Sci. 2023, 321, 121598. [Google Scholar] [CrossRef]
- Richardson, W.J.; Clarke, S.A.; Quinn, T.A.; Holmes, J.W. Physiological Implications of Myocardial Scar Structure. Compr. Physiol. 2015, 5, 1877–1909. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, Y.; Chen, J.; Yao, Y.; Liu, Y.; Chen, Y.; Yang, B.; Guo, Z. Pirfenidone improves early cardiac function following myocardial infarction by enhancing the elastin/collagen ratio. Biomed. Pharmacother. 2024, 178, 117254. [Google Scholar] [CrossRef]
- Min, J.H.; Yun, I.S.; Lew, D.H.; Roh, T.S.; Lee, W.J. The Use of Matriderm and Autologous Skin Graft in the Treatment of Full Thickness Skin Defects. Arch. Plast. Surg. 2014, 41, 330–336. [Google Scholar] [CrossRef]
- Law, J.X.; Liau, L.L.; Saim, A.; Yang, Y.; Idrus, R. Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering. Tissue Eng. Regen. Med. 2017, 14, 699–718. [Google Scholar] [CrossRef]
- Gurumurthy, B.; Tucci, M.A.; Fan, L.-W.; Benghuzzi, H.A.; Pal, P.; Bidwell, G.L.; Salazar Marocho, S.M.; Cason, Z.; Gordy, D.; Janorkar, A.V. Collagen-Elastin-Like Polypeptide-Bioglass Scaffolds for Guided Bone Regeneration. Adv. Healthc. Mater. 2020, 9, e1901385. [Google Scholar] [CrossRef]
- Hasan, A.; Khattab, A.; Islam, M.A.; Hweij, K.A.; Zeitouny, J.; Waters, R.; Sayegh, M.; Hossain, M.M.; Paul, A. Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction. Adv. Sci. 2015, 2, 1500122. [Google Scholar] [CrossRef]
- Clift, C.L.; McLaughlin, S.; Muñoz, M.; Suuronen, E.J.; Rotstein, B.H.; Mehta, A.S.; Drake, R.R.; Alarcon, E.I.; Angel, P.M. Evaluation of Therapeutic Collagen-Based Biomaterials in the Infarcted Mouse Heart by Extracellular Matrix Targeted MALDI Imaging Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32, 2746–2754. [Google Scholar] [CrossRef]
- Sriram, K.; Sulo, S.; VanDerBosch, G.; Partridge, J.; Feldstein, J.; Hegazi, R.A.; Summerfelt, W.T. A Comprehensive Nutrition-Focused Quality Improvement Program Reduces 30-Day Readmissions and Length of Stay in Hospitalized Patients. J. Parenter. Enter. Nutr. 2017, 41, 384–391. [Google Scholar] [CrossRef]
- Mullin, G.E.; Fan, L.; Sulo, S.; Partridge, J. The Association between Oral Nutritional Supplements and 30-Day Hospital Readmissions of Malnourished Patients at a US Academic Medical Center. J. Acad. Nutr. Diet. 2019, 119, 1168–1175. [Google Scholar] [CrossRef]
- Cawood, A.L.; Burden, S.T.; Smith, T.; Stratton, R.J. A systematic review and meta-analysis of the effects of community use of oral nutritional supplements on clinical outcomes. Ageing Res. Rev. 2023, 88, 101953. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [PubMed]
- Inacio, P.A.Q.; Chaluppe, F.A.; Aguiar, G.F.; Coelho, C.d.F.; Vieira, R.P. Effects of Hydrolyzed Collagen as a Dietary Supplement on Fibroblast Activation: A Systematic Review. Nutrients 2024, 16, 1543. [Google Scholar] [CrossRef]
- Tominaga, T.; Huang, J.; Wang, S.; Noguchi, M.; Tong, Y.; Asano-Oritani, M.; Suzuki, K. Collagen-Derived Dipeptides and Amino Acids Have Immunomodulatory Effects in M1-Differentiated RAW264.7 Cells and PBMC. Int. J. Mol. Sci. 2023, 24, 6925. [Google Scholar] [CrossRef] [PubMed]
- Tomosugi, N.; Yamamoto, S.; Takeuchi, M.; Yonekura, H.; Ishigaki, Y.; Numata, N.; Katsuda, S.; Sakai, Y. Effect of Collagen Tripeptide on Atherosclerosis in Healthy Humans. J. Atheroscler. Thromb. 2017, 24, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Jalili, Z.; Jalili, F.; Moradi, S.; Bagheri, R.; Moosavian, S.P.; Naeini, F.; Mohammadi, H.; Ghoreishy, S.M.; Wong, A.; Travica, N.; et al. Effects of collagen peptide supplementation on cardiovascular markers: A systematic review and meta-analysis of randomised, placebo-controlled trials. Br. J. Nutr. 2023, 129, 779–794. [Google Scholar] [CrossRef]
- Schunck, H.; Lavik, G.; Desai, D.K.; Großkopf, T.; Kalvelage, T.; Löscher, C.R.; Paulmier, A.; Contreras, S.; Siegel, H.; Holtappels, M.; et al. Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy. PLoS ONE 2013, 8, e68661. [Google Scholar] [CrossRef] [PubMed]
- Kitakaze, T.; Sakamoto, T.; Kitano, T.; Inoue, N.; Sugihara, F.; Harada, N.; Yamaji, R. The collagen derived dipeptide hydroxyprolyl-glycine promotes C2C12 myoblast differentiation and myotube hypertrophy. Biochem. Biophys. Res. Commun. 2016, 478, 1292–1297. [Google Scholar] [CrossRef]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef]
- Koenig, R.J.; Peterson, C.M.; Jones, R.L.; Saudek, C.; Lehrman, M.; Cerami, A. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N. Engl. J. Med. 1976, 295, 417–420. [Google Scholar] [CrossRef]
- Zdzieblik, D.; Jendricke, P.; Oesser, S.; Gollhofer, A.; König, D. The Influence of Specific Bioactive Collagen Peptides on Body Composition and Muscle Strength in Middle-Aged, Untrained Men: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 4837. [Google Scholar] [CrossRef] [PubMed]
- Kouguchi, T.; Ohmori, T.; Shimizu, M.; Takahata, Y.; Maeyama, Y.; Suzuki, T.; Morimatsu, F.; Tanabe, S. Effects of a chicken collagen hydrolysate on the circulation system in subjects with mild hypertension or high-normal blood pressure. Biosci. Biotechnol. Biochem. 2013, 77, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Tak, M.; Shankar, B.; Kadiyala, S. Dietary Transition in India: Temporal and Regional Trends, 1993 to 2012. Food Nutr. Bull. 2019, 40, 254–270. [Google Scholar] [CrossRef]
- Jendricke, P.; Kohl, J.; Centner, C.; Gollhofer, A.; König, D. Influence of Specific Collagen Peptides and Concurrent Training on Cardiometabolic Parameters and Performance Indices in Women: A Randomized Controlled Trial. Front. Nutr. 2020, 7, 580918. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Jiang, X.; Dai, B.; Zhang, L.; Zhu, Y. Decellularized extracellular matrix materials for treatment of ischemic cardiomyopathy. Bioact. Mater. 2024, 33, 460–482. [Google Scholar] [CrossRef]
- Shafiq, M.; Jung, Y.; Kim, S.H. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016, 90, 85–115. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Vulesevic, B.; Blackburn, N.J.R.; Ruel, J.J.M.; Suuronen, E.J. A Collagen-Chitosan Injectable Hydrogel Improves Cardiac Remodeling in a Mouse Model of Myocardial Infarction. J. Biomater. Tissue Eng. 2014, 4, 886–894. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, D.A.; Wu, D.; He, F.; Wang, H.; Huang, L.; Shi, D.; Liu, Q.; Ni, N.; Pakvasa, M.; et al. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 603444. [Google Scholar] [CrossRef]
- Haraguchi, Y.; Shimizu, T.; Yamato, M.; Okano, T. Concise Review: Cell Therapy and Tissue Engineering for Cardiovascular Disease. Stem Cells Transl. Med. 2012, 1, 136–141. [Google Scholar] [CrossRef]
- Vunjak-Novakovic, G.; Lui, K.O.; Tandon, N.; Chien, K.R. Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annu. Rev. Biomed. Eng. 2011, 13, 245–267. [Google Scholar] [CrossRef]
- Finosh, G.T.; Jayabalan, M. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: New developments and challenges. Biomatter 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Leor, J.; Amsalem, Y.; Cohen, S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther. 2005, 105, 151–163. [Google Scholar] [CrossRef]
- Chen, Z.; Du, C.; Liu, S.; Liu, J.; Yang, Y.; Dong, L.; Zhao, W.; Huang, W.; Lei, Y. Progress in biomaterials inspired by the extracellular matrix. Giant 2024, 19, 100323. [Google Scholar] [CrossRef]
- Neuta, P.A.; Rojas, D.M.; Agredo, W.; Gutierrez, J.O. Evaluation of the repairing effect of collagen type I and MaxGel on the infarcted myocardium in an animal model. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3529–3532. [Google Scholar]
- Serpooshan, V.; Zhao, M.; Metzler, S.A.; Wei, K.; Shah, P.B.; Wang, A.; Mahmoudi, M.; Malkovskiy, A.V.; Rajadas, J.; Butte, M.J.; et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 2013, 34, 9048–9055. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef]
- She, J.; Liu, J.; Mu, Y.; Lv, S.; Tong, J.; Liu, L.; He, T.; Wang, J.; Wei, D. Recent advances in collagen-based hydrogels: Materials, preparation and applications. React. Funct. Polym. 2025, 207, 106136. [Google Scholar] [CrossRef]
- Segers, V.F.M.; Lee, R.T. Stem-cell therapy for cardiac disease. Nature 2008, 451, 937–942. [Google Scholar] [CrossRef]
- Clavellina, D.; Balkan, W.; Hare, J.M. Stem cell therapy for acute myocardial infarction: MSCs and iPSCs. Expert Opin. Biol. Ther. 2023, 23, 951–967. [Google Scholar] [CrossRef]
- Robey, T.E.; Saiget, M.K.; Reinecke, H.; Murry, C.E. Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol. 2008, 45, 567–581. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, J.; Liu, Z.; Wang, C. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J. Cell. Mol. Med. 2010, 14, 1044–1055. [Google Scholar] [CrossRef]
- Dutra Alves, N.S.; Reigado, G.R.; Santos, M.; Caldeira, I.D.S.; Hernandes, H.d.S.; Freitas-Marchi, B.L.; Zhivov, E.; Chambergo, F.S.; Nunes, V.A. Advances in regenerative medicine-based approaches for skin regeneration and rejuvenation. Front. Bioeng. Biotechnol. 2025, 13, 1527854. [Google Scholar] [CrossRef]
- Kutschka, I.; Chen, I.Y.; Kofidis, T.; von Degenfeld, G.; Sheikh, A.Y.; Hendry, S.L.; Hoyt, G.; Pearl, J.; Blau, H.M.; Gambhir, S.S.; et al. In Vivo Optical Bioluminescence Imaging of Collagen-supported Cardiac Cell Grafts. J. Heart Lung Transplant. 2007, 26, 273–280. [Google Scholar] [CrossRef]
- Roche, E.T.; Hastings, C.L.; Lewin, S.A.; Shvartsman, D.E.; Brudno, Y.; Vasilyev, N.V.; O’Brien, F.J.; Walsh, C.J.; Duffy, G.P.; Mooney, D.J. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 2014, 35, 6850–6858. [Google Scholar] [CrossRef] [PubMed]
- Araña, M.; Gavira, J.J.; Peña, E.; González, A.; Abizanda, G.; Cilla, M.; Pérez, M.M.; Albiasu, E.; Aguado, N.; Casado, M.; et al. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction. Biomaterials 2014, 35, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, Z.; Yuan, D.; Yu, M.; Min, J. Tissue engineering applications of recombinant human collagen: A review of recent progress. Front. Bioeng. Biotechnol. 2024, 12, 1358246. [Google Scholar] [CrossRef] [PubMed]
Types of Collagens | Key Features | Location | Category/References |
---|---|---|---|
I | Accounts for around 60% of the cardiovascular collagens. Composed of two α1(I) chains and one α2(I) chain in a triple helix structure. High content of glycine, proline, and hydroxyproline for stability. Highly cross-linked, giving tensile strength | Skin, tendon, bone, ligaments, interstitial tissues | Fibrillar collagen/[13] |
II | Accounts for 60–75% in the vitreous collagen fibrils. Rich in hydroxylysine and hydroxyproline, contributing to stability. Highly glycosylated compared to type I. | Intervertebral disc, cartilage, vitreous humor | Fibrillar collagen/[14] |
III | Accounts for around 30% of the cardiovascular collagens. Composed of three identical α1(III) chains arranged in a triple helix. Often co-distributed with type I collagen in a 1:2 or 1:3 ratio, forming interwoven fibers. | Vessels, uterus, skin, muscle | Fibrillar collagen/[13]. |
IV | Accounts for <10% of cardiovascular collagens. localized to the endothelium basement membrane and the basement membranes of smooth muscle cells of the intima and media. | Found in various tissues, including the skin, kidneys, lungs and blood vessels. | Network forming Collagen/[15,16]. |
V | A fibrillar collagen that helps organize and stabilize type I collagen fibrils in the ECM. Key features include its ability to bind to other collagens like types I, III, and XI | Human placenta and dermis. Associated with type I. | Fibrillar collagen/[17,18]. |
VI | Less than 10% of cardiovascular collagens. Prevalent in the media and adventitia of arteries, in thin connective tissue septa, in the area surrounding capillaries, and in the endomysium next to myocardial cells. | Widely distributed in various tissues, including skeletal muscle, skin, lung, blood vessels, cornea, intervertebral discs, peripheral nerves, brain, myocardium, and adipose tissue. | Beaded filament-forming collagens/[19,20] |
VII | A non-fibrillar collagen, major component of anchoring fibrils, connects the epidermis and its underlying basement membrane to the papillary dermis. | Majorly found in the skin | Anchoring fibril Collagens/[21] |
VIII | Assemble diverse patterns of networks. Descemet’s membrane is a significant component of the basement membrane of corneal endothelial cells (EC). | Found in endothelial cells, keratinocytes, mast cells, microvascular endothelial cells, and some tumor cells. It is also found on a number of extracellular matrices, such as sclera, skin, and glomerulus. | Network-Forming Collagens/[22] |
X | Composed of three identical α1(X) chains encoded by the COL10A1 gene. Relatively short triple-helical domain compared to fibrillar collagens. Forms hexagonal lattice networks in specialized extracellular matrices | Hypertrophic chondrocytes, growth plates and fracture callus | Network-Forming Collagens/[23] |
XI | Similar in size to collagen types I and II. Fibril-forming collagen, a key component of cartilage, specifically involved in the organization and stability of type II collagen fibrils | Broadly distributed in articular cartilage, testis, trachea, tendons, trabecular bone, skeletal muscle, placenta, lung, and the brain | Fibrillar Collagens/[24] |
XV | Contains multiple interruptions in its triple-helical domain. Has a large N-terminal non-collagenous (NC) region and a C-terminal globular domain. It represents <10% of the vascular collagen | Basement membrane of the vascular wall | FACIT collagens/[25] |
XVIII | Present in three isoforms generated by alternative promoters and splicing. Composed of a collagenous triple-helical region with multiple interruptions and large non-collagenous (NC) domains. The C-terminal NC1 domain contains endostatin, a potent anti-angiogenic peptide. Represents less than 10% of vascular collagens. | Primarily found within basement membranes throughout the body, particularly in epithelial and endothelial tissues | Non-fibrilla Collagens/[26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olabiyi, A.A.; de Castro Braz, L.E. Cardiovascular Ischemia: Advancement and Potential Use of Collagen-Based Therapeutic Strategy. Int. J. Mol. Sci. 2025, 26, 9275. https://doi.org/10.3390/ijms26199275
Olabiyi AA, de Castro Braz LE. Cardiovascular Ischemia: Advancement and Potential Use of Collagen-Based Therapeutic Strategy. International Journal of Molecular Sciences. 2025; 26(19):9275. https://doi.org/10.3390/ijms26199275
Chicago/Turabian StyleOlabiyi, Ayodeji A., and Lisandra E. de Castro Braz. 2025. "Cardiovascular Ischemia: Advancement and Potential Use of Collagen-Based Therapeutic Strategy" International Journal of Molecular Sciences 26, no. 19: 9275. https://doi.org/10.3390/ijms26199275
APA StyleOlabiyi, A. A., & de Castro Braz, L. E. (2025). Cardiovascular Ischemia: Advancement and Potential Use of Collagen-Based Therapeutic Strategy. International Journal of Molecular Sciences, 26(19), 9275. https://doi.org/10.3390/ijms26199275