Report of the 5th International Symposium on Frontiers in Molecular Science (ISFMS 2025)
Abstract
1. Introduction
2. Session Summary
2.1. Session 1: “Protein Structure and Molecular Dynamics”
2.2. Session 2: “Enzymes”
2.3. Session 3: “Membrane Proteins”
- Protein Quality Control Mechanisms of CFTR as Therapeutic Targets for Cystic Fibrosis (Tsukasa Okiyoneda)
- 2.
- Novel Roles of Epithelial Ion Channels in Endocrine Functions (Sharon Y.C. Ruan)
- 3.
- Voltage Dependence of G Protein-Coupled Receptors (Yair Ben-Chaim)
- 4.
- Functional Analysis of HECT-type E3 Ligase HERC3 in ER-associated Degradation of CFTR Mutants (Yuka Kamada)
- 5.
- MT1-MMP: New Therapeutic Target of Metabolic Disorder (Hoi Leong Xavier Wong)
2.4. Session 4: “Cancer Target Proteins”
2.5. Session 5: “Drug Design and Solution to Drug Resistance Problem”
2.6. Session 6: “Physiological Functions of Proteins and Organ Interactions”
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Merlino, A. Recent advances in protein metalation: Structural studies. Chem. Commun. 2021, 57, 1295–1307. [Google Scholar] [CrossRef] [PubMed]
- Merlino, A.; Marzo, T.; Messori, L. Protein Metalation by Anticancer Metallodrugs: A joint ESI MS and XRD Investigative Strategy. Chemistry 2017, 23, 6942–6947. [Google Scholar] [CrossRef] [PubMed]
- Messori, L.; Merlino, A. Protein metalation by metal-based drugs: X-ray crystallography and mass spectrometry studies. Chem. Commun. 2017, 53, 11622–11633. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.; Tito, G.; Sciortino, G.; Garribba, E.; Merlino, A. Stabilization and Binding of [V4O12]4− and Unprecedented [V20O54(NO3)]n− to Lysozyme upon Loss of Ligands and Oxidation of the Potential Drug VIVO(acetylacetonato)2. Angew. Chem. Int. Ed. Engl. 2023, 62, e202310655. [Google Scholar] [CrossRef]
- Tito, G.; Ferraro, G.; Pisanu, F.; Garribba, E.; Merlino, A. Non-Covalent and Covalent Binding of New Mixed-Valence Cage-like Polyoxidovanadate Clusters to Lysozyme. Angew. Chem. Int. Ed. Engl. 2024, 63, e202406669. [Google Scholar] [CrossRef]
- Canettieri, G.; Di Marcotullio, L.; Greco, A.; Coni, S.; Antonucci, L.; Infante, P.; Pietrosanti, L.; De Smaele, E.; Ferretti, E.; Miele, E.; et al. Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat. Cell Biol. 2010, 12, 132–142. [Google Scholar] [CrossRef]
- Esposito, L.; Balasco, N.; Vitagliano, L. Alphafold Predictions Provide Insights into the Structural Features of the Functional Oligomers of All Members of the KCTD Family. Int. J. Mol. Sci. 2022, 23, 13346. [Google Scholar] [CrossRef]
- Balasco, N.; Esposito, L.; Smaldone, G.; Salvatore, M.; Vitagliano, L. A Comprehensive Analysis of the Structural Recognition between KCTD Proteins and Cullin 3. Int. J. Mol. Sci. 2024, 25, 1881. [Google Scholar] [CrossRef]
- Balasco, N.; Pirone, L.; Smaldone, G.; Di Gaetano, S.; Esposito, L.; Pedone, E.M.; Vitagliano, L. Molecular recognition of Cullin3 by KCTDs: Insights from experimental and computational investigations. Biochim. Biophys. Acta 2014, 1844, 1289–1298. [Google Scholar] [CrossRef]
- Hirano, Y.; Takeda, K.; Miki, K. Charge-density analysis of an iron–sulfur protein at an ultra-high resolution of 0.48 Å. Nature 2016, 534, 281–284. [Google Scholar] [CrossRef]
- Noid, W.G. Perspective: Coarse-grained models for biomolecular systems. J. Chem. Phys. 2013, 139, 090901. [Google Scholar] [CrossRef]
- Zhu, T.; Li, C.; Chu, X. Transcriptional Condensates Encode a “Golden Mean” to Optimize Enhancer-Promoter Communication across Genomic Distances. bioRxiv 2025. [Google Scholar] [CrossRef]
- Zhu, T.; Li, C.; Chu, X. Fluctuating Chromatin Facilitates Enhancer–Promoter Communication by Regulating Transcriptional Clustering Dynamics. J. Phys. Chem. Lett. 2024, 15, 11428–11436. [Google Scholar] [CrossRef] [PubMed]
- De Sancho, D.; Muñoz, V. Integrated prediction of protein folding and unfolding rates from only size and structural class. Phys. Chem. Chem. Phys. 2011, 13, 17030–17043. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Nagpal, S.; Muñoz, V. Molecular simulations integrated with experiments for probing the interaction dynamics and binding mechanisms of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2024, 84, 102756. [Google Scholar] [CrossRef] [PubMed]
- Luong, T.D.N.; Nagpal, S.; Sadqi, M.; Muñoz, V. A modular approach to map out the conformational landscapes of unbound intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 2022, 119, e2113572119. [Google Scholar] [CrossRef]
- Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020, 12, 604. [Google Scholar] [CrossRef]
- Monti, D.M.; Ferraro, G.; Merlino, A. Ferritin-based anticancer metallodrug delivery: Crystallographic, analytical and cytotoxicity studies. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 101997. [Google Scholar] [CrossRef]
- Mignon, J.; Mottet, D.; Leyder, T.; Uversky, V.N.; Perpète, E.A.; Michaux, C. Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. Int. J. Biol. Macromol. 2022, 218, 57–71. [Google Scholar] [CrossRef]
- Mignon, J.; Mottet, D.; Verrillo, G.; Matagne, A.; Perpète, E.A.; Michaux, C. Revealing Intrinsic Disorder and Aggregation Properties of the DPF3a Zinc Finger Protein. ACS Omega 2021, 6, 18793–18801. [Google Scholar] [CrossRef]
- Leyder, T.; Mignon, J.; Mottet, D.; Michaux, C. Unveiling the Metal-Dependent Aggregation Properties of the C-terminal Region of Amyloidogenic Intrinsically Disordered Protein Isoforms DPF3b and DPF3a. Int. J. Mol. Sci. 2022, 23, 15291. [Google Scholar] [CrossRef] [PubMed]
- Goyzueta-Mamani, L.D.; Pagliara Lage, D.; Barazorda-Ccahuana, H.L.; Paco-Chipana, M.; Candia-Puma, M.A.; Davila-Del-Carpio, G.; Sobreira Galdino, A.; Machado-de-Avila, R.A.; Giunchetti, R.C.; D’Antonio, E.L.; et al. Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy. Molecules 2025, 30, 173. [Google Scholar] [CrossRef] [PubMed]
- Green, S.B.; Lanier RJJr Carey, S.M.; Morgan, D.R.; Gracz, H.; Sherman, J.; Rodriguez, A.; D’Antonio, E.L. Synthesis, biochemical, and biological evaluation of C2 linkage derivatives of amino sugars, inhibitors of glucokinase from Trypanosoma cruzi. Bioorganic Med. Chem. Lett. 2021, 47, 128227. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Guerra Pedregal, J.; Sciortino, G.; Guasp, J.; Municoy, M.; Maréchal, J.D. GaudiMM: A modular multi-objective platform for molecular modeling. J. Comput. Chem. 2017, 38, 2118–2126. [Google Scholar] [CrossRef]
- Sciortino, G.; Garribba, E.; Maréchal, J.D. Validation and Applications of Protein-Ligand Docking Approaches Improved for Metalloligands with Multiple Vacant Sites. Inorg. Chem. 2019, 58, 294–306. [Google Scholar] [CrossRef]
- Alemany-Chavarria, M.; Rodríguez-Guerra, J.; Maréchal, J.D. TALAIA: A 3D visual dictionary for protein structures. Bioinformatics 2023, 39, btad476. [Google Scholar] [CrossRef]
- Fernández-Díaz, R.; Roldán-Martín, L.; Sodupe, M.; Sánchez-Aparicio, J.E.; Maréchal, J.D. BioBrigit, a Hybrid Machine Learning and Knowledge-Based Approach to Model Metal Pathways in Proteins: Application to a Dicopper Tyrosinase. ACS Omega 2025, 10, 24412–24421. [Google Scholar] [CrossRef]
- Joseph, D. The Fundamental Neurobiological Mechanism of Oxidative Stress-Related 4E-BP2 Protein Deamidation. Int. J. Mol. Sci. 2024, 25, 12268. [Google Scholar] [CrossRef]
- Joseph, D. The Unified Theory of Neurodegeneration Pathogenesis Based on Axon Deamidation. Int. J. Mol. Sci. 2025, 26, 4143. [Google Scholar] [CrossRef]
- Streltsov, V.A.; Luang, S.; Peisley, A.; Varghese, J.N.; Ketudat Cairns, J.R.; Fort, S.; Hijnen, M.; Tvaroška, I.; Ardá, A.; Hrmova, M.; et al. Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nat. Commun. 2019, 10, 2222. [Google Scholar] [CrossRef]
- Luang, S.; Fernández-Luengo, X.; Nin-Hill, A.; Streltsov, V.A.; Schwerdt, J.G.; Alonso-Gil, S.; Ketudat Cairns, J.R.; Pradeau, S.; Fort, S.; Hrmova, M.; et al. The evolutionary advantage of an aromatic clamp in plant family 3 glycoside exo-hydrolases. Nat. Commun. 2022, 13, 5577. [Google Scholar] [CrossRef]
- Luang, S.; Fernández-Luengo, X.; Streltsov, V.A.; Maréchal, J.D.; Masgrau, L.; Hrmova, M. The structure and dynamics of water molecule networks underlie catalytic efficiency in a glycoside exo-hydrolase. Commun. Biol. 2025, 8, 729. [Google Scholar] [CrossRef]
- Sun, P.; Huang, Z.; Banerjee, S.; Kadowaki, M.A.S.; Veersma, R.J.; Magri, S.; Hilgers, R.; Muderspach, S.J.; Laurent, C.V.F.P.; Lo Leggio, L.; et al. AA16 Oxidoreductases boost cellulose-active AA9 lytic polysaccharide monooxygenases from Myceliophthora thermophila. ACS Catal. 2023, 13, 4454–4467. [Google Scholar] [CrossRef]
- Zong, Z.; Mazurkewich, S.; Pereira, C.S.; Fu, H.; Cai, W.; Shao, X.; Skaf, M.S.; Larsbrink, J.; Lo Leggio, L. Mechanism and biomass association of glucuronoyl esterase: An α/β hydrolase with potential in biomass conversion. Nat. Commun. 2022, 13, 1449. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Kageyama, M.; Matsuzawa, T.; Liang, Z.; Kobayashi, K.; Shimizu, H.; Maeda, K.; Masuhiro, M.; Motouchi, S.; Nakajima, M.; et al. Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium. Commun. Biol. 2025, 8, 66, Erratum in Commun. Biol. 2025, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Motouchi, S.; Komba, S.; Nakai, H.; Nakajima, M. Discovery of anomer-inverting transglycosylase: Cyclic glucohexadecaose-producing enzyme from Xanthomonas, a phytopathogen. J. Am. Chem. Soc. 2024, 146, 17738–17746. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, F.; Gómez, H.; Lluch, J.M.; Masgrau, L. α1,4-N-Acetylhexosaminyltransferase EXTL2: The missing link for understanding glycosidic bond biosynthesis with retention of configuration. ACS Catal. 2016, 6, 2577–2589. [Google Scholar] [CrossRef]
- Mendoza, F.; Masgrau, L. Computational modeling of carbohydrate processing enzymes reactions. Curr. Opin. Chem. Biol. 2021, 61, 203–213. [Google Scholar] [CrossRef]
- Guidi, C.; Biarnés, X.; Planas, A.; De Mey, M. Expanding the chitin oligosaccharide portfolio by engineering nodc chitin synthases in Escherichia coli. Curr. Res. Biotechnol. 2024, 8, 100255. [Google Scholar] [CrossRef]
- Pascual, S.; Planas, A. Carbohydrate de-n-acetylases acting on structural polysaccharides and glycoconjugates. Curr. Opin. Chem. Biol. 2021, 61, 9–18. [Google Scholar] [CrossRef]
- Panwar, D.; Briggs, J.; Fraser, A.S.C.; Stewart, W.A.; Brumer, H. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl. Environ. Microbiol. 2025, 91, e0175924. [Google Scholar] [CrossRef]
- Golisch, B.; Cordeiro, R.L.; Fraser, A.S.C.; Briggs, J.; Stewart, W.A.; Van Petegem, F.; Brumer, H. The molecular basis of cereal mixed-linkage β-glucan utilization by the human gut bacterium Segatella copri. J. Biol. Chem. 2024, 300, 107625. [Google Scholar] [CrossRef]
- Ma, W.J.; Wang, C.; Kothandapani, J.; Luzentales-Simpson, M.; Menzies, S.C.; Bescucci, D.M.; Lange, M.E.; Fraser, A.S.C.; Gusse, J.F.; Brumer, H.; et al. Bespoke plant glycoconjugates for gut microbiota-mediated drug targeting. Science 2025, 388, 1410–1416. [Google Scholar] [CrossRef]
- Jelokhani-Niaraki, M. Membrane Proteins: Structure, Function and Motion. Int. J. Mol. Sci. 2022, 24, 468. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, S.; Fukuda, R.; Okiyoneda, T. The multiple ubiquitination mechanisms in CFTR peripheral quality control. Biochem. Soc. Trans. 2023, 51, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Kamada, Y.; Fukuda, R.; Okiyoneda, T. ELISA Based Protein Ubiquitylation Measurement. Bio Protoc. 2019, 9, e3430. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, J.; Hu, P.; Du, W.; Chen, J.; Zhang, X.; Zhou, W.; Gao, J.; Zhang, Y.; Dai, B.; et al. Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis. J. Cachexia Sarcopenia Muscle 2025, 16, e13708. [Google Scholar] [CrossRef]
- Ma, X.; Xu, R.; Chen, J.; Wang, S.; Hu, P.; Wu, Y.; Que, Y.; Du, W.; Cai, X.; Chen, H.; et al. The epithelial Na(+) channel (ENaC) in ovarian granulosa cells modulates Ca(2+) mobilization and gonadotrophin signaling for estrogen homeostasis and female fertility. Cell Commun. Signal. 2024, 22, 398. [Google Scholar] [CrossRef]
- Wu, Y.; Que, Y.; Chen, J.; Sun, L.; Guo, J.; Ruan, Y.C. CFTR Modulates Hypothalamic Neuron Excitability to Maintain Female Cycle. Int. J. Mol. Sci. 2023, 24, 12572. [Google Scholar] [CrossRef]
- Rozenfeld, E.; Tauber, M.; Ben-Chaim, Y.; Parnas, M. GPCR voltage dependence controls neuronal plasticity and behavior. Nat. Commun. 2021, 12, 7252. [Google Scholar] [CrossRef]
- Tauber, M.; Ben-Chaim, Y. Voltage Sensors Embedded in G Protein-Coupled Receptors. Int. J. Mol. Sci. 2024, 25, 5295. [Google Scholar] [CrossRef]
- Kamada, Y.; Ohnishi, Y.; Nakashima, C.; Fujii, A.; Terakawa, M.; Hamano, I.; Nakayamada, U.; Katoh, S.; Hirata, N.; Tateishi, H.; et al. HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains. J. Cell Biol. 2024, 223, e202308003. [Google Scholar] [CrossRef]
- Guo, X.; Asthana, P.; Zhai, L.; Cheng, K.W.; Gurung, S.; Huang, J.; Wu, J.; Zhang, Y.; Mahato, A.K.; Saarma, M.; et al. Artesunate treats obesity in male mice and non-human primates through GDF15/GFRAL signalling axis. Nat. Commun. 2024, 15, 1034. [Google Scholar] [CrossRef]
- Guo, X.; Asthana, P.; Gurung, S.; Zhang, S.; Wong, S.K.K.; Fallah, S.; Chow, C.F.W.; Che, S.; Zhai, L.; Wang, Z.; et al. Regulation of age-associated insulin resistance by MT1-MMP-mediated cleavage of insulin receptor. Nat. Commun. 2022, 13, 3749. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marunaka, Y.; Merlino, A.; Hrmova, M.; Ruan, Y.C.; Shiozaki, A.; Takahashi, M.; Iwasaki, Y. Report of the 5th International Symposium on Frontiers in Molecular Science (ISFMS 2025). Int. J. Mol. Sci. 2025, 26, 9239. https://doi.org/10.3390/ijms26189239
Marunaka Y, Merlino A, Hrmova M, Ruan YC, Shiozaki A, Takahashi M, Iwasaki Y. Report of the 5th International Symposium on Frontiers in Molecular Science (ISFMS 2025). International Journal of Molecular Sciences. 2025; 26(18):9239. https://doi.org/10.3390/ijms26189239
Chicago/Turabian StyleMarunaka, Yoshinori, Antonello Merlino, Maria Hrmova, Ye Chun Ruan, Atsushi Shiozaki, Masayuki Takahashi, and Yusaku Iwasaki. 2025. "Report of the 5th International Symposium on Frontiers in Molecular Science (ISFMS 2025)" International Journal of Molecular Sciences 26, no. 18: 9239. https://doi.org/10.3390/ijms26189239
APA StyleMarunaka, Y., Merlino, A., Hrmova, M., Ruan, Y. C., Shiozaki, A., Takahashi, M., & Iwasaki, Y. (2025). Report of the 5th International Symposium on Frontiers in Molecular Science (ISFMS 2025). International Journal of Molecular Sciences, 26(18), 9239. https://doi.org/10.3390/ijms26189239