Advances in Psoriasis Research: Decoding Immune Circuits and Developing Novel Therapies
Abstract
1. Introduction
2. Epidemiology and Disease Burden
3. Clinical Presentation
Subtype Name | Approximate Prevalence Among Psoriasis Patients (%) | Key Clinical Features | Severity |
---|---|---|---|
Psoriasis vulgaris | 90% [33] | Well-demarcated erythematous plaques covered with thick silvery-white scales; wax-drop phenomenon, thin-film phenomenon, Auspitz sign; symmetrically distributed, often accompanied by pruritus | Mild to moderate (most common) |
Guttate psoriasis | 2% [41] | Frequently occurs in adolescents, often secondary to streptococcal infection; numerous scaling papules (0.3–0.5 cm in diameter) disseminated over the body; acute onset, may resolve within weeks | Typically acute, transient, may progress to chronic phase |
Erythrodermic psoriasis | 1–2% [38] | Diffuse erythema and edema involving >75% of body surface area; extensive pityriasis-like scaling; accompanied by systemic symptoms such as fever and lymphadenopathy | Severe, potentially life-threatening |
Psoriatic arthritis(PsA) | 24% [42] | Joint swelling, pain, and limited mobility, potentially leading to deformity in severe cases; can affect large and small joints, as well as sacroiliac joints; radiographic findings include joint erosion, space narrowing, and other destructive changes | Severe, progressive |
Pustular psoriasis | 1–3% [43] | Sterile pinpoint to millet-sized pustules that may coalesce into “lakes of pus”; can be localized (e.g., palms and soles) or generalized | Severe |
Inverse psoriasis | / | Occurs in skin folds; presents as erythematous, shiny plaques, typically without scaling | Mild to moderate |
Sebopsoriasis | / | Occurs in sebaceous gland-rich areas; clinical features overlap between psoriasis and seborrheic dermatitis | Mild to moderate |
Nail psoriasis | 40.9% [40] | Nail plate pitting, onycholysis, “oil-drop” discoloration, and crumbling of the nail plate | Often associated with long disease duration, severe disease, and PsA |
4. Pathophysiology
4.1. Histological Features
4.2. Genetic Contributions
4.3. Triggers
4.4. Pathogenesis
4.5. Innate Immunity
4.6. Adaptive Immunity
5. Management and Treatment
5.1. Conventional Topical Therapy
Category | Drug Name | Target/ Mechanism | Efficacy Profile | Adverse Effects /Potential Risks | Notes |
---|---|---|---|---|---|
Topical Therapies | Corticosteroids [178] | Suppression of Th17-mediated inflammation; modulation of dendritic and T-cell activity | Rapid symptom control; suitable for mild-to-moderate plaque psoriasis | hypothalamic–pituitary–adrenal axis suppression with prolonged use | Avoid continuous long-term application |
Calcipotriol (Vitamin D3 analog) [185] | Regulation of keratinocyte proliferation/differentiation; immunomodulation | Improves hyperproliferation and differentiation; safe and effective | Local irritation (erythema, pruritus) | First-line for plaque psoriasis | |
Tacrolimus ointment [186] | Calcineurin inhibition | High local tolerability | Burning sensation, infection risk | Suitable for mild cases or combination therapy | |
Calcipotriol/betamethasone combo [187] | Synergistic anti-inflammatory effects of Vitamin D3 analog combined with corticosteroid | Superior efficacy to monotherapy; reduced relapse | Reduced skin irritation vs. monotherapy | Indicated for moderate-to-thick plaques | |
Tapinarof cream [184] | Aryl hydrocarbon receptor, modulation; IL-17 suppression; skin barrier enhancement | Significant improvement in mild-to-severe plaque psoriasis | Folliculitis, local irritation | Favorable safety profile | |
Systemic Therapies | NB-UVB [188] | local immunosuppression | First-line therapy with high safety | Frequent clinic visits; limited phototherapy center access | Suitable for pregnant patients and children |
MTX [178] | Folate metabolism inhibition; anti-inflammatory | Effective for moderate-to-severe psoriasis and psoriatic arthritis | Hepatotoxicity myelosuppression, gastrointestinal disturbances | Requires regular liver function monitoring | |
Cyclosporine [189] | Selective T-cell inhibition; IL-2 blockade | Rapid onset; used for acute flares | Nephrotoxicity, immunosuppression | renal monitoring | |
Acitretin [190,191] | Keratinocyte differentiation modulation; anti-inflammatory | Controls hyperkeratosis; adjunct for severe psoriasis | Teratogenicity, xerosis, photosensitivity | Prohibited for pregnant women |
5.2. Conventional Systemic Therapy
5.3. Biologicals
5.4. Small-Molecule Inhibitors
5.5. Alternative Therapy
6. Prospectives
Category | Drug Name | Target/Mechanism | Approval Status | Efficacy Profile | Adverse Effects/Potential Risks | Notes |
---|---|---|---|---|---|---|
IL-17 monoclonal antibody | Secukinumab [209] | IL-17A neutralization; blocks IL-17A signaling | Approved (US, EU, CN, etc.) | Psoriasis Area and Severity Index (PASI) 90 response: 80–90%; rapid lesion clearance | Injection-site reactions, candidiasis | Requires infection monitoring |
Vunakizumab (China-developed) [274] | Blocks IL-17A signaling | Approved (China) | Annual dosing: 14 injections; PASI 100 response: >70% | Low infection risk | Cost-effective domestic innovator | |
Bimekizumab [210] | Dual IL-17A/F inhibition | Approved (EU, UK; US pending) | Superior to IL-17A monotherapy (higher PASI 100 rates) | Oral candidiasis, diarrhea | Synergistic dual-target action | |
IL-23 monoclonal antibody | Guselkumab [275] | IL-23p19 blockade | Approved (US, EU, CN, etc.) | Q8W dosing; PASI 90 response >80% | Mild injection-site reactions, low Tuberculosis risk | Sustained long-term remission |
Ustekinumab [206] | Dual IL-12/23p40 blockade; inhibits Th1/Th17 pathways | Approved (Global) | Long-term disease control in moderate-to-severe plaque psoriasis | Respiratory infections | First dual-target biologic for IL-12 and IL-23 | |
TNF-α monoclonal antibody | Adalimumab [276] | TNF-α blockade | Approved (Global) | PASI 75 response: 70–80% in moderate-to-severe cases | Tuberculosis reactivation, potential malignancy risk | Preferred for psoriatic arthritis comorbidity |
IL-36 monoclonal antibody | Spesolimab [212] | IL-36 blockade | Approved (US, EU, CN) | Rapid control of generalized pustular psoriasis (GPP) | Infections, infusion reactions | First-in-class IL-36 pathway inhibitor |
Small-Molecule Inhibitors | Apremilast [250] | DE4 inhibitor; reduces proinflammatory cytokines | Approved in multiple countries | Suitable for mild-to-moderate cases; oral administration | Diarrhea, nausea, weight loss | Superior safety profile compared to traditional immunosuppressants |
Tofacitinib [272] | JAK1/3 inhibition; blocks JAK-STAT signaling | Approved for PsA in multiple countries | Oral administration; rapid relief of articular symptoms | Infection risk, thromboembolic events | Requires long-term safety monitoring | |
VTP-43742/PF-06763809 [249,277] | RORγt inhibition; reduces IL-17 production | Clinical trials | Novel Th17 pathway suppression with promising efficacy | Good tolerability/safety pending | First-in-class RORγt inhibitors | |
Cell Therapies | CD19 CAR-T [173] | CD19-targeted B-cell depletion | Case reports only | Complete psoriasis remission sustained | CRS, B-cell aplasia-related infections | Unclear mechanism; target optimization needed |
CAR-Tregs [221] | Engineered Tregs for enhanced immune suppression | Preclinical studies | Effective in experimental autoimmune models (exploratory for psoriasis) | Technical complexity, graft rejection risks | Potential tolerance-restoring approach | |
Umbilical/Adipose MSCs [227,228,229] | Immunomodulation (paracrine effects) | Clinical trials | Good safety profile, preliminary evidence of sustained improvement in some patients | Transient fever, infusion-related reactions | Requires stringent quality control | |
TCM Therapy | Compound Indigo Capsule [278] | Multi-target modulation | Approved (China) | Significant improvement in erythema and infiltration | Diarrhea, abdominal pain | Contraindicated in pregnancy |
miRNA | miR-340 siRNA [214] | Downregulates IL-17A expression via RNA interference | Preclinical studies | Attenuates inflammation in murine models | Low delivery efficiency, poor stability | Requires nanocarrier optimization |
Immunometabolic Modulator | GLS1 Inhibitor [240] | Glutamine metabolism blockade (Th17 differentiation) | Preclinical studies | Markedly improves imiquimod (IMQ)-induced psoriasiform dermatitis in mice | Unknown | Targets metabolic reprogramming, avoids direct immunosuppression |
Epigenetic Modulator | KAT8 Inhibitor [238] | Reduces H4K16ac (suppresses CXCL2/CCL3) | Preclinical studies | Ameliorates IMQ-induced murine model symptoms | Unknown | N/A |
Other Investigative Drugs | CYnLIP (Nanocarrier) [218] | Co-delivers IL-36α siRNA + erlotinib | Preclinical studies | Significantly reduces murine PASI scores | Human safety unverified | Combines gene therapy + chemical drug |
Ebosin (Streptomyces exopolysaccharide) [247] | Inhibits Th17 differentiation; modulates miR-155-TNFAIP3-IL-17 axis | Preclinical studies | Attenuates inflammation in murine models | Unclear toxicity profile | Natural product with multi-pathway modulation | |
Antibody-Nanoparticle Conjugate [104] | Neutrophil-specific delivery of anti-inflammatory payload | Preclinical studies | Reduces systemic toxicity; site-specific action | Preclinical safety pending | Precision delivery technology prototype |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.; Li, J.; Wu, Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct. Target. Ther. 2024, 9, 263. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Ritchlin, C.T.; Colbert, R.A.; Gladman, D.D. Psoriatic Arthritis. N. Engl. J. Med. 2017, 376, 957–970, Erratum in N. Engl. J. Med. 2017, 376, 2097. [Google Scholar] [CrossRef]
- Gelfand, J.M.; Yeung, H. Metabolic syndrome in patients with psoriatic disease. J. Rheumatol. Suppl. 2012, 89, 24–28. [Google Scholar] [CrossRef]
- Robati, R.M.; Partovi-Kia, M.; Haghighatkhah, H.R.; Younespour, S.; Abdollahimajd, F. Increased serum leptin and resistin levels and increased carotid intima-media wall thickness in patients with psoriasis: Is psoriasis associated with atherosclerosis? J. Am. Acad. Dermatol. 2014, 71, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Sampogna, F.; Tabolli, S.; Abeni, D. Living with psoriasis: Prevalence of shame, anger, worry, and problems in daily activities and social life. Acta Derm. Venereol. 2012, 92, 299–303. [Google Scholar] [CrossRef]
- Di Cesare, A.; Di Meglio, P.; Nestle, F.O. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Investig. Dermatol. 2009, 129, 1339–1350. [Google Scholar] [CrossRef] [PubMed]
- Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021, 397, 754–766. [Google Scholar] [CrossRef]
- van der Fits, L.; Mourits, S.; Voerman, J.S.; Kant, M.; Boon, L.; Laman, J.D.; Cornelissen, F.; Mus, A.M.; Florencia, E.; Prens, E.P.; et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009, 182, 5836–5845. [Google Scholar] [CrossRef]
- Dand, N.; Stuart, P.E.; Bowes, J.; Ellinghaus, D.; Nititham, J.; Saklatvala, J.R.; Teder-Laving, M.; Thomas, L.F.; Traks, T.; Uebe, S.; et al. GWAS meta-analysis of psoriasis identifies new susceptibility alleles impacting disease mechanisms and therapeutic targets. Nat. Commun. 2025, 16, 2051. [Google Scholar] [CrossRef]
- Mallon, E.; Bunce, M.; Savoie, H.; Rowe, A.; Newson, R.; Gotch, F.; Bunker, C.B. HLA-C and guttate psoriasis. Br. J. Dermatol. 2000, 143, 1177–1182. [Google Scholar] [CrossRef]
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef]
- Langley, R.G.; Elewski, B.E.; Lebwohl, M.; Reich, K.; Griffiths, C.E.; Papp, K.; Puig, L.; Nakagawa, H.; Spelman, L.; Sigurgeirsson, B.; et al. Secukinumab in plaque psoriasis--results of two phase 3 trials. N. Engl. J. Med. 2014, 371, 326–338. [Google Scholar] [CrossRef]
- Reich, K.; Armstrong, A.W.; Langley, R.G.; Flavin, S.; Randazzo, B.; Li, S.; Hsu, M.C.; Branigan, P.; Blauvelt, A. Guselkumab versus secukinumab for the treatment of moderate-to-severe psoriasis (ECLIPSE): Results from a phase 3, randomised controlled trial. Lancet 2019, 394, 831–839. [Google Scholar] [CrossRef]
- Murray, C.J.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Danielsen, K.; Olsen, A.O.; Wilsgaard, T.; Furberg, A.S. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort. Br. J. Dermatol. 2013, 168, 1303–1310. [Google Scholar] [CrossRef]
- Gibbs, S. Skin disease and socioeconomic conditions in rural Africa: Tanzania. Int. J. Dermatol. 1996, 35, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Luo, H. Global burden and cross-country inequalities in six major immune-mediated inflammatory diseases from 1990 to 2021: A systemic analysis of the Global Burden of Disease Study 2021. Autoimmun. Rev. 2024, 23, 103639. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Y.; Cao, X. Global burden and future trends in psoriasis epidemiology: Insights from the global burden of disease study 2019 and predictions to 2030. Arch. Dermatol. Res. 2024, 316, 114. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dai, S.; Zhang, S.; Zheng, Z.; Zhou, Z.; Chen, Z.; Wang, M.; Gao, Y.; Xin, Y.; Xiong, W.; et al. Gut microbe-derived metabolites drive psoriatic inflammation via modulation of skin Th17 cells. Immunity 2025, 58, 2241–2255.e7. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, H.; Yang, R.; Yu, H.; Shang, S.; Hu, Y. Short-term exposure to ambient fine particulate matter and psoriasis: A time-series analysis in Beijing, China. Front. Public Health 2022, 10, 1015197. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Y.; Yang, J.; Tian, Y. Exposure to Air Pollution, Genetic Susceptibility, and Psoriasis Risk in the UK. JAMA Netw. Open 2024, 7, e2421665. [Google Scholar] [CrossRef]
- Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Fu, Y.; Lee, C.H.; Chi, C.C. Association of Psoriasis with Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. JAMA Dermatol. 2018, 154, 1417–1423. [Google Scholar] [CrossRef]
- Ruan, Z.; Lu, T.; Chen, Y.; Yuan, M.; Yu, H.; Liu, R.; Xie, X. Association Between Psoriasis and Nonalcoholic Fatty Liver Disease Among Outpatient US Adults. JAMA Dermatol. 2022, 158, 745–753. [Google Scholar] [CrossRef]
- Ramessur, R.; Saklatvala, J.; Budu-Aggrey, A.; Ostaszewski, M.; Möbus, L.; Greco, D.; Ndlovu, M.; Mahil, S.K.; Barker, J.N.; Brown, S.; et al. Exploring the Link Between Genetic Predictors of Cardiovascular Disease and Psoriasis. JAMA Cardiol. 2024, 9, 1009–1017. [Google Scholar] [CrossRef]
- Takeshita, J.; Grewal, S.; Langan, S.M.; Mehta, N.N.; Ogdie, A.; Van Voorhees, A.S.; Gelfand, J.M. Psoriasis and comorbid diseases: Epidemiology. J. Am. Acad. Dermatol. 2017, 76, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Branisteanu, D.E.; Pirvulescu, R.A.; Spinu, A.E.; Porumb, E.A.; Cojocaru, M.; Nicolescu, A.C.; Branisteanu, D.C.; Branisteanu, C.I.; Dimitriu, A.; Alexa, A.I.; et al. Metabolic comorbidities of psoriasis (Review). Exp. Ther. Med. 2022, 23, 179. [Google Scholar] [CrossRef] [PubMed]
- Pouplard, C.; Brenaut, E.; Horreau, C.; Barnetche, T.; Misery, L.; Richard, M.A.; Aractingi, S.; Aubin, F.; Cribier, B.; Joly, P.; et al. Risk of cancer in psoriasis: A systematic review and meta-analysis of epidemiological studies. J. Eur. Acad. Dermatol. Venereol. 2013, 27 (Suppl. 3), 36–46. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.; Sadlier, M.; De Vol, E.; Patel, M.; Lloyd, A.A.; Day, A.; Lally, A.; Kirby, B.; Menter, A. Genital psoriasis is associated with significant impairment in quality of life and sexual functioning. J. Am. Acad. Dermatol. 2015, 72, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Taylor, C.; Kornmehl, H.; Armstrong, A.W. Psoriasis and suicidality: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2017, 77, 425–440.e2. [Google Scholar] [CrossRef] [PubMed]
- Rompoti, N.; Tsiori, S.; Kontoangelos, K.; Kouzoupis, A.; Papageorgiou, C.; Gregoriou, S.; Stratigos, A.; Rigopoulos, D. Psychopathological Profile of Patients with Moderate-to-Severe Plaque Psoriasis and Its Correlation to DLQI: Results from a Prospective, Monocentric Clinical Study. J. Clin. Med. 2024, 13, 6424. [Google Scholar] [CrossRef] [PubMed]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef]
- Griffiths, C.E.; Barker, J.N. Pathogenesis and clinical features of psoriasis. Lancet 2007, 370, 263–271. [Google Scholar] [CrossRef]
- Mehta, S.; Singal, A.; Singh, N.; Bhattacharya, S.N. A study of clinicohistopathological correlation in patients of psoriasis and psoriasiform dermatitis. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 100. [Google Scholar] [CrossRef] [PubMed]
- Dupire, G.; Droitcourt, C.; Hughes, C.; Le Cleach, L. Antistreptococcal interventions for guttate and chronic plaque psoriasis. Cochrane Database Syst. Rev. 2019, 3, Cd011571. [Google Scholar] [CrossRef]
- Martin, B.A.; Chalmers, R.J.; Telfer, N.R. How great is the risk of further psoriasis following a single episode of acute guttate psoriasis? Arch. Dermatol. 1996, 132, 717–718. [Google Scholar] [CrossRef]
- Rosenbach, M.; Hsu, S.; Korman, N.J.; Lebwohl, M.G.; Young, M.; Bebo, B.F., Jr.; Van Voorhees, A.S. Treatment of erythrodermic psoriasis: From the medical board of the National Psoriasis Foundation. J. Am. Acad. Dermatol. 2010, 62, 655–662. [Google Scholar] [CrossRef]
- Singh, R.K.; Lee, K.M.; Ucmak, D.; Brodsky, M.; Atanelov, Z.; Farahnik, B.; Abrouk, M.; Nakamura, M.; Zhu, T.H.; Liao, W. Erythrodermic psoriasis: Pathophysiology and current treatment perspectives. Psoriasis 2016, 6, 93–104. [Google Scholar] [CrossRef]
- Augustin, M.; Reich, K.; Blome, C.; Schäfer, I.; Laass, A.; Radtke, M.A. Nail psoriasis in Germany: Epidemiology and burden of disease. Br. J. Dermatol. 2010, 163, 580–585. [Google Scholar] [CrossRef]
- Alosaimi, M.A.; Alrubaiaan, M.T.; Alsuhaymi, A.M.; Alsulaiman, S.A.; Alanazy, A.M.; Al Eissa, A.I.; Alosaimi, S.M.; Owaidh Alilaj, M. Association of Psoriasis with Thyroid Disorders: A Tertiary Center-Based Cross-Sectional Study. Cureus 2025, 17, e79706. [Google Scholar] [CrossRef]
- Alinaghi, F.; Calov, M.; Kristensen, L.E.; Gladman, D.D.; Coates, L.C.; Jullien, D.; Gottlieb, A.B.; Gisondi, P.; Wu, J.J.; Thyssen, J.P.; et al. Prevalence of psoriatic arthritis in patients with psoriasis: A systematic review and meta-analysis of observational and clinical studies. J. Am. Acad. Dermatol. 2019, 80, 251–265.e19. [Google Scholar] [CrossRef] [PubMed]
- Bartosińska, J.; Szepietowski, J.C.; Raczkiewicz, D.; Griffiths, C.E.M.; Ashcroft, D.M.; Wright, A.K.; Podwójcic, K.; Turcza, J.; Maluchnik, M.; Chłoń-Domińczak, A.; et al. Epidemiology of Psoriasis in Poland: Prevalence, Incidence, and Mortality Rates. Int. J. Dermatol. 2025, 64, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, Y.J.; Kim, S.K.; Kwon, J.E.; Kang, H.Y.; Lee, E.S.; Choi, J.H.; Kim, Y.C. Histopathological Differential Diagnosis of Psoriasis and Seborrheic Dermatitis of the Scalp. Ann. Dermatol. 2016, 28, 427–432. [Google Scholar] [CrossRef]
- Tsoi, L.C.; Stuart, P.E.; Tian, C.; Gudjonsson, J.E.; Das, S.; Zawistowski, M.; Ellinghaus, E.; Barker, J.N.; Chandran, V.; Dand, N.; et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat. Commun. 2017, 8, 15382. [Google Scholar] [CrossRef]
- Tang, H.; Jin, X.; Li, Y.; Jiang, H.; Tang, X.; Yang, X.; Cheng, H.; Qiu, Y.; Chen, G.; Mei, J.; et al. A large-scale screen for coding variants predisposing to psoriasis. Nat. Genet. 2014, 46, 45–50. [Google Scholar] [CrossRef]
- Sun, L.D.; Cheng, H.; Wang, Z.X.; Zhang, A.P.; Wang, P.G.; Xu, J.H.; Zhu, Q.X.; Zhou, H.S.; Ellinghaus, E.; Zhang, F.R.; et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat. Genet. 2010, 42, 1005–1009. [Google Scholar] [CrossRef]
- Lønnberg, A.S.; Skov, L.; Skytthe, A.; Kyvik, K.O.; Pedersen, O.B.; Thomsen, S.F. Heritability of psoriasis in a large twin sample. Br. J. Dermatol. 2013, 169, 412–416. [Google Scholar] [CrossRef]
- Antonatos, C.; Grafanaki, K.; Asmenoudi, P.; Xiropotamos, P.; Nani, P.; Georgakilas, G.K.; Georgiou, S.; Vasilopoulos, Y. Contribution of the Environment, Epigenetic Mechanisms and Non-Coding RNAs in Psoriasis. Biomedicines 2022, 10, 1934. [Google Scholar] [CrossRef]
- Della Bella, C.; Corrà, A.; Mantengoli, E.; Galano, A.; Benagiano, M.; Bonciani, D.; Mariotti, E.B.; Pratesi, S.; Quintarelli, L.; Aimo, C.; et al. Skin IL-17A and IFN-γ Production Correlate with Disease Severity in Patients with Psoriasis and Streptococcal Infection. J. Investig. Dermatol. 2023, 143, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, A.; Siewert, K.; Stöhr, J.; Besgen, P.; Kim, S.M.; Rühl, G.; Nickel, J.; Vollmer, S.; Thomas, P.; Krebs, S.; et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J. Exp. Med. 2015, 212, 2203–2212. [Google Scholar] [CrossRef]
- Arakawa, A.; Reeves, E.; Vollmer, S.; Arakawa, Y.; He, M.; Galinski, A.; Stöhr, J.; Dornmair, K.; James, E.; Prinz, J.C. ERAP1 Controls the Autoimmune Response against Melanocytes in Psoriasis by Generating the Melanocyte Autoantigen and Regulating Its Amount for HLA-C*06:02 Presentation. J. Immunol. 2021, 207, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wang, G.; Fan, J.Y.; Li, W.; Liu, Y.F. HLA DR B1*04, *07-restricted epitopes on Keratin 17 for autoreactive T cells in psoriasis. J. Dermatol. Sci. 2005, 38, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Cargill, M.; Schrodi, S.J.; Chang, M.; Garcia, V.E.; Brandon, R.; Callis, K.P.; Matsunami, N.; Ardlie, K.G.; Civello, D.; Catanese, J.J.; et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 2007, 80, 273–290. [Google Scholar] [CrossRef]
- Zhu, H.; Lou, F.; Yin, Q.; Gao, Y.; Sun, Y.; Bai, J.; Xu, Z.; Liu, Z.; Cai, W.; Ke, F.; et al. RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease. EMBO Mol. Med. 2017, 9, 589–604. [Google Scholar] [CrossRef]
- Hayashi, M.; Hirota, T.; Saeki, H.; Nakagawa, H.; Ishiuji, Y.; Matsuzaki, H.; Tsunemi, Y.; Kato, T.; Shibata, S.; Sugaya, M.; et al. Genetic polymorphism in the traf3ip2 gene is associated with psoriasis vulgaris in a Japanese population. J. Dermatol. Sci. 2014, 73, 264–265. [Google Scholar] [CrossRef]
- Harden, J.L.; Krueger, J.G.; Bowcock, A.M. The immunogenetics of Psoriasis: A comprehensive review. J. Autoimmun. 2015, 64, 66–73. [Google Scholar] [CrossRef]
- Teng, Y.; Xie, W.; Tao, X.; Liu, N.; Yu, Y.; Huang, Y.; Xu, D.; Fan, Y. Infection-provoked psoriasis: Induced or aggravated (Review). Exp. Ther. Med. 2021, 21, 567. [Google Scholar] [CrossRef]
- Assarsson, M.; Söderman, J.; Seifert, O. Significant Correlation Between Cutaneous Abundance of Streptococcus and Psoriasis Severity in Patients with FBXL19 Gene Variants. Acta Derm. Venereol. 2024, 104, adv34892. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.S.; Sigmundsdottir, H.; Sigurgeirsson, B.; Good, M.F.; Valdimarsson, H.; Jonsdottir, I. Is an epitope on keratin 17 a major target for autoreactive T lymphocytes in psoriasis? Clin. Exp. Immunol. 1999, 117, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.; Gudjonsson, J.E.; Sigmundsdottir, H.; Love, T.J.; Valdimarsson, H. Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8(+) T cells. Clin. Exp. Immunol. 2004, 138, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.F.; Chuang, P.H.; Jen, I.A.; Chen, M.; Lan, Y.C.; Liu, Y.L.; Lee, Y.; Chen, Y.H.; Chen, Y.A. Incidence of autoimmune diseases in a nationwide HIV/AIDS patient cohort in Taiwan, 2000–2012. Ann. Rheum. Dis. 2017, 76, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Morar, N.; Willis-Owen, S.A.; Maurer, T.; Bunker, C.B. HIV-associated psoriasis: Pathogenesis, clinical features, and management. Lancet Infect. Dis. 2010, 10, 470–478. [Google Scholar] [CrossRef]
- Fuchs, D.; Hausen, A.; Reibnegger, G.; Werner, E.R.; Dierich, M.P.; Wachter, H. Psoriasis, gamma-interferon, and the acquired immunodeficiency syndrome. Ann. Intern. Med. 1987, 106, 165. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; He, M.; Jiang, J.; Duan, X.; Chai, B.; Zhang, J.; Tao, Q.; Chen, H. Triggers for the onset and recurrence of psoriasis: A review and update. Cell Commun. Signal. 2024, 22, 108. [Google Scholar] [CrossRef]
- Aram, K.; Patil, A.; Goldust, M.; Rajabi, F. COVID-19 and exacerbation of dermatological diseases: A review of the available literature. Dermatol. Ther. 2021, 34, e15113. [Google Scholar] [CrossRef]
- Chen, M.L.; Kao, W.M.; Huang, J.Y.; Hung, Y.M.; Wei, J.C. Human papillomavirus infection associated with increased risk of new-onset psoriasis: A nationwide population-based cohort study. Int. J. Epidemiol. 2020, 49, 786–797. [Google Scholar] [CrossRef]
- Rousset, L.; Halioua, B. Stress and psoriasis. Int. J. Dermatol. 2018, 57, 1165–1172. [Google Scholar] [CrossRef]
- Woźniak, E.; Owczarczyk-Saczonek, A.; Placek, W. Psychological Stress, Mast Cells, and Psoriasis-Is There Any Relationship? Int. J. Mol. Sci. 2021, 22, 13252. [Google Scholar] [CrossRef]
- Kanda, N.; Watanabe, S. Regulatory roles of sex hormones in cutaneous biology and immunology. J. Dermatol. Sci. 2005, 38, 1–7. [Google Scholar] [CrossRef]
- Adachi, A.; Honda, T. Regulatory Roles of Estrogens in Psoriasis. J. Clin. Med. 2022, 11, 4890. [Google Scholar] [CrossRef] [PubMed]
- Cemil, B.C.; Cengiz, F.P.; Atas, H.; Ozturk, G.; Canpolat, F. Sex hormones in male psoriasis patients and their correlation with the Psoriasis Area and Severity Index. J. Dermatol. 2015, 42, 500–503. [Google Scholar] [CrossRef]
- Kobayashi, K.; Chikazawa, S.; Chen, Y.; Suzuki, S.; Ichimasu, N.; Katagiri, K. Oestrogen inhibits psoriasis-like dermatitis induced by imiquimod in mice in relation to increased IL-10 producing cells despite elevated expression of IL-22, IL-23, IL-17 mRNA. Exp. Dermatol. 2023, 32, 203–209. [Google Scholar] [CrossRef]
- Terán-Pérez, G.; Arana-Lechuga, Y.; Esqueda-León, E.; Santana-Miranda, R.; Rojas-Zamorano, J.; Velázquez Moctezuma, J. Steroid hormones and sleep regulation. Mini Rev. Med. Chem. 2012, 12, 1040–1048. [Google Scholar] [CrossRef]
- Paus, R.; Theoharides, T.C.; Arck, P.C. Neuroimmunoendocrine circuitry of the ‘brain-skin connection’. Trends Immunol. 2006, 27, 32–39. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, J.; Xu, H.; Zhou, D.; Elder, J.T.; Tsoi, L.C.; Patrick, M.T.; Li, Y. Alcohol consumption and smoking in relation to psoriasis: A Mendelian randomization study. Br. J. Dermatol. 2022, 187, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Brenaut, E.; Horreau, C.; Pouplard, C.; Barnetche, T.; Paul, C.; Richard, M.A.; Joly, P.; Le Maître, M.; Aractingi, S.; Aubin, F.; et al. Alcohol consumption and psoriasis: A systematic literature review. J. Eur. Acad. Dermatol. Venereol. 2013, 27 (Suppl. 3), 30–35. [Google Scholar] [CrossRef]
- Murzaku, E.C.; Bronsnick, T.; Rao, B.K. Diet in dermatology: Part II. Melanoma, chronic urticaria, and psoriasis. J. Am. Acad. Dermatol. 2014, 71, 1053.e1–1053.e16. [Google Scholar] [CrossRef]
- Dai, Y.X.; Wang, S.C.; Chou, Y.J.; Chang, Y.T.; Chen, T.J.; Li, C.P.; Wu, C.Y. Smoking, but not alcohol, is associated with risk of psoriasis in a Taiwanese population-based cohort study. J. Am. Acad. Dermatol. 2019, 80, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Nestle, F.O.; Di Meglio, P.; Qin, J.Z.; Nickoloff, B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 2009, 9, 679–691. [Google Scholar] [CrossRef]
- Perera, G.K.; Di Meglio, P.; Nestle, F.O. Psoriasis. Annu. Rev. Pathol. 2012, 7, 385–422. [Google Scholar] [CrossRef]
- Zhang, L.J.; Sen, G.L.; Ward, N.L.; Johnston, A.; Chun, K.; Chen, Y.; Adase, C.; Sanford, J.A.; Gao, N.; Chensee, M.; et al. Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-β Production by Epidermal Keratinocytes during Skin Injury. Immunity 2016, 45, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, Y.; Cui, L.; Shi, Y.; Guo, C. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis. 2022, 13, 81. [Google Scholar] [CrossRef]
- Albanesi, C.; Madonna, S.; Gisondi, P.; Girolomoni, G. The Interplay Between Keratinocytes and Immune Cells in the Pathogenesis of Psoriasis. Front. Immunol. 2018, 9, 1549. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Xu, Z.; Lou, F.; Zhang, L.; Ke, F.; Bai, J.; Liu, Z.; Liu, J.; Wang, H.; Zhu, H.; et al. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat. Commun. 2015, 6, 7652. [Google Scholar] [CrossRef]
- Silva de Melo, B.M.; Veras, F.P.; Zwicky, P.; Lima, D.; Ingelfinger, F.; Martins, T.V.; da Silva Prado, D.; Schärli, S.; Publio, G.; Hiroki, C.H.; et al. S100A9 Drives the Chronification of Psoriasiform Inflammation by Inducing IL-23/Type 3 Immunity. J. Investig. Dermatol. 2023, 143, 1678–1688.e8. [Google Scholar] [CrossRef]
- Homey, B.; Dieu-Nosjean, M.C.; Wiesenborn, A.; Massacrier, C.; Pin, J.J.; Oldham, E.; Catron, D.; Buchanan, M.E.; Müller, A.; deWaal Malefyt, R.; et al. Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J. Immunol. 2000, 164, 6621–6632. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Hennig, A.; Lorscheid, S.; Grondona, P.; Schulze-Osthoff, K.; Hailfinger, S.; Kramer, D. IκBζ is a key transcriptional regulator of IL-36-driven psoriasis-related gene expression in keratinocytes. Proc. Natl. Acad. Sci. USA 2018, 115, 10088–10093. [Google Scholar] [CrossRef]
- Ekman, A.K.; Bivik Eding, C.; Rundquist, I.; Enerbäck, C. IL-17 and IL-22 Promote Keratinocyte Stemness in the Germinative Compartment in Psoriasis. J. Investig. Dermatol. 2019, 139, 1564–1573.e8. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suárez-Fariñas, M.; Krueger, J.G. Immunology of psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef]
- Lou, F.; Sun, Y.; Xu, Z.; Niu, L.; Wang, Z.; Deng, S.; Liu, Z.; Zhou, H.; Bai, J.; Yin, Q.; et al. Excessive Polyamine Generation in Keratinocytes Promotes Self-RNA Sensing by Dendritic Cells in Psoriasis. Immunity 2020, 53, 204–216.e10. [Google Scholar] [CrossRef]
- Rodriguez-Rosales, Y.A.; Langereis, J.D.; Gorris, M.A.J.; van den Reek, J.; Fasse, E.; Netea, M.G.; de Vries, I.J.M.; Gomez-Muñoz, L.; van Cranenbroek, B.; Körber, A.; et al. Immunomodulatory aged neutrophils are augmented in blood and skin of psoriasis patients. J. Allergy Clin. Immunol. 2021, 148, 1030–1040. [Google Scholar] [CrossRef]
- Katayama, H. Development of psoriasis by continuous neutrophil infiltration into the epidermis. Exp. Dermatol. 2018, 27, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Pruenster, M.; Immler, R.; Roth, J.; Kuchler, T.; Bromberger, T.; Napoli, M.; Nussbaumer, K.; Rohwedder, I.; Wackerbarth, L.M.; Piantoni, C.; et al. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat. Immunol. 2023, 24, 2021–2031. [Google Scholar] [CrossRef]
- Senra, L.; Mylonas, A.; Kavanagh, R.D.; Fallon, P.G.; Conrad, C.; Borowczyk-Michalowska, J.; Wrobel, L.J.; Kaya, G.; Yawalkar, N.; Boehncke, W.H.; et al. IL-17E (IL-25) Enhances Innate Immune Responses during Skin Inflammation. J. Investig. Dermatol. 2019, 139, 1732–1742.e17. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.M.; Rubin, C.J.; Khandpur, R.; Wang, J.Y.; Riblett, M.; Yalavarthi, S.; Villanueva, E.C.; Shah, P.; Kaplan, M.J.; Bruce, A.T. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 2011, 187, 490–500. [Google Scholar] [CrossRef]
- Herster, F.; Bittner, Z.; Archer, N.K.; Dickhöfer, S.; Eisel, D.; Eigenbrod, T.; Knorpp, T.; Schneiderhan-Marra, N.; Löffler, M.W.; Kalbacher, H.; et al. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nat. Commun. 2020, 11, 105. [Google Scholar] [CrossRef]
- Shao, S.; Fang, H.; Dang, E.; Xue, K.; Zhang, J.; Li, B.; Qiao, H.; Cao, T.; Zhuang, Y.; Shen, S.; et al. Neutrophil Extracellular Traps Promote Inflammatory Responses in Psoriasis via Activating Epidermal TLR4/IL-36R Crosstalk. Front. Immunol. 2019, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Plazyo, O.; Billi, A.C.; Tsoi, L.C.; Xing, X.; Wasikowski, R.; Gharaee-Kermani, M.; Hile, G.; Jiang, Y.; Harms, P.W.; et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat. Commun. 2023, 14, 3455. [Google Scholar] [CrossRef]
- Hu, S.C.; Yu, H.S.; Yen, F.L.; Lin, C.L.; Chen, G.S.; Lan, C.C. Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Sci. Rep. 2016, 6, 31119. [Google Scholar] [CrossRef]
- Shao, S.; Fang, H.; Zhang, J.; Jiang, M.; Xue, K.; Ma, J.; Zhang, J.; Lei, J.; Zhang, Y.; Li, B.; et al. Neutrophil exosomes enhance the skin autoinflammation in generalized pustular psoriasis via activating keratinocytes. FASEB J. 2019, 33, 6813–6828. [Google Scholar] [CrossRef]
- Liu, X.T.; Shi, Z.R.; Lu, S.Y.; Hong, D.; Qiu, X.N.; Tan, G.Z.; Xiong, H.; Guo, Q.; Wang, L. Enhanced Migratory Ability of Neutrophils Toward Epidermis Contributes to the Development of Psoriasis via Crosstalk with Keratinocytes by Releasing IL-17A. Front. Immunol. 2022, 13, 817040. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.; Li, Q.; Lin, Y.; Dang, E.; Meng, H.; Sha, N.; Bai, H.; Wang, G.; An, S.; et al. Neutrophils Enhance Cutaneous Vascular Dilation and Permeability to Aggravate Psoriasis by Releasing Matrix Metallopeptidase 9. J. Investig. Dermatol. 2021, 141, 787–799. [Google Scholar] [CrossRef]
- Lin, C.Y.; Yu, H.P.; Chang, Y.T.; Lin, Z.C.; Alalaiwe, A.; Hwang, T.L.; Fang, J.Y. Targeting anti-inflammatory immunonanocarriers to human and murine neutrophils via the Ly6 antigen for psoriasiform dermatitis alleviation. Biomater. Sci. 2023, 11, 873–893. [Google Scholar] [CrossRef]
- Lowes, M.A.; Chamian, F.; Abello, M.V.; Fuentes-Duculan, J.; Lin, S.L.; Nussbaum, R.; Novitskaya, I.; Carbonaro, H.; Cardinale, I.; Kikuchi, T.; et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. USA 2005, 102, 19057–19062. [Google Scholar] [CrossRef]
- Terhorst, D.; Chelbi, R.; Wohn, C.; Malosse, C.; Tamoutounour, S.; Jorquera, A.; Bajenoff, M.; Dalod, M.; Malissen, B.; Henri, S. Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis. J. Immunol. 2015, 195, 4953–4961. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.B.; Sedgewick, A.J.; Finnegan, A.I.; Harirchian, P.; Lee, J.; Kwon, S.; Fassett, M.S.; Golovato, J.; Gray, M.; Ghadially, R.; et al. Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell Resolution. Cell Rep. 2018, 25, 871–883. [Google Scholar] [CrossRef]
- Zaba, L.C.; Fuentes-Duculan, J.; Eungdamrong, N.J.; Abello, M.V.; Novitskaya, I.; Pierson, K.C.; Gonzalez, J.; Krueger, J.G.; Lowes, M.A. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J. Investig. Dermatol. 2009, 129, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Rebane, A.; Zimmermann, M.; Aab, A.; Baurecht, H.; Koreck, A.; Karelson, M.; Abram, K.; Metsalu, T.; Pihlap, M.; Meyer, N.; et al. Mechanisms of IFN-γ-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2012, 129, 1297–1306. [Google Scholar] [CrossRef]
- Nestle, F.O.; Conrad, C.; Tun-Kyi, A.; Homey, B.; Gombert, M.; Boyman, O.; Burg, G.; Liu, Y.J.; Gilliet, M. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 2005, 202, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, F.; Chen, X.Y.; Yan, B.X.; Wang, Z.Y.; Chen, S.Q.; Zheng, M.; Man, X.Y. The epidermal immune microenvironment plays a dominant role in psoriasis development, as revealed by mass cytometry. Cell. Mol. Immunol. 2022, 19, 1400–1413. [Google Scholar] [CrossRef]
- Borek, I.; Köffel, R.; Feichtinger, J.; Spies, M.; Glitzner-Zeis, E.; Hochgerner, M.; Sconocchia, T.; Krump, C.; Tam-Amersdorfer, C.; Passegger, C.; et al. BMP7 aberrantly induced in the psoriatic epidermis instructs inflammation-associated Langerhans cells. J. Allergy Clin. Immunol. 2020, 145, 1194–1207.e11. [Google Scholar] [CrossRef]
- Yoshiki, R.; Kabashima, K.; Honda, T.; Nakamizo, S.; Sawada, Y.; Sugita, K.; Yoshioka, H.; Ohmori, S.; Malissen, B.; Tokura, Y.; et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J. Investig. Dermatol. 2014, 134, 1912–1921. [Google Scholar] [CrossRef]
- Zheng, T.; Zhao, W.; Li, H.; Xiao, S.; Hu, R.; Han, M.; Liu, H.; Liu, Y.; Otsu, K.; Liu, X.; et al. p38α signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation. Sci. Signal. 2018, 11, eaao1685. [Google Scholar] [CrossRef]
- Martini, E.; Wikén, M.; Cheuk, S.; Gallais Sérézal, I.; Baharom, F.; Ståhle, M.; Smed-Sörensen, A.; Eidsmo, L. Dynamic Changes in Resident and Infiltrating Epidermal Dendritic Cells in Active and Resolved Psoriasis. J. Investig. Dermatol. 2017, 137, 865–873. [Google Scholar] [CrossRef]
- Fujita, H.; Shemer, A.; Suárez-Fariñas, M.; Johnson-Huang, L.M.; Tintle, S.; Cardinale, I.; Fuentes-Duculan, J.; Novitskaya, I.; Carucci, J.A.; Krueger, J.G.; et al. Lesional dendritic cells in patients with chronic atopic dermatitis and psoriasis exhibit parallel ability to activate T-cell subsets. J. Allergy Clin. Immunol. 2011, 128, 574–582.e12. [Google Scholar] [CrossRef]
- Wang, Y.; Edelmayer, R.; Wetter, J.; Salte, K.; Gauvin, D.; Leys, L.; Paulsboe, S.; Su, Z.; Weinberg, I.; Namovic, M.; et al. Monocytes/Macrophages play a pathogenic role in IL-23 mediated psoriasis-like skin inflammation. Sci. Rep. 2019, 9, 5310. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peters, T.; Kess, D.; Sindrilaru, A.; Oreshkova, T.; Van Rooijen, N.; Stratis, A.; Renkl, A.C.; Sunderkötter, C.; Wlaschek, M.; et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J. Clin. Investig. 2006, 116, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Stratis, A.; Pasparakis, M.; Rupec, R.A.; Markur, D.; Hartmann, K.; Scharffetter-Kochanek, K.; Peters, T.; van Rooijen, N.; Krieg, T.; Haase, I. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J. Clin. Investig. 2006, 116, 2094–2104. [Google Scholar] [CrossRef] [PubMed]
- Erbel, C.; Akhavanpoor, M.; Okuyucu, D.; Wangler, S.; Dietz, A.; Zhao, L.; Stellos, K.; Little, K.M.; Lasitschka, F.; Doesch, A.; et al. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J. Immunol. 2014, 193, 4344–4355. [Google Scholar] [CrossRef]
- Sieminska, I.; Pieniawska, M.; Grzywa, T.M. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin. Rev. Allergy Immunol. 2024, 66, 164–191. [Google Scholar] [CrossRef] [PubMed]
- Kolkhir, P.; Elieh-Ali-Komi, D.; Metz, M.; Siebenhaar, F.; Maurer, M. Understanding human mast cells: Lesson from therapies for allergic and non-allergic diseases. Nat. Rev. Immunol. 2022, 22, 294–308. [Google Scholar] [CrossRef]
- Galli, S.J.; Gaudenzio, N.; Tsai, M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu. Rev. Immunol. 2020, 38, 49–77. [Google Scholar] [CrossRef]
- Cheung, K.L.; Jarrett, R.; Subramaniam, S.; Salimi, M.; Gutowska-Owsiak, D.; Chen, Y.L.; Hardman, C.; Xue, L.; Cerundolo, V.; Ogg, G. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J. Exp. Med. 2016, 213, 2399–2412. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Du, X.; Zhang, L.; Zheng, Y.; Jia, T.; Song, X.; Che, D.; Geng, S. Suprabasin-derived polypeptides: SBSN(50-63) induces inflammatory response via TLR4-mediated mast cell activation. Inflammopharmacology 2023, 31, 1329–1339. [Google Scholar] [CrossRef]
- Ji, Y.Z.; Liu, S.R. Koebner phenomenon leading to the formation of new psoriatic lesions: Evidences and mechanisms. Biosci. Rep. 2019, 39, BSR20193266. [Google Scholar] [CrossRef]
- Ribot, J.C.; Lopes, N.; Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 2021, 21, 221–232. [Google Scholar] [CrossRef]
- Cai, Y.; Xue, F.; Quan, C.; Qu, M.; Liu, N.; Zhang, Y.; Fleming, C.; Hu, X.; Zhang, H.G.; Weichselbaum, R.; et al. A Critical Role of the IL-1β-IL-1R Signaling Pathway in Skin Inflammation and Psoriasis Pathogenesis. J. Investig. Dermatol. 2019, 139, 146–156. [Google Scholar] [CrossRef]
- Laggner, U.; Di Meglio, P.; Perera, G.K.; Hundhausen, C.; Lacy, K.E.; Ali, N.; Smith, C.H.; Hayday, A.C.; Nickoloff, B.J.; Nestle, F.O. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 2011, 187, 2783–2793. [Google Scholar] [CrossRef]
- Peng, P.; Lou, Y.; Wang, S.; Wang, J.; Zhang, Z.; Du, P.; Zheng, J.; Liu, P.; Xu, L.X. Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-γ to modulate antitumor T-cell response after cryo-thermal therapy. J. Immunother. Cancer 2022, 10, e005769. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Saron, W.A.; O’Neill, A.; Senanayake, M.; Wilder-Smith, A.; Rathore, A.P.; St John, A.L. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J. Clin. Investig. 2024, 134, e169251. [Google Scholar] [CrossRef]
- Venken, K.; Jacques, P.; Mortier, C.; Labadia, M.E.; Decruy, T.; Coudenys, J.; Hoyt, K.; Wayne, A.L.; Hughes, R.; Turner, M.; et al. RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in Spondyloarthritis patients. Nat. Commun. 2019, 10, 9. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Chen, Z.; Zhang, X.; Guo, C.; Yu, Z.; Xu, P.; Sun, L.; Zhou, X.; Gong, Y.; et al. Dysregulated Peripheral Invariant Natural Killer T Cells in Plaque Psoriasis Patients. Front. Cell Dev. Biol. 2021, 9, 799560. [Google Scholar] [CrossRef]
- Liu, P.; Peng, C.; Chen, X.; Wu, L.; Yin, M.; Li, J.; Qin, Q.; Kuang, Y.; Zhu, W. Acitretin Promotes the Differentiation of Myeloid-Derived Suppressor Cells in the Treatment of Psoriasis. Front. Med. 2021, 8, 625130. [Google Scholar] [CrossRef]
- Sarkar, D.; Pramanik, A.; Das, D.; Bhattacharyya, S. Shifting phenotype and differentiation of CD11b(+)Gr.1(+) immature heterogeneous myeloid derived adjuster cells support inflammation and induce regulators of IL17A in imiquimod induced psoriasis. Inflamm. Res. 2024, 73, 1581–1599. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, D.V.; Di Battista, J.A.; Martel-Pelletier, J.; Jolicoeur, F.C.; He, Y.; Zhang, M.; Mineau, F.; Pelletier, J.P. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J. Immunol. 1998, 160, 3513–3521. [Google Scholar] [CrossRef] [PubMed]
- Albanesi, C.; Cavani, A.; Girolomoni, G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: Synergistic or antagonist effects with IFN-gamma and TNF-alpha. J. Immunol. 1999, 162, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Kokubu, F.; Odaka, M.; Watanabe, S.; Suzuki, S.; Ieki, K.; Matsukura, S.; Kurokawa, M.; Adachi, M.; Huang, S.K. Induction of granulocyte-macrophage colony-stimulating factor by a new cytokine, ML-1 (IL-17F), via Raf I-MEK-ERK pathway. J. Allergy Clin. Immunol. 2004, 114, 444–450. [Google Scholar] [CrossRef]
- Johnston, A.; Fritz, Y.; Dawes, S.M.; Diaconu, D.; Al-Attar, P.M.; Guzman, A.M.; Chen, C.S.; Fu, W.; Gudjonsson, J.E.; McCormick, T.S.; et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J. Immunol. 2013, 190, 2252–2262. [Google Scholar] [CrossRef]
- Yeste, A.; Mascanfroni, I.D.; Nadeau, M.; Burns, E.J.; Tukpah, A.M.; Santiago, A.; Wu, C.; Patel, B.; Kumar, D.; Quintana, F.J. IL-21 induces IL-22 production in CD4+ T cells. Nat. Commun. 2014, 5, 3753. [Google Scholar] [CrossRef]
- Hammer, A.M.; Morris, N.L.; Cannon, A.R.; Khan, O.M.; Gagnon, R.C.; Movtchan, N.V.; van Langeveld, I.; Li, X.; Gao, B.; Choudhry, M.A. Interleukin-22 Prevents Microbial Dysbiosis and Promotes Intestinal Barrier Regeneration Following Acute Injury. Shock 2017, 48, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Bunte, K.; Beikler, T. Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2019, 20, 3394. [Google Scholar] [CrossRef]
- Chang, H.W.; Yan, D.; Singh, R.; Liu, J.; Lu, X.; Ucmak, D.; Lee, K.; Afifi, L.; Fadrosh, D.; Leech, J.; et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 2018, 6, 154. [Google Scholar] [CrossRef]
- Zheng, Y.; Danilenko, D.M.; Valdez, P.; Kasman, I.; Eastham-Anderson, J.; Wu, J.; Ouyang, W. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007, 445, 648–651. [Google Scholar] [CrossRef]
- Trifari, S.; Kaplan, C.D.; Tran, E.H.; Crellin, N.K.; Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 2009, 10, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, C.; Gehad, A.; Yang, C.; Watanabe, R.; Guenova, E.; Teague, J.E.; Campbell, L.; Yawalkar, N.; Kupper, T.S.; Clark, R.A. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl. Med. 2014, 6, 219ra8. [Google Scholar] [CrossRef]
- Singh, T.P.; Schön, M.P.; Wallbrecht, K.; Gruber-Wackernagel, A.; Wang, X.J.; Wolf, P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS ONE 2013, 8, e51752. [Google Scholar] [CrossRef]
- Niu, J.; Song, Z.; Yang, X.; Zhai, Z.; Zhong, H.; Hao, F. Increased circulating follicular helper T cells and activated B cells correlate with disease severity in patients with psoriasis. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1791–1796. [Google Scholar] [CrossRef]
- Austin, L.M.; Ozawa, M.; Kikuchi, T.; Walters, I.B.; Krueger, J.G. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: A type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Investig. Dermatol. 1999, 113, 752–759. [Google Scholar] [CrossRef]
- Guenova, E.; Skabytska, Y.; Hoetzenecker, W.; Weindl, G.; Sauer, K.; Tham, M.; Kim, K.W.; Park, J.H.; Seo, J.H.; Ignatova, D.; et al. IL-4 abrogates T(H)17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2015, 112, 2163–2168. [Google Scholar] [CrossRef]
- Huang, C.; Sun, P.-Y.; Jiang, Y.; Liu, Y.; Liu, Z.; Han, S.-L.; Wang, B.-S.; Huang, Y.-X.; Ren, A.-R.; Lu, J.-F.; et al. Sensory ASIC3 channel exacerbates psoriatic inflammation via a neurogenic pathway in female mice. Nat. Commun. 2024, 15, 5288. [Google Scholar] [CrossRef]
- Baker, B.S.; Laman, J.D.; Powles, A.; van der Fits, L.; Voerman, J.S.; Melief, M.J.; Fry, L. Peptidoglycan and peptidoglycan-specific Th1 cells in psoriatic skin lesions. J. Pathol. 2006, 209, 174–181. [Google Scholar] [CrossRef]
- Baker, B.S.; Powles, A.; Fry, L. Peptidoglycan: A major aetiological factor for psoriasis? Trends Immunol. 2006, 27, 545–551. [Google Scholar] [CrossRef]
- Menssen, A.; Trommler, P.; Vollmer, S.; Schendel, D.; Albert, E.; Gürtler, L.; Riethmüller, G.; Prinz, J.C. Evidence for an antigen-specific cellular immune response in skin lesions of patients with psoriasis vulgaris. J. Immunol. 1995, 155, 4078–4083. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.J.; Norris, D.A.; Achziger, M.; Kotzin, B.L.; Tomkinson, B. Oligoclonal expansion of intraepidermal T cells in psoriasis skin lesions. J. Investig. Dermatol. 2001, 117, 1546–1553. [Google Scholar] [CrossRef]
- Pantelyushin, S.; Haak, S.; Ingold, B.; Kulig, P.; Heppner, F.L.; Navarini, A.A.; Becher, B. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Investig. 2012, 122, 2252–2256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Lin, Y.T.; Wang, L.; Sun, X.W.; Dang, E.L.; Xue, K.; Zhang, W.G.; Zhang, K.M.; Wang, G.; Li, B. CD8αα(+)T cells exert a pro-inflammatory role in patients with psoriasis. Ski. Health Dis. 2021, 1, ski2.64. [Google Scholar] [CrossRef]
- Diani, M.; Casciano, F.; Marongiu, L.; Longhi, M.; Altomare, A.; Pigatto, P.D.; Secchiero, P.; Gambari, R.; Banfi, G.; Manfredi, A.A.; et al. Increased frequency of activated CD8(+) T cell effectors in patients with psoriatic arthritis. Sci. Rep. 2019, 9, 10870. [Google Scholar] [CrossRef] [PubMed]
- Di Meglio, P.; Villanova, F.; Navarini, A.A.; Mylonas, A.; Tosi, I.; Nestle, F.O.; Conrad, C. Targeting CD8(+) T cells prevents psoriasis development. J. Allergy Clin. Immunol. 2016, 138, 274–276.e6. [Google Scholar] [CrossRef]
- Cheuk, S.; Wikén, M.; Blomqvist, L.; Nylén, S.; Talme, T.; Ståhle, M.; Eidsmo, L. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 2014, 192, 3111–3120. [Google Scholar] [CrossRef]
- Migayron, L.; Merhi, R.; Seneschal, J.; Boniface, K. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive. J. Allergy Clin. Immunol. 2024, 153, 606–614. [Google Scholar] [CrossRef]
- Deng, G.; Zhang, Y.; Song, J.; Zhang, Y.; Zheng, Q.; Luo, Y.; Fei, X.; Yang, Y.; Kuai, L.; Li, B.; et al. The role and therapeutic strategies for tissue-resident memory T cells, central memory T cells, and effector memory T cells in psoriasis. Immunology 2024, 173, 470–480. [Google Scholar] [CrossRef]
- Matos, T.R.; O’Malley, J.T.; Lowry, E.L.; Hamm, D.; Kirsch, I.R.; Robins, H.S.; Kupper, T.S.; Krueger, J.G.; Clark, R.A. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. J. Clin. Investig. 2017, 127, 4031–4041. [Google Scholar] [CrossRef]
- Lee, B.H.; Bang, Y.J.; Lim, S.H.; Kang, S.J.; Kim, S.H.; Kim-Schulze, S.; Park, C.G.; Kim, H.J.; Kim, T.G. High-dimensional profiling of regulatory T cells in psoriasis reveals an impaired skin-trafficking property. EBioMedicine 2024, 100, 104985. [Google Scholar] [CrossRef]
- Sugiyama, H.; Gyulai, R.; Toichi, E.; Garaczi, E.; Shimada, S.; Stevens, S.R.; McCormick, T.S.; Cooper, K.D. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: Mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol. 2005, 174, 164–173. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Dang, E.; Jin, L.; Fan, X.; Wang, G. Impaired function of regulatory T cells in patients with psoriasis is mediated by phosphorylation of STAT3. J. Dermatol. Sci. 2016, 81, 85–92. [Google Scholar] [CrossRef]
- Sivasami, P.; Elkins, C.; Diaz-Saldana, P.P.; Goss, K.; Peng, A.; Hamersky, M.t.; Bae, J.; Xu, M.; Pollack, B.P.; Horwitz, E.M.; et al. Obesity-induced dysregulation of skin-resident PPARγ(+) Treg cells promotes IL-17A-mediated psoriatic inflammation. Immunity 2023, 56, 1844–1861.e6. [Google Scholar] [CrossRef]
- Lu, J.; Ding, Y.; Yi, X.; Zheng, J. CD19+ B cell subsets in the peripheral blood and skin lesions of psoriasis patients and their correlations with disease severity. Braz. J. Med. Biol. Res. 2016, 49, e5374. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A.; Yawalkar, N.; Suh, K.Y.; Sadat, S.; Rich, B.; Kupper, T.S. Identification of autoantigens in psoriatic plaques using expression cloning. J. Investig. Dermatol. 2004, 123, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, C.; Aguennouz, M.; Guarneri, F.; Polito, F.; Benvenga, S.; Cannavò, S.P. Autoimmunity to heterogeneous nuclear ribonucleoprotein A1 in psoriatic patients and correlation with disease severity. J. Dtsch. Dermatol. Ges. 2018, 16, 1103–1107. [Google Scholar] [CrossRef] [PubMed]
- Yunusbaeva, M.; Valiev, R.; Bilalov, F.; Sultanova, Z.; Sharipova, L.; Yunusbayev, B. Psoriasis patients demonstrate HLA-Cw*06:02 allele dosage-dependent T cell proliferation when treated with hair follicle-derived keratin 17 protein. Sci. Rep. 2018, 8, 6098. [Google Scholar] [CrossRef]
- Yuan, Y.; Qiu, J.; Lin, Z.T.; Li, W.; Haley, C.; Mui, U.N.; Ning, J.; Tyring, S.K.; Wu, T. Identification of Novel Autoantibodies Associated With Psoriatic Arthritis. Arthritis Rheumatol. 2019, 71, 941–951. [Google Scholar] [CrossRef]
- Wang, S.Y.; An, W.H.; Wang, Z.S.; Wang, W.L.; Zhang, B.; Xu, K.L.; Guo, S.L.; Gao, M.; Li, B.; Huang, L.; et al. Incidentally cured psoriasis in a patient with refractory/relapsed diffuse large B-cell lymphoma receiving CD19 CAR-T cell therapy: A case report. Front. Immunol. 2024, 15, 1418768. [Google Scholar] [CrossRef]
- Mizumaki, K.; Horii, M.; Kano, M.; Komuro, A.; Matsushita, T. Suppression of IL-23-mediated psoriasis-like inflammation by regulatory B cells. Sci. Rep. 2021, 11, 2106. [Google Scholar] [CrossRef]
- Mavropoulos, A.; Zafiriou, E.; Simopoulou, T.; Brotis, A.G.; Liaskos, C.; Roussaki-Schulze, A.; Katsiari, C.G.; Bogdanos, D.P.; Sakkas, L.I. Apremilast increases IL-10-producing regulatory B cells and decreases proinflammatory T cells and innate cells in psoriatic arthritis and psoriasis. Rheumatology 2019, 58, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Mavropoulos, A.; Varna, A.; Zafiriou, E.; Liaskos, C.; Alexiou, I.; Roussaki-Schulze, A.; Vlychou, M.; Katsiari, C.; Bogdanos, D.P.; Sakkas, L.I. IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNγ-producing T cells. Clin. Immunol. 2017, 184, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Menter, A.; Korman, N.J.; Elmets, C.A.; Feldman, S.R.; Gelfand, J.M.; Gordon, K.B.; Gottlieb, A.; Koo, J.Y.; Lebwohl, M.; Leonardi, C.L.; et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: Case-based presentations and evidence-based conclusions. J. Am. Acad. Dermatol. 2011, 65, 137–174. [Google Scholar] [CrossRef]
- Nast, A.; Boehncke, W.H.; Mrowietz, U.; Ockenfels, H.M.; Philipp, S.; Reich, K.; Rosenbach, T.; Sammain, A.; Schlaeger, M.; Sebastian, M.; et al. S3—Guidelines on the treatment of psoriasis vulgaris (English version). Update. J. Dtsch. Dermatol. Ges. 2012, 10 (Suppl. 2), S1–S95. [Google Scholar] [CrossRef]
- Jones, S.A.; Perera, D.N.; Fan, H.; Russ, B.E.; Harris, J.; Morand, E.F. GILZ regulates Th17 responses and restrains IL-17-mediated skin inflammation. J. Autoimmun. 2015, 61, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.A.; Gulliver, W.; Lynde, C.W.; Poulin, Y.; Adam, D.N.; Barankin, B.; Barber, K.; Bourcier, M.; Gooderham, M.; Guenther, L.C.; et al. 2016 Addendum to the Canadian Guidelines for the Management of Plaque Psoriasis 2009. J. Cutan. Med. Surg. 2016, 20, 375–431. [Google Scholar] [CrossRef]
- Koo, J.; Cuffie, C.A.; Tanner, D.J.; Bressinck, R.; Cornell, R.C.; DeVillez, R.L.; Edwards, L.; Breneman, D.L.; Piacquadio, D.J.; Guzzo, C.A.; et al. Mometasone furoate 0.1%-salicylic acid 5% ointment versus mometasone furoate 0.1% ointment in the treatment of moderate-to-severe psoriasis: A multicenter study. Clin. Ther. 1998, 20, 283–291. [Google Scholar] [CrossRef]
- Mason, A.; Mason, J.; Cork, M.; Hancock, H.; Dooley, G. Topical treatments for chronic plaque psoriasis: An abridged Cochrane systematic review. J. Am. Acad. Dermatol. 2013, 69, 799–807. [Google Scholar] [CrossRef]
- Segaert, S.; Duvold, L.B. Calcipotriol cream: A review of its use in the management of psoriasis. J. Dermatol. Treat. 2006, 17, 327–337. [Google Scholar] [CrossRef]
- Lebwohl, M.G.; Stein Gold, L.; Strober, B.; Papp, K.A.; Armstrong, A.W.; Bagel, J.; Kircik, L.; Ehst, B.; Hong, H.C.; Soung, J.; et al. Phase 3 Trials of Tapinarof Cream for Plaque Psoriasis. N. Engl. J. Med. 2021, 385, 2219–2229. [Google Scholar] [CrossRef]
- Ortonne, J.P.; van de Kerkhof, P.C.; Prinz, J.C.; Bieber, T.; Lahfa, M.; Rubins, A.; Wozel, G.; Lorette, G. 0.3% Tacrolimus gel and 0.5% Tacrolimus cream show efficacy in mild to moderate plaque psoriasis: Results of a randomized, open-label, observer-blinded study. Acta Derm. Venereol. 2006, 86, 29–33. [Google Scholar] [CrossRef]
- Remitz, A.; Reitamo, S.; Erkko, P.; Granlund, H.; Lauerma, A.I. Tacrolimus ointment improves psoriasis in a microplaque assay. Br. J. Dermatol. 1999, 141, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Douglas, W.S.; Poulin, Y.; Decroix, J.; Ortonne, J.P.; Mrowietz, U.; Gulliver, W.; Krogstad, A.L.; Larsen, F.G.; Iglesias, L.; Buckley, C.; et al. A new calcipotriol/betamethasone formulation with rapid onset of action was superior to monotherapy with betamethasone dipropionate or calcipotriol in psoriasis vulgaris. Acta Derm. Venereol. 2002, 82, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Menter, A.; Korman, N.J.; Elmets, C.A.; Feldman, S.R.; Gelfand, J.M.; Gordon, K.B.; Gottlieb, A.; Koo, J.Y.M.; Lebwohl, M.; Lim, H.W.; et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 5. Guidelines of care for the treatment of psoriasis with phototherapy and photochemotherapy. J. Am. Acad. Dermatol. 2010, 62, 114–135, Erratum in J. Am. Acad. Dermatol. 2021, 84, 586. [Google Scholar] [CrossRef]
- Ho, V.C.; Griffiths, C.E.; Albrecht, G.; Vanaclocha, F.; León-Dorantes, G.; Atakan, N.; Reitamo, S.; Ohannesson, A.; Mørk, N.J.; Clarke, P.; et al. Intermittent short courses of cyclosporin (Neoral(R)) for psoriasis unresponsive to topical therapy: A 1-year multicentre, randomized study. The PISCES Study Group. Br. J. Dermatol. 1999, 141, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Elias, K.M.; Laurence, A.; Davidson, T.S.; Stephens, G.; Kanno, Y.; Shevach, E.M.; O’Shea, J.J. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 2008, 111, 1013–1020. [Google Scholar] [CrossRef]
- Goldfarb, M.T.; Ellis, C.N.; Gupta, A.K.; Tincoff, T.; Hamilton, T.A.; Voorhees, J.J. Acitretin improves psoriasis in a dose-dependent fashion. J. Am. Acad. Dermatol. 1988, 18, 655–662. [Google Scholar] [CrossRef]
- Dong, K.K.; Damaghi, N.; Picart, S.D.; Markova, N.G.; Obayashi, K.; Okano, Y.; Masaki, H.; Grether-Beck, S.; Krutmann, J.; Smiles, K.A.; et al. UV-induced DNA damage initiates release of MMP-1 in human skin. Exp. Dermatol. 2008, 17, 1037–1044. [Google Scholar] [CrossRef]
- Wong, T.; Hsu, L.; Liao, W. Phototherapy in psoriasis: A review of mechanisms of action. J. Cutan. Med. Surg. 2013, 17, 6–12. [Google Scholar] [CrossRef]
- Walters, I.B.; Ozawa, M.; Cardinale, I.; Gilleaudeau, P.; Trepicchio, W.L.; Bliss, J.; Krueger, J.G. Narrowband (312-nm) UV-B suppresses interferon gamma and interleukin (IL) 12 and increases IL-4 transcripts: Differential regulation of cytokines at the single-cell level. Arch. Dermatol. 2003, 139, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Rim, J.H.; Park, J.Y.; Choe, Y.B.; Youn, J.I. The efficacy of calcipotriol + acitretin combination therapy for psoriasis: Comparison with acitretin monotherapy. Am. J. Clin. Dermatol. 2003, 4, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Menter, A.; Gottlieb, A.; Feldman, S.R.; Van Voorhees, A.S.; Leonardi, C.L.; Gordon, K.B.; Lebwohl, M.; Koo, J.Y.; Elmets, C.A.; Korman, N.J.; et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 2008, 58, 826–850. [Google Scholar] [CrossRef] [PubMed]
- Gisondi, P.; Del Giglio, M.; Cotena, C.; Girolomoni, G. Combining etanercept and acitretin in the therapy of chronic plaque psoriasis: A 24-week, randomized, controlled, investigator-blinded pilot trial. Br. J. Dermatol. 2008, 158, 1345–1349. [Google Scholar] [CrossRef]
- Boehm, M.F.; Zhang, L.; Zhi, L.; McClurg, M.R.; Berger, E.; Wagoner, M.; Mais, D.E.; Suto, C.M.; Davies, J.A.; Heyman, R.A.; et al. Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J. Med. Chem. 1995, 38, 3146–3155. [Google Scholar] [CrossRef]
- Tu, J.; Yin, Z.; Guo, J.; He, F.; Long, F.; Yin, Z. Acitretin inhibits IL-17A-induced IL-36 expression in keratinocytes by down-regulating IκBζ. Int. Immunopharmacol. 2020, 79, 106045. [Google Scholar] [CrossRef]
- Katz, H.I.; Waalen, J.; Leach, E.E. Acitretin in psoriasis: An overview of adverse effects. J. Am. Acad. Dermatol. 1999, 41, S7–S12. [Google Scholar] [CrossRef]
- de Eusebio, E.; Armario-Hita, J.C.; de Miquel, V.A. Treatment of psoriasis: Focus on clinic-based management with infliximab. Am. J. Clin. Dermatol. 2014, 15 (Suppl. 1), S5–S16. [Google Scholar] [CrossRef]
- Ho, V.C.; Griffiths, C.E.; Berth-Jones, J.; Papp, K.A.; Vanaclocha, F.; Dauden, E.; Beard, A.; Puvanarajan, L.; Paul, C. Intermittent short courses of cyclosporine microemulsion for the long-term management of psoriasis: A 2-year cohort study. J. Am. Acad. Dermatol. 2001, 44, 643–651. [Google Scholar] [CrossRef]
- Bram, R.J.; Crabtree, G.R. Calcium signalling in T cells stimulated by a cyclophilin B-binding protein. Nature 1994, 371, 355–358. [Google Scholar] [CrossRef]
- Huang, H.; Jin, K.; Ouyang, K.; Jiang, Z.; Yang, Z.; Hu, N.; Dai, Y.; Zhang, Y.; Zhang, Q.; Han, Y.; et al. Cyclophilin A causes severe fever with thrombocytopenia syndrome virus-induced cytokine storm by regulating mitogen-activated protein kinase pathway. Front. Microbiol. 2022, 13, 1046176. [Google Scholar] [CrossRef]
- Lin, V.W.; Ringold, S.; Devine, E.B. Comparison of Ustekinumab with Other Biological Agents for the Treatment of Moderate to Severe Plaque Psoriasis: A Bayesian Network Meta-analysis. Arch. Dermatol. 2012, 148, 1403–1410. [Google Scholar] [CrossRef]
- Jairath, V.; Acosta Felquer, M.L.; Cho, R.J. IL-23 inhibition for chronic inflammatory disease. Lancet 2024, 404, 1679–1692, Erratum in Lancet 2025, 404, 2542. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J.; Chohan, S.; Fructuoso, F.J.G.; Luggen, M.E.; Rahman, P.; Raychaudhuri, S.P.; Chou, R.C.; Mendelsohn, A.M.; Rozzo, S.J.; Gottlieb, A. Efficacy and safety of tildrakizumab in patients with active psoriatic arthritis: Results of a randomised, double-blind, placebo-controlled, multiple-dose, 52-week phase IIb study. Ann. Rheum. Dis. 2021, 80, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Gordon, K.B.; Blauvelt, A.; Papp, K.A.; Langley, R.G.; Luger, T.; Ohtsuki, M.; Reich, K.; Amato, D.; Ball, S.G.; Braun, D.K.; et al. Phase 3 Trials of Ixekizumab in Moderate-to-Severe Plaque Psoriasis. N. Engl. J. Med. 2016, 375, 345–356. [Google Scholar] [CrossRef]
- Reich, K.; Sullivan, J.; Arenberger, P.; Jazayeri, S.; Mrowietz, U.; Augustin, M.; Elewski, B.; You, R.; Regnault, P.; Frueh, J.A. Secukinumab shows high and sustained efficacy in nail psoriasis: 2.5-year results from the randomized placebo-controlled TRANSFIGURE study. Br. J. Dermatol. 2021, 184, 425–436. [Google Scholar] [CrossRef]
- Warren, R.B.; Blauvelt, A.; Bagel, J.; Papp, K.A.; Yamauchi, P.; Armstrong, A.; Langley, R.G.; Vanvoorden, V.; De Cuyper, D.; Cioffi, C.; et al. Bimekizumab versus Adalimumab in Plaque Psoriasis. N. Engl. J. Med. 2021, 385, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Reich, K.; Warren, R.B.; Lebwohl, M.; Gooderham, M.; Strober, B.; Langley, R.G.; Paul, C.; De Cuyper, D.; Vanvoorden, V.; Madden, C.; et al. Bimekizumab versus Secukinumab in Plaque Psoriasis. N. Engl. J. Med. 2021, 385, 142–152. [Google Scholar] [CrossRef]
- Morita, A.; Strober, B.; Burden, A.D.; Choon, S.E.; Anadkat, M.J.; Marrakchi, S.; Tsai, T.F.; Gordon, K.B.; Thaçi, D.; Zheng, M.; et al. Efficacy and safety of subcutaneous spesolimab for the prevention of generalised pustular psoriasis flares (Effisayil 2): An international, multicentre, randomised, placebo-controlled trial. Lancet 2023, 402, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Bai, X.; Jia, X.; Li, H.; Min, J.; Li, H.; Zhang, H.; Zhou, J.; Zhao, Y.; Liu, W.; et al. The binding of extracellular cyclophilin A to ACE2 and CD147 triggers psoriasis-like inflammation. J. Autoimmun. 2024, 148, 103293. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Liu, R.; Fan, T.; Liao, L.; Wang, S.; Geng, W.; Wang, T.; Shi, W.; Ruan, Q. miR-340 Alleviates Psoriasis in Mice through Direct Targeting of IL-17A. J. Immunol. 2018, 201, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, D.; Huang, Z.; Liu, X.; He, M.; Luo, M.; Tang, Z.; Tan, G.; Guo, Q.; Xiong, H. Decreased HMGCS1 inhibits proliferation and inflammatory response of keratinocytes and ameliorates imiquimod-induced psoriasis via the STAT3/IL-23 axis. Int. Immunopharmacol. 2024, 133, 112033. [Google Scholar] [CrossRef]
- Kulkarni, J.A.; Witzigmann, D.; Chen, S.; Cullis, P.R.; van der Meel, R. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Acc. Chem. Res. 2019, 52, 2435–2444. [Google Scholar] [CrossRef]
- Tang, Q.; Khvorova, A. RNAi-based drug design: Considerations and future directions. Nat. Rev. Drug Discov. 2024, 23, 341–364. [Google Scholar] [CrossRef]
- Boakye, C.H.A.; Patel, K.; Doddapaneni, R.; Bagde, A.; Marepally, S.; Singh, M. Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment. J. Control. Release 2017, 246, 120–132. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, G.; Yang, H.; Gong, B.; Li, S.; Wei, N.; Xue, H.; Wei, H.; Wang, J.; Qiu, S. Treatment of pro-B acute lymphoblastic leukemia and severe plaque psoriasis with anti-CD19 CAR T cells: A case report. Front. Immunol. 2025, 16, 1529745. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Tan, B.; Zhu, L.; Zhang, Y.; Lin, L.; Xiao, Y.; Sun, A.; Wan, X.; Liu, S.; et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 2024, 187, 4890–4904.e9. [Google Scholar] [CrossRef]
- Fransson, M.; Piras, E.; Burman, J.; Nilsson, B.; Essand, M.; Lu, B.; Harris, R.A.; Magnusson, P.U.; Brittebo, E.; Loskog, A.S. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflammation 2012, 9, 112. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Zhao, Z.; Zheng, H.; Wang, S.; Liao, Z.; Sheng, T.; Zhao, S.; Hou, W.; Yu, X.; et al. Adoptive T(reg) therapy with metabolic intervention via perforated microneedles ameliorates psoriasis syndrome. Sci. Adv. 2023, 9, eadg6007. [Google Scholar] [CrossRef]
- Rosenzwajg, M.; Lorenzon, R.; Cacoub, P.; Pham, H.P.; Pitoiset, F.; El Soufi, K.; RIbet, C.; Bernard, C.; Aractingi, S.; Banneville, B.; et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 2019, 78, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ren, G.; Zuo, K.; Huang, X. Complete remission of both immunoglobulin light chain amyloidosis and psoriasis after autologous hematopoietic stem cell transplantation: A case report. Medicine 2018, 97, e13589. [Google Scholar] [CrossRef]
- Kaffenberger, B.H.; Wong, H.K.; Jarjour, W.; Andritsos, L.A. Remission of psoriasis after allogeneic, but not autologous, hematopoietic stem-cell transplantation. J. Am. Acad. Dermatol. 2013, 68, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Lee, S.Y.; Jung, W.J.; Pi, J.; Lee, K.H. Psoriasis treatment using minimally manipulated umbilical cord-derived mesenchymal stem cells: A case report. World J. Clin. Cases 2021, 9, 6798–6803. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, S.; Peng, C.; Zou, X.; Yang, C.; Mei, H.; Li, C.; Su, X.; Xiao, N.; Ouyang, Q.; et al. Human umbilical cord mesenchymal stem cells for psoriasis: A phase 1/2a, single-arm study. Signal Transduct. Target. Ther. 2022, 7, 263. [Google Scholar] [CrossRef]
- Yao, D.; Ye, S.; He, Z.; Huang, Y.; Deng, J.; Wen, Z.; Chen, X.; Li, H.; Han, Q.; Deng, H.; et al. Adipose-derived mesenchymal stem cells (AD-MSCs) in the treatment for psoriasis: Results of a single-arm pilot trial. Ann. Transl. Med. 2021, 9, 1653. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yao, D.; He, Z.; Ye, S.; Chen, X.; Huang, Y.; Han, Q.; Zeng, X.; Zheng, X.; Liu, T.; et al. Distinct adaptive immune receptor feature of adipose-derived mesenchymal stem cells (AD-MSCs) treatment of psoriasis. Arch. Dermatol. Res. 2024, 316, 542. [Google Scholar] [CrossRef]
- Seetharaman, R.; Mahmood, A.; Kshatriya, P.; Patel, D.; Srivastava, A. Mesenchymal Stem Cell Conditioned Media Ameliorate Psoriasis Vulgaris: A Case Study. Case Rep. Dermatol. Med. 2019, 2019, 8309103. [Google Scholar] [CrossRef]
- Shao, H.; Chen, J. Extracellular Vesicles from miR-146a Overexpressing Mesenchymal Stem Cells Attenuate Imiquimod-Induced Psoriasis by Regulating Cytokine Expression. Iran. J. Immunol. 2025, 22, 119–130. [Google Scholar] [CrossRef]
- Mohseni Meybodi, M.A.; Nilforoushzadeh, M.A.; KhandanDezfully, N.; Mansouri, P. The safety and efficacy of adipose tissue-derived exosomes in treating mild to moderate plaque psoriasis: A clinical study. Life Sci. 2024, 353, 122915. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.; Cao, J.; Luo, R.; Zhu, B.; Miao, R.; Yu, L.; Wang, X.; Li, W.; Fu, Y.; Zhang, J.; et al. Drug-loaded microneedle patches containing regulatory T cell-derived exosomes for psoriasis treatment. Acta Biomater. 2025, 198, 452–466. [Google Scholar] [CrossRef]
- Chandran, N.S.; Bhupendrabhai, M.N.; Tan, T.T.; Zhang, B.; Lim, S.K.; Choo, A.B.H.; Lai, R.C. A phase 1, open-label study to determine safety and tolerability of the topical application of mesenchymal stem/stromal cell (MSC) exosome ointment to treat psoriasis in healthy volunteers. Cytotherapy 2025, 27, 633–641. [Google Scholar] [CrossRef]
- Bucci, L.; Hagen, M.; Rothe, T.; Raimondo, M.G.; Fagni, F.; Tur, C.; Wirsching, A.; Wacker, J.; Wilhelm, A.; Auger, J.P.; et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 2024, 30, 1593–1601. [Google Scholar] [CrossRef]
- Gao, C.; Cai, Y.; Wu, X.; Song, J.; Zheng, Q.; Wang, M.; Luo, Y.; Luo, Y.; Fei, X.; Zhang, Y.; et al. CRISPR/Cas9-Mediated Knockout and Overexpression Studies Unveil the Role of PD-L1 in Immune Modulation in a Psoriasis-like Mouse Model. Inflammation 2025. [Google Scholar] [CrossRef]
- Tan, E.; Wan, T.; Pan, Q.; Duan, J.; Zhang, S.; Wang, R.; Gao, P.; Lv, J.; Wang, H.; Li, D.; et al. Dual-responsive nanocarriers for efficient cytosolic protein delivery and CRISPR-Cas9 gene therapy of inflammatory skin disorders. Sci. Adv. 2024, 10, eadl4336. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Jiang, Y.; Wang, Z.; Wang, X.; Ma, L.; Ding, Y.; Rui, B.; Zhao, C.; Li, X.; Xu, M.; et al. Targeting KAT8 alleviates self-RNA-driven skin inflammation by modulating histone H4 lysine 16 acetylation in psoriasis. Cell Death Differ. 2025. [Google Scholar] [CrossRef] [PubMed]
- Dhillon-LaBrooy, A.; Braband, K.L.; Tantawy, E.; Rampoldi, F.; Kao, Y.S.; Boukhallouk, F.; Velasquez, L.N.; Mamareli, P.; Silva, L.; Damasceno, L.E.A.; et al. Inhibition of Mitochondrial Translation Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation by Targeting Vγ4+ γδ T Cells. J. Investig. Dermatol. 2024, 144, 844–854.e2. [Google Scholar] [CrossRef]
- Xia, X.; Cao, G.; Sun, G.; Zhu, L.; Tian, Y.; Song, Y.; Guo, C.; Wang, X.; Zhong, J.; Zhou, W.; et al. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J. Clin. Investig. 2020, 130, 5180–5196. [Google Scholar] [CrossRef]
- He, X.; Liu, R.; Fan, T.; Huang, X.; Wu, C.; Su, W.; Wang, T.; Ruan, Q. Treating Autoimmune Diseases by Targeting IL-23 with Gene-Silencing Pyrrole-Imidazole Polyamide. J. Immunol. 2020, 204, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.M.; Ma, Y.; Yin, Z.; Xia, Y.; Du, J.; Huang, J.Y.; Huang, J.J.; Zou, L.; Ye, Z.; Huang, Z. Current understanding of CTLA-4: From mechanism to autoimmune diseases. Front. Immunol. 2023, 14, 1198365. [Google Scholar] [CrossRef]
- Yu, C.; Sonnen, A.F.; George, R.; Dessailly, B.H.; Stagg, L.J.; Evans, E.J.; Orengo, C.A.; Stuart, D.I.; Ladbury, J.E.; Ikemizu, S.; et al. Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J. Biol. Chem. 2011, 286, 6685–6696. [Google Scholar] [CrossRef]
- Hosseini, A.; Gharibi, T.; Marofi, F.; Babaloo, Z.; Baradaran, B. CTLA-4: From mechanism to autoimmune therapy. Int. Immunopharmacol. 2020, 80, 106221. [Google Scholar] [CrossRef]
- Brunner, H.I.; Tzaribachev, N.; Vega-Cornejo, G.; Louw, I.; Berman, A.; Calvo Penadés, I.; Antón, J.; Ávila-Zapata, F.; Cuttica, R.; Horneff, G.; et al. Subcutaneous Abatacept in Patients with Polyarticular-Course Juvenile Idiopathic Arthritis: Results From a Phase III Open-Label Study. Arthritis Rheumatol. 2018, 70, 1144–1154. [Google Scholar] [CrossRef]
- Lee, W.S.; Nam, K.H.; Kim, J.H.; Kim, W.J.; Kim, J.E.; Shin, E.C.; Kim, G.R.; Choi, J.M. Alleviating psoriatic skin inflammation through augmentation of Treg cells via CTLA-4 signaling peptide. Front. Immunol. 2023, 14, 1233514. [Google Scholar] [CrossRef]
- Guo, W.; Xu, F.; Zhuang, Z.; Liu, Z.; Xie, J.; Bai, L. Ebosin Ameliorates Psoriasis-Like Inflammation of Mice via miR-155 Targeting tnfaip3 on IL-17 Pathway. Front. Immunol. 2021, 12, 662362. [Google Scholar] [CrossRef] [PubMed]
- Stenderup, K.; Rosada, C.; Dam, T.N.; Salerno, E.; Belinka, B.A.; Kachlany, S.C. Resolution of psoriasis by a leukocyte-targeting bacterial protein in a humanized mouse model. J. Investig. Dermatol. 2011, 131, 2033–2039. [Google Scholar] [CrossRef]
- Gege, C. RORγt inhibitors as potential back-ups for the phase II candidate VTP-43742 from Vitae Pharmaceuticals: Patent evaluation of WO2016061160 and US20160122345. Expert Opin. Ther. Pat. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. Jama 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Schaper-Gerhardt, K.; Rossbach, K.; Nikolouli, E.; Werfel, T.; Gutzmer, R.; Mommert, S. The role of the histamine H(4) receptor in atopic dermatitis and psoriasis. Br. J. Pharmacol. 2020, 177, 490–502. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, T.; Tang, M.; Yang, Z.; Pei, H.; Ye, H.; Tang, Y.; Cheng, Z.; Lin, P.; Chen, L. Studies on the anti-psoriasis effects and its mechanism of a dual JAK2/FLT3 inhibitor flonoltinib maleate. Biomed. Pharmacother. 2021, 137, 111373. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Gooderham, M.; Warren, R.B.; Papp, K.A.; Strober, B.; Thaçi, D.; Morita, A.; Szepietowski, J.C.; Imafuku, S.; Colston, E.; et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J. Am. Acad. Dermatol. 2023, 88, 29–39. [Google Scholar] [CrossRef]
- Deng, B.X.; Jiang, C.Y.; Wang, P.; Liu, W.L.; Qu, X.; Zhao, Y.M.; Chen, K.; Cai, N.N.; Tao, Y. Distribution and evolution patterns of TCM syndromes in psoriasis. J. Tradit. Chin. Med. 2006, 47, 770–772. [Google Scholar] [CrossRef]
- Liu, A.M.; Zhang, B.X.; Zhao, W.; Xu, S.D. Discussion on etiology and pathogenesis of psoriasis vulgaris. J. Beijing Univ. Tradit. Chin. Med. 2021, 44, 266–271. [Google Scholar]
- Huang, G.; Yuan, X.; Hu, C.X.; Fu, J.J.; Shi, H.Y.; Xin, Q.; Yang, M.; Gong, L.P. Study on the effect of Xijiao Dihuang Decoction on intestinal Th17/Treg imbalance in psoriasis mice based on the gut-immune-skin axis. Clin. J. Chin. Med. 2023, 35, 1569–1572. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S.P. Therapeutic effect of Compound Indigo Naturalis Capsule on psoriasis vulgaris and its influence on serum IL-2 and IL-8 levels. J. Chin. Med. Mater. 2004, 27, 885–886. [Google Scholar] [CrossRef]
- Feng, J.; Xu, H.Q.; Su, B.S. Effect of Compound Qingdai Capsule on c-myc expression in epidermal keratinocytes of psoriasis patients. Chin. J. Integr. Tradit. West. Med. 1996, 16, 146–148. [Google Scholar]
- Lei, M.; Liu, R.; Yao, B.; Hu, Y.J.; Wang, W.J.; Zhang, X.J. Expression of p38MAPK/Th17 signaling pathway-related cytokines in psoriasis vulgaris patients and the regulatory effect of Modified Gentian Liver-Draining Decoction. Lishizhen Med. Mater. Medica Res. 2020, 31, 1342–1347. [Google Scholar]
- Chen, L.H. Clinical observation on Compound Indigo Naturalis Ointment for treating psoriasis vulgaris. J. Gansu Coll. Tradit. Chin. Med. 2010, 27, 45–47. [Google Scholar]
- Zou, J.H.; Gong, L.P.; Huang, G.; Hu, C.X.; Yan, J.; Zhang, F.Y. Meta-analysis of acupuncture efficacy for psoriasis vulgaris. Hunan J. Tradit. Chin. Med. 2020, 36, 127–130. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Chen, Q.; Fang, W.H.; Zhang, C.H. Effects of moving cupping therapy on peripheral blood CD4+ T lymphocyte subsets in plaque psoriasis patients with blood stasis syndrome. China J. Tradit. Chin. Med. Pharm. 2021, 36, 1769–1772. [Google Scholar]
- Zhou, Y.; Yang, M.; Bai, X.P.; Gao, Y.; Han, H.; Guan, H.W. Efficacy of NB-UVB phototherapy combined with self-prepared Cool-Blood Anti-Itching decoction herbal bath for psoriasis vulgaris and its effects on hemorheology. Mod. J. Integr. Tradit. Chin. West. Med. 2017, 26, 3023–3026. [Google Scholar]
- Feng, F.; Wang, Y.; Zhao, J.X.; Di, T.T.; Meng, Y.J.; Chen, Z.X.; Qi, C.; Hu, X.Q.; Wang, Y.Z.; Li, P. Effects of fire needle therapy on psoriasiform skin lesions and STAT3 pathway in imiquimod-induced mice. Chin. Acupunct. Moxibustion 2022, 42, 541–548. [Google Scholar] [CrossRef]
- Song, X.; Tang, S.W.; Jiang, W.C.; Yang, Y.; Wang, Q.L.; Xie, S.Q. Chinese herbal bath combined with NB-UVB phototherapy for stable plaque psoriasis and its impact on patients’ quality of life. Chin. J. Dermatovenereology 2017, 31, 757–759+783. [Google Scholar] [CrossRef]
- Guang, Y.J. Clinical observation of NB-UVB combined with Chinese herbal fumigation for psoriasis vulgaris. Med. Diet Health 2020, 18, 28+30. [Google Scholar]
- Chen, C.F.; Zheng, Y.Z.; Jia, L.Y.; Yu, T.G. Clinical study of Shugan Jieyu Capsule in treating psoriasis vulgaris. Chin. J. Clin. Pharmacol. 2017, 33, 222–225. [Google Scholar] [CrossRef]
- Dai, X.R.; Peng, F.F.; Miao, Y.X.; Dong, M.; Jiang, G.F. Nursing observation on the interventional effects of Five-Element Jue-tone music therapy for psoriasis patients with Qi-stagnation constitution. J. Hunan Univ. Chin. Med. 2018, 38, 715–718. [Google Scholar]
- Ramessur, R.; Dand, N.; Langan, S.M.; Saklatvala, J.; Fritzsche, M.C.; Holland, S.; Arents, B.W.M.; McAteer, H.; Proctor, A.; McMahon, D.; et al. Defining disease severity in atopic dermatitis and psoriasis for the application to biomarker research: An interdisciplinary perspective. Br. J. Dermatol. 2024, 191, 14–23. [Google Scholar] [CrossRef]
- Langley, R.G.; Krueger, G.G.; Griffiths, C.E. Psoriasis: Epidemiology, clinical features, and quality of life. Ann. Rheum. Dis. 2005, 64 (Suppl. 2), ii18–ii23. [Google Scholar] [CrossRef]
- Chen, L.; Su, M.; Jin, Q.; Wang, C.G.; Assani, I.; Wang, M.X.; Zhao, S.F.; Lv, S.M.; Wang, J.W.; Sun, B.; et al. Discovery of N-(2-benzyl-4-oxochroman-7-yl)-2-(5-(ethylsulfonyl) pyridin-2-yl) acetamide (b12) as a potent, selective, and orally available novel retinoic acid receptor-related orphan receptor γt inverse agonist. Bioorganic Chem. 2022, 119, 105483. [Google Scholar] [CrossRef]
- Gladman, D.; Rigby, W.; Azevedo, V.F.; Behrens, F.; Blanco, R.; Kaszuba, A.; Kudlacz, E.; Wang, C.; Menon, S.; Hendrikx, T.; et al. Tofacitinib for Psoriatic Arthritis in Patients with an Inadequate Response to TNF Inhibitors. N. Engl. J. Med. 2017, 377, 1525–1536. [Google Scholar] [CrossRef]
- Orbai, A.M.; Fiorentino, D.; Perin, J.; Darrah, E.; Yang, Q.; Gutierrez-Alamillo, L.; Bingham, C.O.; Petri, M.; Rosen, A.; Casciola-Rosen, L. SOX-5 Transcription Factor: A Novel Psoriatic Autoantigen Preferentially Found in Women. ACR Open Rheumatol. 2024, 6, 807–819. [Google Scholar] [CrossRef]
- Yan, K.; Li, F.; Bi, X.; Han, L.; Zhang, Z.; Chen, R.; Li, Y.; Zhang, L.; Wang, X.; Li, L.; et al. Efficacy and safety of vunakizumab in moderate-to-severe chronic plaque psoriasis: A randomized, double-blind, placebo-controlled phase 3 trial. J. Am. Acad. Dermatol. 2025, 92, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Reich, K.; Foley, P.; Han, C.; Song, M.; Shen, Y.K.; You, Y.; Papp, K.A. Improvement in Patient-Reported Outcomes (Dermatology Life Quality Index and the Psoriasis Symptoms and Signs Diary) with Guselkumab in Moderate-to-Severe Plaque Psoriasis: Results from the Phase III VOYAGE 1 and VOYAGE 2 Studies. Am. J. Clin. Dermatol. 2019, 20, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Gordon, K.B.; Langley, R.G.; Leonardi, C.; Toth, D.; Menter, M.A.; Kang, S.; Heffernan, M.; Miller, B.; Hamlin, R.; Lim, L.; et al. Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: Double-blind, randomized controlled trial and open-label extension study. J. Am. Acad. Dermatol. 2006, 55, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Berstein, G.; Zhang, Y.; Berger, Z.; Kieras, E.; Li, G.; Samuel, A.; Yeoh, T.; Dowty, H.; Beaumont, K.; Wigger-Alberti, W.; et al. A phase I, randomized, double-blind study to assess the safety, tolerability and efficacy of the topical RORC2 inverse agonist PF-06763809 in participants with mild-to-moderate plaque psoriasis. Clin. Exp. Dermatol. 2021, 46, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, W. Compound Indigo Naturalis Ointment in the Treatment of 60 Cases of Plaque Psoriasis. Guangming J. Chin. Med. 2014, 29, 1413–1414. [Google Scholar]
Differential Diagnosis Item | Distinctive Features | Commonly Affected Areas |
---|---|---|
Atopic dermatitis | Lesions may have ill-defined borders, but lichenified plaques with relatively clear borders may develop due to scratching | Flexural surfaces of the body |
Seborrheic dermatitis | Dandruff presents as greasy, yellow scales or crusts; the degree of underlying erythema varies and is often more pronounced on the face | Sebaceous gland-rich regions |
Tinea capitis | Often accompanied by hair loss and broken hairs; inflammatory reactions (e.g., pustules, abscesses) may be present; fungal microscopy is positive | Scalp, hairline |
Secondary syphilis | Diverse rash morphology (can mimic various skin diseases); copper-red papules or macules; positive syphilis serological tests | Trunk, limbs |
Lichen planus | Violaceous, polygonal, flat-topped papules with white reticulated streaks (Wickham’s striae) on the surface | Wrists, forearms, ankles, oral mucosa, genitalia |
Chronic eczema | Lesions have ill-defined borders; often presents with lichenification (skin thickening and accentuated skin markings) and hyperpigmentation; intense pruritus | Variable sites |
Rheumatoid arthritis | Rheumatoid factor (RF) is often positive; typically involves small joints (wrists, metacarpophalangeal, proximal interphalangeal joints) symmetrically; prolonged morning stiffness; absence of psoriatic skin lesions and nail changes | Small joints |
Candidiasis/Fungal infection | Well-demarcated red patches, potentially with satellite lesions; scales are non-silvery; positive fungal microscopy or culture | Skin folds |
Pityriasis rosea | Herald patch: a larger initial lesion appears 1–2 weeks before the generalized eruption; lesions align with skin cleavage lines (“Christmas-tree” distribution); collarette scaling. | Trunk, proximal limbs |
Cutaneous T-cell lymphoma | Early stages may present with solitary or multiple erythematous to dusky red patches/plaques, with thin, non-silvery scales; may progress to plaques and nodules; diagnosis is confirmed by pathological biopsy. | Can occur anywhere on the body |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, R.; Tang, Y.; Ma, Y.; Wang, G.; Ruan, Q.; Zheng, S.J. Advances in Psoriasis Research: Decoding Immune Circuits and Developing Novel Therapies. Int. J. Mol. Sci. 2025, 26, 9233. https://doi.org/10.3390/ijms26189233
Wang L, Liu R, Tang Y, Ma Y, Wang G, Ruan Q, Zheng SJ. Advances in Psoriasis Research: Decoding Immune Circuits and Developing Novel Therapies. International Journal of Molecular Sciences. 2025; 26(18):9233. https://doi.org/10.3390/ijms26189233
Chicago/Turabian StyleWang, Lanying, Ruiling Liu, Yulu Tang, Yuanfang Ma, Guimei Wang, Qingguo Ruan, and Shijun J. Zheng. 2025. "Advances in Psoriasis Research: Decoding Immune Circuits and Developing Novel Therapies" International Journal of Molecular Sciences 26, no. 18: 9233. https://doi.org/10.3390/ijms26189233
APA StyleWang, L., Liu, R., Tang, Y., Ma, Y., Wang, G., Ruan, Q., & Zheng, S. J. (2025). Advances in Psoriasis Research: Decoding Immune Circuits and Developing Novel Therapies. International Journal of Molecular Sciences, 26(18), 9233. https://doi.org/10.3390/ijms26189233