Multiplexed Quantitation of Plasma Proteins by Targeted Mass Spectrometry for Early Diagnosis of Pancreatic Ductal Adenocarcinoma
Abstract
1. Introduction
2. Results
2.1. Patients’ Characteristics and Follow-Up Survival
2.2. Potential Protein Biomarkers of PDAC Among Plasma Proteins
2.3. A Panel for Early-Stage PDAC Diagnosis Based on the Plasma Protein Biomarkers
3. Discussion
4. Materials and Methods
4.1. Participants’ Enrollment and Peripheral Blood Plasma Isolation
4.2. Sample Preparation for Proteomic Analysis
4.3. Targeted Proteomic Analysis by MRM MS
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
AUC | Area under the ROC curve |
BH | Benjamini–Hochberg procedure |
BMI | Body mass index |
CA 19-9 | Carbohydrate antigen 19–9 |
HPLC-MS | High-performance liquid chromatography mass spectrometry |
HR | Hazard ratio |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
MRM | Multiple reaction monitoring |
MS | Mass spectrometry |
PC | Pancreatic cancer |
PDAC | Pancreatic ductal adenocarcinoma |
RBC | Red blood cells |
ROC | Receiver operating characteristic |
WBC | White blood cells |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Shakhzadova, A.O.; Starinsky, V.V.; Lisichnikova, I.V. Cancer care to the population of Russia in 2022. Sib. J. Oncol. 2023, 22, 5–13. [Google Scholar] [CrossRef]
- Zhan, Z.; Zheng, X.; Xu, S.; Zheng, H.; Zheng, L.; Wang, J.; Lin, H.; Yu, J.; Guo, Z.; Chen, B. Rising burden of pancreatic cancer in China: Trends, drivers, and future projections. PLoS ONE 2025, 20, e0327009. [Google Scholar] [CrossRef]
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862, Erratum in JAMA 2021, 326, 2081. [Google Scholar] [CrossRef]
- Tzeng, C.W.; Balachandran, A.; Ahmad, M.; Lee, J.E.; Krishnan, S.; Wang, H.; Crane, C.H.; Wolff, R.A.; Varadhachary, G.R.; Pisters, P.W.; et al. Serum carbohydrate antigen 19-9 represents a marker of response to neoadjuvant therapy in patients with borderline resectable pancreatic cancer. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2014, 16, 430–438. [Google Scholar] [CrossRef]
- Xiong, F.; Guo, T.; Wang, X.; Wu, G.; Liu, W.; Wang, Q.; Wang, B.; Chen, Y. Keratin 8 Is an Inflammation-Induced and Prognosis-Related Marker for Pancreatic Adenocarcinoma. Dis. Markers 2022, 2022, 8159537. [Google Scholar] [CrossRef] [PubMed]
- Tartaglione, S.; Mancini, P.; Viggiani, V.; Chirletti, P.; Angeloni, A.; Anastasi, E. PIVKA-II: A biomarker for diagnosing and monitoring patients with pancreatic adenocarcinoma. PLoS ONE 2021, 16, e0251656. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Y.; Hua, Y.; Cui, M.; Wang, M.; Gao, J.; Liu, Q.; Liao, Q. GREM1 is a novel serum diagnostic marker and potential therapeutic target for pancreatic ductal adenocarcinoma. Front. Oncol. 2022, 12, 968610. [Google Scholar] [CrossRef] [PubMed]
- Coppola, A.; La Vaccara, V.; Farolfi, T.; Fiore, M.; Cammarata, R.; Ramella, S.; Coppola, R.; Caputo, D. Role of CA 19.9 in the Management of Resectable Pancreatic Cancer: State of the Art and Future Perspectives. Biomedicines 2022, 10, 2091. [Google Scholar] [CrossRef]
- Kitteringham, N.R.; Jenkins, R.E.; Lane, C.S.; Elliott, V.L.; Park, B.K. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1229–1239. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Weigl, K.; Tikk, K.; Holland-Letz, T.; Schrotz-King, P.; Borchers, C.H.; Brenner, H. Multiplex quantitation of 270 plasma protein markers to identify a signature for early detection of colorectal cancer. Eur. J. Cancer 2020, 127, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.A.; Keshteli, A.H.; Yang, H.; Wang, W.; Li, X.; Messier, H.M.; Cullis, P.R.; Borchers, C.H.; Fraser, R.; Wishart, D.S. Blood-Based Multiomics-Guided Detection of a Precancerous Pancreatic Tumor. Omics J. Integr. Biol. 2024, 28, 182–192. [Google Scholar] [CrossRef]
- Bugrova, A.E.; Strelnikova, P.A.; Kononikhin, A.S.; Zakharova, N.V.; Diyachkova, E.O.; Brzhozovskiy, A.G.; Indeykina, M.I.; Kurochkin, I.N.; Averyanov, A.V.; Nikolaev, E.N. Targeted MRM-analysis of plasma proteins in frozen whole blood samples from patients with COVID-19: A retrospective study. Clin. Chem. Lab. Med. 2024. [Google Scholar] [CrossRef]
- Gaither, C.; Popp, R.; Mohammed, Y.; Borchers, C.H. Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. Analyst 2020, 145, 3634–3644. [Google Scholar] [CrossRef]
- Gaither, C.; Popp, R.; Gajadhar, A.S.; Borchers, C.H. Reproducible protein quantitation of 270 human proteins at increased depth using nanoparticle-based fractionation and multiple reaction monitoring mass spectrometry with stable isotope-labelled internal standards. Analyst 2025, 150, 353–361. [Google Scholar] [CrossRef]
- Anderson, N.L. The clinical plasma proteome: A survey of clinical assays for proteins in plasma and serum. Clin. Chem. 2010, 56, 177–185. [Google Scholar] [CrossRef]
- Kim, J.; Bamlet, W.R.; Oberg, A.L.; Chaffee, K.G.; Donahue, G.; Cao, X.J.; Chari, S.; Garcia, B.A.; Petersen, G.M.; Zaret, K.S. Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Sci. Transl. Med. 2017, 9, eaah5583. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, W.; Wang, W.; Shen, H.; Liu, L.; Lou, W.; Wang, X.; Yang, P. A new panel of pancreatic cancer biomarkers discovered using a mass spectrometry-based pipeline. Br. J. Cancer 2018, 118, e15. [Google Scholar] [CrossRef]
- Gartner, S.; Kruger, J.; Aghdassi, A.A.; Steveling, A.; Simon, P.; Lerch, M.M.; Mayerle, J. Nutrition in Pancreatic Cancer: A Review. Gastrointest. Tumors 2016, 2, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, M.S.; Young, A.P.; Ruffin, M.T. Diagnosis and management of pancreatic cancer. Am. Fam. Physician 2014, 89, 626–632. [Google Scholar]
- Kitano, M.; Yoshida, T.; Itonaga, M.; Tamura, T.; Hatamaru, K.; Yamashita, Y. Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. J. Gastroenterol. 2019, 54, 19–32. [Google Scholar] [CrossRef]
- Hayat, U.; Croce, P.S.; Saadeh, A.; Desai, K.; Appiah, J.; Khan, S.; Khan, Y.I.; Kumar, K.; Hanif, A. Current and Emerging Treatment Options for Pancreatic Cancer: A Comprehensive Review. J. Clin. Med. 2025, 14, 1129. [Google Scholar] [CrossRef]
- Shin, E.J.; Canto, M.I. Pancreatic cancer screening. Gastroenterol. Clin. N. Am. 2012, 41, 143–157. [Google Scholar] [CrossRef]
- Greenhalf, W.; Grocock, C.; Harcus, M.; Neoptolemos, J. Screening of high-risk families for pancreatic cancer. Pancreatol. Off. J. Int. Assoc. Pancreatol. 2009, 9, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Kriz, D.; Ansari, D.; Andersson, R. Potential biomarkers for early detection of pancreatic ductal adenocarcinoma. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer-Stitute Mex. 2020, 22, 2170–2174. [Google Scholar] [CrossRef]
- Lianidou, E.; Pantel, K. Liquid biopsies. Genes Chromosomes Cancer 2019, 58, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, I.; Ackar, L.; Mossahebi Mohammadi, P.; Pantel, K. Liquid biopsies: Potential and challenges. Int. J. Cancer 2021, 148, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Jin, K.; Deng, S.; Cheng, H.; Fan, Z.; Gong, Y.; Qian, Y.; Huang, Q.; Ni, Q.; Liu, C.; et al. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188409. [Google Scholar] [CrossRef]
- Mellby, L.D.; Nyberg, A.P.; Johansen, J.S.; Wingren, C.; Nordestgaard, B.G.; Bojesen, S.E.; Mitchell, B.L.; Sheppard, B.C.; Sears, R.C.; Borrebaeck, C.A.K. Serum Biomarker Signature-Based Liquid Biopsy for Diagnosis of Early-Stage Pancreatic Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2887–2894. [Google Scholar] [CrossRef]
- Zhou, Q.; Andersson, R.; Hu, D.; Bauden, M.; Sasor, A.; Bygott, T.; PawLowski, K.; Pla, I.; Marko-Varga, G.; Ansari, D. Alpha-1-acid glycoprotein 1 is upregulated in pancreatic ductal adenocarcinoma and confers a poor prognosis. Transl. Res. J. Lab. Clin. Med. 2019, 212, 67–79. [Google Scholar] [CrossRef]
- Chiam, J.T.; Dobson, R.J.; Kiddle, S.J.; Sattlecker, M. Are blood-based protein biomarkers for Alzheimer’s disease also involved in other brain disorders? A systematic review. J. Alzheimer’s Dis. JAD 2015, 43, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Hallqvist, J.; Bartl, M.; Dakna, M.; Schade, S.; Garagnani, P.; Bacalini, M.G.; Pirazzini, C.; Bhatia, K.; Schreglmann, S.; Xylaki, M.; et al. Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset. Nat. Commun. 2024, 15, 4759. [Google Scholar] [CrossRef]
- Fahrmann, J.F.; Bantis, L.E.; Capello, M.; Scelo, G.; Dennison, J.B.; Patel, N.; Murage, E.; Vykoukal, J.; Kundnani, D.L.; Foretova, L.; et al. A Plasma-Derived Protein-Metabolite Multiplexed Panel for Early-Stage Pancreatic Cancer. J. Natl. Cancer Inst. 2019, 111, 372–379. [Google Scholar] [CrossRef]
- Fahrmann, J.F.; Schmidt, C.M.; Mao, X.; Irajizad, E.; Loftus, M.; Zhang, J.; Patel, N.; Vykoukal, J.; Dennison, J.B.; Long, J.P.; et al. Lead-Time Trajectory of CA19-9 as an Anchor Marker for Pancreatic Cancer Early Detection. Gastroenterology 2021, 160, 1373–1383.e6. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, Y.; Chen, X.; Wu, Y.; Fu, L.; Lv, Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front. Pharmacol. 2021, 12, 809225. [Google Scholar] [CrossRef]
- Sliker, B.H.; Goetz, B.T.; Peters, H.L.; Poelaert, B.J.; Borgstahl, G.E.O.; Solheim, J.C. Beta 2-microglobulin regulates amyloid precursor-like protein 2 expression and the migration of pancreatic cancer cells. Cancer Biol. Ther. 2019, 20, 931–940. [Google Scholar] [CrossRef]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin as a Biomarker across the Spectrum of Kidney Diseases. Front. Med. 2017, 4, 73. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaga, S.; Kinoshita, T.; Hasebe, T.; Nakagohri, T.; Konishi, M.; Takahashi, S.; Gotohda, N.; Ochiai, A. Low serum level of cholinesterase at recurrence of pancreatic cancer is a poor prognostic factor and relates to systemic disorder and nerve plexus invasion. Pancreas 2008, 36, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Battisti, V.; Bagatini, M.D.; Maders, L.D.; Chiesa, J.; Santos, K.F.; Goncalves, J.F.; Abdalla, F.H.; Battisti, I.E.; Schetinger, M.R.; Morsch, V.M. Cholinesterase activities and biochemical determinations in patients with prostate cancer: Influence of Gleason score, treatment and bone metastasis. Biomed. Pharmacother. Biomed. Pharmacother. 2012, 66, 249–255. [Google Scholar] [CrossRef]
- Bradamante, V.; Smigovec, E.; Bukovic, D.; Geber, J.; Matanic, D. Plasma cholinesterase activity in patients with uterine cervical cancer during radiotherapy. Coll. Antropol. 2000, 24, 373–380. [Google Scholar] [PubMed]
- Ran, H.; Ma, J.; Cai, L.; Zhou, H.; Yuan, Z.; Chen, Y.; Chang, W.; Huang, Y.; Xiao, Y. Serum cholinesterase may independently predict prognosis in non-small-cell lung cancer. BMC Cancer 2022, 22, 93. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.C.; Yang, C.H.; Cheng, L.H.; Chang, W.T.; Lin, Y.R.; Cheng, H.C. Fibronectin in Cancer: Friend or Foe. Cells 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Kononikhin, A.S.; Starodubtseva, N.L.; Brzhozovskiy, A.G.; Tokareva, A.O.; Kashirina, D.N.; Zakharova, N.V.; Bugrova, A.E.; Indeykina, M.I.; Pastushkova, L.K.; Larina, I.M.; et al. Absolute Quantitative Targeted Monitoring of Potential Plasma Protein Biomarkers: A Pilot Study on Healthy Individuals. Biomedicines 2024, 12, 2403. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis. In ICH Harmonised Guideline; ICH: Geneva, Switzerland, 2022; Volume 44, Available online: https://database.ich.org/sites/default/files/M10_Guideline_Step4_2022_0524.pdf (accessed on 14 September 2025).
Parameter | Healthy Controls (n = 19) | PDAC Patients | p * | |||
---|---|---|---|---|---|---|
Stage I (n = 11) | Stage II (n = 35) | Stage III (n = 24) | Stage IV (n = 42) | |||
Sex, % of males | 42.1 | 45.5 | 48.6 | 41.7 | 50.0 | n.a. |
Age, years | 59 [57.5–67.5] | 67.9 [65.6–74.8] | 67.3 [59.7–70.8] | 63.4 [57.7–71.8] | 66.4 [61.9–72.0] | 0.4290 |
BMI, kg/m2 | 28.4 [26.4–31.5] | 26 [24.2–30.7] | 25.2 [22.9–27.7] | 23.7 [22.2–28.9] | 25.6 [22.6–29.6] | 0.0723 |
WBC, 109/L | 6.5 [6.4–8.1] | 5.7 [4.7–6.9] | 7.1 [5.8–9.0] | 7.4 [5.8–9.0] | 8 [6.4–10.3] | 0.2084 |
RBC, 1012/L | 4.7 [4.6–5.0] | 4.5 [4.3–4.8] | 4.2 [3.9–4.5] | 4.3 [4.0–4.7] | 4.2 [3.9–4.4] | 0.0020 |
Platelets, 109/L | 206 [187.5–249.0] | 228 [205.0–285.5] | 228 [178.5–372.5] | 216.5 [173.0–327.3] | 246 [201.3–298.0] | 0.8768 |
Hemoglobin, g/L | 140 [136.0–146.0] | 134 [123.0–139.5] | 129 [118.0–134.5] | 126 [109.5–136.0] | 127.5 [111.8–135.0] | 0.0025 |
Total protein, g/L | 71 [69.0–74.0] | 69.6 [66.3–73.9] | 67.2 [61.6–71.5] | 71.3 [68.5–73.4] | 68.9 [64.5–73.3] | 0.1030 |
Creatinine, µmol/L | 84 [68.5–100.5] | 82.3 [74.5–101.4] | 73.1 [60.5–84.3] | 78 [70.3–93.0] | 85.8 [72.9–101.6] | 0.0489 |
Total bilirubin, µmol/L | 10.1 [7.9–12.4] | 19.7 [14.4–38.0] | 19.8 [11.2–29.9] | 16.5 [13.9–28.6] | 12.1 [10.2–20.5] | 0.0020 |
ALT, U/L | 22 [19.0–30.0] | 38 [20.5–50.5] | 31.7 [15.2–58.4] | 28.1 [21.6–43.9] | 21.9 [16.9–49.4] | 0.5790 |
AST, U/L | 31 [21.0–32.5] | 29.3 [26.1–41.7] | 28.2 [21.2–54.9] | 24.4 [20.2–44.2] | 31.3 [20.4–51.0] | 0.7065 |
Known outcomes, n | 19 | 11 | 33 | 20 | 37 | n.a |
Lethal outcomes, n (%) | 0 (0.0) | 3 (27.3) | 19 (57.6) | 11 (55.0) | 25 (67.6) | n.a |
Protein | Concentration in Plasma, fmol/µL # | Threshold Value, fmol/µL # | Adjusted p-Value * | ROC AUC | Precision | Recall | |
---|---|---|---|---|---|---|---|
Healthy Controls | Stage I PDAC Patients | ||||||
Insulin-like growth factor-binding protein 3 | 153.95 [148.4–174.0] | 76.895 [60.8–112.3] | 125.02 | 0.00468 | 0.923 | 0.900 | 0.818 |
Beta-2-microglobulin | 93.922 [82.2–99.8] | 148.83 [127.3–175.2] | 125.29 | 0.00468 | 0.919 | 0.900 | 0.818 |
Complement C1q subcomponent subunit C | 217.6 [198.0–225.3] | 346.35 [276.6–382.2] | 263.96 | 0.00468 | 0.914 | 0.818 | 0.818 |
Fibronectin | 1096.7 [851.9–1275.2] | 544.09 [470.8–638.4] | 828.81 | 0.00468 | 0.904 | 0.733 | 1.000 |
Complement component C9 | 350.28 [321.9–445.9] | 613.81 [489.2–715.0] | 458.12 | 0.00468 | 0.895 | 0.688 | 1.000 |
Sex hormone-binding globulin | 25.669 [17.5–41.0] | 75.003 [43.0–82.5] | 35.551 | 0.00468 | 0.895 | 0.688 | 1.000 |
Plasma protease C1 inhibitor | 849.39 [790.7–881.0] | 1636.4 [1003.3–1829.6] | 1144.5 | 0.00468 | 0.895 | 0.714 | 0.909 |
Leucine-rich alpha-2-glycoprotein | 207.79 [164.5–275.7] | 442.98 [347.2–730.9] | 345.63 | 0.00468 | 0.895 | 0.714 | 0.909 |
Lysozyme C | 45.724 [39.9–58.9] | 70.473 [62.0–104.0] | 55.461 | 0.00495 | 0.890 | 0.688 | 1.000 |
Carboxypeptidase N catalytic chain | 83.899 [75.6–95.8] | 127.83 [102.3–164.1] | 98.346 | 0.00528 | 0.885 | 0.647 | 1.000 |
Alpha-1-acid glycoprotein 1 | 4505.4 [3865.7–5494.1] | 7303.8 [6086.6–11,986.5] | 5119 | 0.00715 | 0.871 | 0.647 | 1.000 |
Alpha-1-antitrypsin | 18,071 [16,772.0–21,351.5] | 23,871 [22,170.5–33,500.5] | 20310 | 0.00715 | 0.871 | 0.647 | 1.000 |
Cholinesterase | 53.523 [43.2–62.0] | 37.244 [29.5–42.7] | 47.82 | 0.00774 | 0.866 | 0.800 | 0.727 |
Vasorin | 8.2042 [6.5–9.0] | 11.324 [9.2–16.1] | 11.279 | 0.00976 | 0.856 | 1.000 | 0.636 |
Fibrinogen alpha chain | 15,715 [14,400.5–18,832.0] | 21,671 [19,314.0–27,096.0] | 19839 | 0.01227 | 0.847 | 0.875 | 0.636 |
Fibrinogen gamma chain | 11,700 [10,938.5–13,812.5] | 14,727 [13,575.0–19,831.5] | 12833 | 0.01586 | 0.833 | 0.889 | 0.727 |
Thyroxine-binding globulin | 162.4 [146.4–181.0] | 220.23 [182.2–252.9] | 217.62 | 0.01586 | 0.833 | 0.889 | 0.727 |
Complement C5 | 382.31 [338.1–461.0] | 546.9 [448.2–595.8] | 503.44 | 0.01649 | 0.828 | 0.588 | 0.909 |
Complement C1r subcomponent-like protein | 53.314 [49.8–58.9] | 66.84 [57.5–75.7] | 54.662 | 0.01979 | 0.818 | 0.625 | 0.909 |
Complement factor B | 1523.9 [1344.5–2004.6] | 2602.5 [1849.4–2997.6] | 2602.5 | 0.01979 | 0.818 | 0.625 | 0.909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korobkov, D.N.; Molodtsov, I.A.; Kononikhin, A.S.; Bugrova, A.E.; Indeykina, M.I.; Brzhozovskiy, A.G.; Kanner, D.Y.; Nikolaev, E.N.; Vasilieva, E.; Komissarov, A.A. Multiplexed Quantitation of Plasma Proteins by Targeted Mass Spectrometry for Early Diagnosis of Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2025, 26, 9219. https://doi.org/10.3390/ijms26189219
Korobkov DN, Molodtsov IA, Kononikhin AS, Bugrova AE, Indeykina MI, Brzhozovskiy AG, Kanner DY, Nikolaev EN, Vasilieva E, Komissarov AA. Multiplexed Quantitation of Plasma Proteins by Targeted Mass Spectrometry for Early Diagnosis of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences. 2025; 26(18):9219. https://doi.org/10.3390/ijms26189219
Chicago/Turabian StyleKorobkov, Dmitry N., Ivan A. Molodtsov, Alexey S. Kononikhin, Anna E. Bugrova, Maria I. Indeykina, Alexander G. Brzhozovskiy, Dmitry Yu. Kanner, Evgeny N. Nikolaev, Elena Vasilieva, and Alexey A. Komissarov. 2025. "Multiplexed Quantitation of Plasma Proteins by Targeted Mass Spectrometry for Early Diagnosis of Pancreatic Ductal Adenocarcinoma" International Journal of Molecular Sciences 26, no. 18: 9219. https://doi.org/10.3390/ijms26189219
APA StyleKorobkov, D. N., Molodtsov, I. A., Kononikhin, A. S., Bugrova, A. E., Indeykina, M. I., Brzhozovskiy, A. G., Kanner, D. Y., Nikolaev, E. N., Vasilieva, E., & Komissarov, A. A. (2025). Multiplexed Quantitation of Plasma Proteins by Targeted Mass Spectrometry for Early Diagnosis of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 26(18), 9219. https://doi.org/10.3390/ijms26189219