Catheter-Associated Urinary Tract Infections: Understanding the Interplay Between Bacterial Biofilm and Antimicrobial Resistance
Abstract
1. Introduction
2. Bacterial Biofilm Formation and Encrustation
3. Biofilm Matrix Structure and Its Composition
4. Quorum Sensing Regulation of Biofilm Formation in Bacteria
5. Antimicrobial-Induced Biofilm Formation
6. Mechanisms of Antimicrobial Resistance in Biofilm-Forming Bacteria
6.1. Reduced Penetration
6.2. Physiological Heterogeneity and Reduced Metabolic Activity
6.3. Efflux Pumps and Enzymatic Modifications
6.4. Acquisition and Transmission of Antimicrobial Resistance Genes in Biofilms
7. Model Systems to Study Biofilms Under In Vitro and In Vivo Conditions
7.1. In Vitro Biofilm Models
7.1.1. Static or Closed Models
7.1.2. Dynamic (Open) Systems
7.1.3. Dynamic Bladder Infection In Vitro Models
7.2. In Vivo CAUTI Bacterial Biofilm Models
8. Novel Strategies to Combat Bacterial Biofilms
8.1. Bacteriophages
8.2. Antimicrobial Peptides
8.3. Nanoparticles and Other Surface Modification Strategies
8.4. Phytochemicals
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weszl, M.; Rencz, F.; Brodszky, V. Is the trend of increasing use of patient-reported outcome measures in medical device studies the sign of shift towards value-based purchasing in Europe? Eur. J. Health Econ. 2019, 20, 133–140. [Google Scholar] [CrossRef]
- Sorenson, C.; Drummond, M. Improving medical device regulation: The United States and Europe in perspective. Milbank Q. 2014, 92, 114–150. [Google Scholar] [CrossRef]
- Vergidis, P.; Patel, R. Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect. Dis. Clin. 2012, 26, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Stoica, P.; Chifiriuc, M.; Rapa, M.; Lazăr, V. Overview of biofilm-related problems in medical devices. In Biofilms and Implantable Medical Devices; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–23. [Google Scholar]
- Yadav, M.K.; Vidal, J.E.; Song, J.-J. Microbial biofilms on medical indwelling devices. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–28. [Google Scholar]
- Pittet, D.; Allegranzi, B.; Boyce, J. The World Health Organization guidelines on hand hygiene in health care and their consensus recommendations. Infect. Control Hosp. Epidemiol. 2009, 30, 611–622. [Google Scholar] [CrossRef]
- Shaban, A.; Drake, M.J.; Hashim, H. The medical management of urinary incontinence. Auton. Neurosci. 2010, 152, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Wyndaele, M.; Hashim, H. Pathophysiology of urinary incontinence. Surgery 2020, 38, 185–190. [Google Scholar]
- Cardenas, D.D.; Hooton, T.M. Urinary tract infection in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 1995, 76, 272–280. [Google Scholar] [CrossRef]
- Warren, J.W. Catheter-associated urinary tract infections. Int. J. Antimicrob. Agents 2001, 17, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Munasinghe, R.L.; Yazdani, H.; Siddique, M.; Hafeez, W. Appropriateness of use of indwelling urinary catheters in patients admitted to the medical service. Infect. Control Hosp. Epidemiol. 2001, 22, 647–649. [Google Scholar] [CrossRef]
- Lachance, C.C.; Grobelna, A. Management of patients with long-term indwelling urinary catheters: A review of guidelines. In CADTH Rapid Response Reports; Canadian Agency for Drugs and Technologies in Health (CADTH): Ottawa, ON, Canada, 2019. [Google Scholar]
- Davies, P.E.; Daley, M.J.; Hecht, J.; Hobbs, A.; Burger, C.; Watkins, L.; Murray, T.; Shea, K.; Ali, S.; Brown, L.H. Effectiveness of a bundled approach to reduce urinary catheters and infection rates in trauma patients. Am. J. Infect. Control 2018, 46, 758–763. [Google Scholar] [CrossRef]
- Van Decker, S.G.; Bosch, N.; Murphy, J. Catheter-associated urinary tract infection reduction in critical care units: A bundled care model. BMJ Open Qual. 2021, 10, 001534. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.A.; Ahmed, H.; Kandeel, N.A. The Effect of Implementing CAUTIs Bundle on Prevention of Hospital-Acquired Urinary Tract Infections among Critically Ill Patients. Mansoura Nurs. J. 2022, 9, 141–153. [Google Scholar]
- Rajaramon, S.; Shanmugam, K.; Dandela, R.; Solomon, A.P. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: A review. Front. Cell. Infect. Microbiol. 2023, 13, 113443. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Liang, X.; Vorstius, J.; Keatch, R.; Corner, G.; Nabi, G.; Davidson, F.; Gadd, G.M.; Zhao, Q. Enhanced antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating for urinary catheters. ACS Biomater. Sci. Eng. 2019, 5, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.J.; Kohler, K.N.; Gager, C.; Andersen, M.J.; Wongso, E.; Lucas, E.R.; Paik, A.; Xu, W.; Donahue, D.L.; Bergeron, K. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. Nat. Commun. 2024, 15, 2704. [Google Scholar] [CrossRef]
- Nye, T.M.; Zou, Z.; Obernuefemann, C.L.; Pinkner, J.S.; Lowry, E.; Kleinschmidt, K.; Bergeron, K.; Klim, A.; Dodson, K.W.; Flores-Mireles, A.L. Microbial co-occurrences on catheters from long-term catheterized patients. Nat. Commun. 2024, 15, 61. [Google Scholar] [CrossRef]
- Abbott, I.J.; Anderson, C.R.; van Gorp, E.; Wallis, S.C.; Roberts, J.A.; Meletiadis, J.; Peleg, A.Y. Oral ciprofloxacin biofilm activity in a catheter-associated urinary tract infection model. J. Antimicrob. Chemother. 2025, 80, 413–426. [Google Scholar] [CrossRef]
- Xiong, G.-B.; Xie, S.-H.; Liu, A.-B. In vitro dynamic bladder models for studying urinary tract infections: A narrative review. Ann. Palliat. Med. 2021, 10, 4830–4839. [Google Scholar] [CrossRef]
- Siddiq, D.M.; Darouiche, R.O. New strategies to prevent catheter-associated urinary tract infections. Nat. Rev. Urol. 2012, 9, 305–314. [Google Scholar] [CrossRef]
- Werneburg, G.T. Catheter-associated urinary tract infections: Current challenges and future prospects. Res. Rep. Urol. 2022, 14, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Musco, S.; Giammò, A.; Savoca, F.; Gemma, L.; Geretto, P.; Soligo, M.; Sacco, E.; Del Popolo, G.; Li Marzi, V. How to Prevent Catheter-Associated Urinary Tract Infections: A Reappraisal of Vico’s Theory—Is History Repeating Itself? J. Clin. Med. 2022, 11, 3415. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tenke, P.; Kovacs, B.; Jäckel, M.; Nagy, E. The role of biofilm infection in urology. World J. Urol. 2006, 24, 13–20. [Google Scholar] [CrossRef]
- Jordan, R.P.; Malic, S.; Waters, M.G.J.; Stickler, D.J.; Williams, D.W. Development of an antimicrobial urinary catheter to inhibit urinary catheter encrustation. Microbiol. Discov. 2015, 3, 133–137. [Google Scholar] [CrossRef]
- Palusiak, A. Proteus mirabilis and Klebsiella pneumoniae as pathogens capable of causing co-infections and exhibiting similarities in their virulence factors. Front. Cell. Infect. Microbiol. 2022, 12, 991657. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Kulbay, A.; Tammelin, A. Clean or sterile technique when inserting indwelling urinary catheter: An evaluation of nurses’ and assistant nurses’ interpretations of a guideline at an acute-care hospital in Sweden. Nord. J. Nurs. Res. 2019, 39, 92–97. [Google Scholar] [CrossRef]
- Dincer, S.; Uslu, F.M.; Delik, A. Antibiotic resistance in biofilm. In Bacterial Biofilms; IntechOpen: London, UK, 2020. [Google Scholar]
- Verderosa, A.D.; Totsika, M.; Fairfull-Smith, K.E. Bacterial biofilm eradication agents: A current review. Front. Chem. 2019, 7, 824. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Moser, C.; Jensen, P.Ø.; Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635. [Google Scholar] [CrossRef]
- Shastri, T.; Binsuwaidan, R.; Siddiqui, A.J.; Badraoui, R.; Jahan, S.; Alshammari, N.; Adnan, M.; Patel, M. Quercetin Exhibits Broad-Spectrum Antibiofilm and Antiquorum Sensing Activities Against Gram-Negative Bacteria: In Vitro and In Silico Investigation Targeting Antimicrobial Therapy. Can. J. Infect. Dis. Med. Microbiol. 2025, 2025, 2333207. [Google Scholar] [CrossRef]
- Karp, H.Q.; Nowak, E.S.; Kropp, G.A.; Col, N.A.; Schulz, M.D.; Sriranganathan, N.; Rao, J. Broad Host Range Peptide Nucleic Acids Prevent Gram-Negative Biofilms Implicated in catheter-Associated Urinary Tract Infections. Microorganisms 2025, 13, 1948. [Google Scholar] [CrossRef]
- Flores-Mireles, A.; Hreha, T.N.; Hunstad, D.A. Pathophysiology, treatment, and prevention of catheter-associated urinary tract infection. Top. Spinal Cord. Inj. Rehabil. 2019, 25, 228–240. [Google Scholar] [CrossRef]
- Van Roy, Z.; Kielian, T. Immune-based strategies for the treatment of biofilm infections. Biofilm 2025, 9, 100264. [Google Scholar] [CrossRef] [PubMed]
- Al–Marjani, M.F.; Hassan, F.J.; Mohammed, R.S.; Abdalameer, N.K.; Iqbal, J. Urine Catheter Sterilization from Adhered Biofilm Using Bimetallic Nanoparticles Synthesized Using the Plasma Reduction Method. Al-Mustansiriyah J. Sci. 2025, 36, 30–40. [Google Scholar] [CrossRef]
- El-Atrees, D.M.; El-Kased, R.F.; Abbas, A.M.; Yassien, M.A. Characterization and anti-biofilm activity of bacteriophages against urinary tract Enterococcus faecalis isolates. Sci. Rep. 2022, 12, 13048. [Google Scholar] [CrossRef]
- Gopal, L.; Sudarshan, T. Surface modification of urinary catheters. Surf. Eng. 2023, 39, 515–520. [Google Scholar] [CrossRef]
- Karrar Alsharif, M.H.; Poyil, M.M.; Bin Dayel, S.; Alqahtani, M.S.; Albadrani, A.A.; Omar, Z.M.M.; Arafah, A.M.; Alarabi, T.G.M.; Fayyad, R.M.; Abd El-Lateef, A.E.-L.S. Eradication of Biofilms on Catheters: Potentials of Tamarix ericoides Rottl. Bark Coating in Preventing Catheter-Associated Urinary Tract Infections (CAUTIs). Life 2024, 14, 1593. [Google Scholar] [CrossRef] [PubMed]
- Roque-Borda, C.A.; Primo, L.M.D.G.; Medina-Alarcón, K.P.; Campos, I.C.; Nascimento, C.d.F.; Saraiva, M.M.; Berchieri Junior, A.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S.; Perdigão, J. Antimicrobial peptides: A promising alternative to conventional antimicrobials for combating polymicrobial biofilms. Adv. Sci. 2025, 12, 2410893. [Google Scholar] [CrossRef]
- Simoni, A.; Schwartz, L.; Junquera, G.Y.; Ching, C.B.; Spencer, J.D. Current and emerging strategies to curb antibiotic-resistant urinary tract infections. Nat. Rev. Urol. 2024, 21, 707–722. [Google Scholar] [CrossRef]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Nowakowska, J.; Landmann, R.; Khanna, N. Foreign body infection models to study host-pathogen response and antimicrobial tolerance of bacterial biofilm. Antibiotics 2014, 3, 378–397. [Google Scholar] [CrossRef]
- Khatoon, Z.; McTiernan, C.; Suuronen, E.; Mah, T.; Alarcon, E. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, 01067. [Google Scholar] [CrossRef]
- Fux, C.A.; Costerton, J.W.; Stewart, P.S.; Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol. 2005, 13, 34–40. [Google Scholar] [CrossRef]
- Aliane, S.; Meliani, A. Bacterial biofilms: Formation, advantages for community members, clinical implications, and antibiotic resistance. Environ. Exp. Biol. 2021, 19, 121–130. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Downer, A.; Morris, N.; Feast, W.; Stickler, D. Polymer surface properties and their effect on the adhesion of Proteus mirabilis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2003, 217, 279–289. [Google Scholar] [CrossRef]
- Desrousseaux, C.; Sautou, V.; Descamps, S.; Traoré, O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J. Hosp. Infect. 2013, 85, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.F.; Feick, J.D.; Imoudu, D.; Chukwumah, N.; Vigeant, M.; Velegol, D. Oriented adhesion of Escherichia coli to polystyrene particles. Appl. Environ. Microbiol. 2003, 69, 6515–6519. [Google Scholar] [CrossRef] [PubMed]
- Stickler, D.J.; Jones, G.L.; Russell, A.D. Control of encrustation and blockage of Foley catheters. Lancet 2003, 361, 1435–1437. [Google Scholar] [CrossRef] [PubMed]
- Pelling, H.; Nzakizwanayo, J.; Milo, S.; Denham, E.; MacFarlane, W.; Bock, L.; Sutton, J.; Jones, B. Bacterial biofilm formation on indwelling urethral catheters. Lett. Appl. Microbiol. 2019, 68, 277–293. [Google Scholar] [CrossRef]
- Mirzaei, R.; Ranjbar, R. Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int. Immunopharmacol. 2022, 103, 108471. [Google Scholar] [CrossRef]
- Yuan, F.; Huang, Z.; Yang, T.; Wang, G.; Li, P.; Yang, B.; Li, J. Pathogenesis of Proteus mirabilis in catheter-associated urinary tract infections. Urol. Int. 2021, 105, 354–361. [Google Scholar] [CrossRef]
- Pannek, J.; Mahler, J.; Kurmann, C.; Widmer, A.; Krebs, J.; Wöllner, J. An in-vitro model for bacteria-related catheter encrustations. World J. Urol. 2024, 42, 469. [Google Scholar] [CrossRef]
- Stickler, D.; Morris, N.; Moreno, M.-C.; Sabbuba, N. Studies on the formation of crystalline bacterial biofilms on urethral catheters. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Leff, L.G. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol. Res. 2006, 161, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Mota, R.; Tamagnini, P.; LMartins, M.C.; Costa, F. Natural cyanobacterial polymer-based coating as a preventive strategy to avoid catheter-associated urinary tract infections. Mar. Drugs 2020, 18, 279. [Google Scholar] [CrossRef] [PubMed]
- Singha, P.; Locklin, J.; Handa, H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef]
- Azevedo, A.S.; Almeida, C.; Melo, L.F.; Azevedo, N.F. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit. Rev. Microbiol. 2017, 43, 423–439. [Google Scholar] [CrossRef]
- Hobley, L.; Harkins, C.; MacPhee, C.E.; Stanley-Wall, N.R. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 2015, 39, 649–669. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Pinkner, J.S.; Caparon, M.G.; Hultgren, S.J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl. Med. 2014, 6, 254ra127. [Google Scholar] [CrossRef]
- Walker, J.N.; Flores-Mireles, A.L.; Pinkner, C.L.; Schreiber, H.L.; Joens, M.S.; Park, A.M.; Potretzke, A.M.; Bauman, T.M.; Pinkner, J.S.; Fitzpatrick, J.A.; et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc. Natl. Acad. Sci. USA 2017, 114, 8721–8730. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Bauman, T.M.; Potretzke, A.M.; Schreiber, H.L.; Park, A.M.; Pinkner, J.S.; Caparon, M.G.; Hultgren, S.J.; Desai, A. Fibrinogen release and deposition on urinary catheters placed during urological procedures. J. Urol. 2016, 196, 416–421. [Google Scholar] [CrossRef]
- Timm, M.R.; Russell, S.K.; Hultgren, S.J. Urinary tract infections: Pathogenesis, host susceptibility and emerging therapeutics. Nat. Rev. Microbiol. 2025, 23, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Klausen, M.; Heydorn, A.; Ragas, P.; Lambertsen, L.; Aaes-Jørgensen, A.; Molin, S.; Tolker-Nielsen, T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 2003, 48, 1511–1524. [Google Scholar] [CrossRef] [PubMed]
- Leroy, S.; Lebert, I.; Andant, C.; Talon, R. Interaction in dual species biofilms between Staphylococcus xylosus and Staphylococcus aureus. Int. J. Food Microbiol. 2020, 326, 108653. [Google Scholar] [CrossRef]
- Schmitt, J.; Flemming, H.-C. Water binding in biofilms. Water Sci. Technol. 1999, 39, 77–82. [Google Scholar] [CrossRef]
- Vasudevan, R. Biofilms: Microbial cities of scientific significance. J. Microbiol. Exp. 2014, 1, 00014. [Google Scholar] [CrossRef]
- Sutherland, I.W. The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol. 2001, 9, 222–227. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Podnar, E.; Erega, A.; Danevčič, T.; Kovačec, E.; Lories, B.; Steenackers, H.; Mandic-Mulec, I. Nutrient availability and biofilm polysaccharide shape the bacillaene-dependent antagonism of Bacillus subtilis against Salmonella Typhimurium. Microbiol. Spectr. 2022, 10, e0183622. [Google Scholar] [CrossRef]
- Soto, S.M. Importance of biofilms in urinary tract infections: New therapeutic approaches. Adv. Biol. 2014, 2014, 543974. [Google Scholar] [CrossRef]
- Bukhari, S. Biofilm formation in Enterococci and Streptococci. Ph.D Thesis, University of Bath, Claverton Down, UK, 2014. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Palala Press: London, UK, 2016. [Google Scholar]
- Zhao, X.; Yu, Z.; Ding, T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 2020, 8, 425. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef]
- Williams, P.; Cámara, M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 2009, 12, 182–191. [Google Scholar] [CrossRef]
- An, S.-Q.; Murtagh, J.; Twomey, K.B.; Gupta, M.K.; O’Sullivan, T.P.; Ingram, R.; Valvano, M.A.; Tang, J.-L. Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues. Nat. Commun. 2019, 10, 2334. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.-H.; Cámara, M.; He, Y.-W. The DSF family of quorum sensing signals: Diversity, biosynthesis, and turnover. Trends Microbiol. 2017, 25, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Solano, C.; Echeverz, M.; Lasa, I. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 2014, 18, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Walters, M.; Sperandio, V. Quorum sensing in Escherichia coli and Salmonella. Int. J. Med. Microbiol. 2006, 296, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Capper-Parkin, K.; Nichol, T.; Smith, T.; Lacey, M.; Forbes, S. Antimicrobial and cytotoxic synergism of biocides and quorum-sensing inhibitors against uropathogenic Escherichia coli. J. Hosp. Infect. 2023, 134, 138–146. [Google Scholar] [CrossRef]
- Keogh, D.; Tay, W.H.; Ho, Y.Y.; Dale, J.L.; Chen, S.; Umashankar, S.; Williams, R.B.; Chen, S.L.; Dunny, G.M.; Kline, K.A. Enterococcal metabolite cues facilitate interspecies niche modulation and polymicrobial infection. Cell Host Microbe 2016, 20, 493–503. [Google Scholar] [CrossRef]
- Henly, E.; Norris, K.; Rawson, K.; Zoulias, N.; Jaques, L.; Chirila, P.; Parkin, K.; Kadirvel, M.; Whiteoak, C.; Lacey, M. Impact of long-term quorum sensing inhibition on uropathogenic Escherichia coli. J. Antimicrob. Chemother. 2021, 76, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, R.; Peng, Q.; Wu, S.; Lei, L. The Regulations of Essential WalRK Two-Component System on Enterococcus faecalis. J. Clin. Med. 2023, 12, 767. [Google Scholar] [CrossRef]
- Șchiopu, P.; Toc, D.A.; Colosi, I.A.; Costache, C.; Ruospo, G.; Berar, G.; Gălbău, Ș.-G.; Ghilea, A.C.; Botan, A.; Pană, A.-G. An overview of the factors involved in biofilm production by the enterococcus genus. Int. J. Mol. Sci. 2023, 24, 11577. [Google Scholar] [CrossRef] [PubMed]
- Dubrac, S.; Boneca, I.G.; Poupel, O.; Msadek, T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J. Bacteriol. 2007, 189, 8257–8269. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Li, S.R.; Jiang, B.; Hu, X.M.; Li, S. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front. Microbiol. 2018, 9, 55. [Google Scholar] [CrossRef]
- Coelho, L.R.; Souza, R.R.; Ferreira, F.A.; Guimaraes, M.A.; Ferreira-Carvalho, B.T. Figueiredo AMS: Agr RNAIII divergently regulates glucose-induced biofilm formation in clinical isolates of Staphylococcus aureus. Microbiology 2008, 154, 3480–3490. [Google Scholar] [CrossRef]
- Ćirić, A.; Petrović, J.; Glamočlija, J.; Smiljković, M.; Nikolić, M.; Stojković, D.; Soković, M. Natural products as biofilm formation antagonists and regulators of quorum sensing functions: A comprehensive review update and future trends. S. Afr. J. Bot. 2019, 120, 65–80. [Google Scholar] [CrossRef]
- Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of biofilm formation by quorum quenching. Appl. Microbiol. Biotechnol. 2020, 104, 1871–1881. [Google Scholar] [CrossRef]
- Park, K.-H.; Kim, D.; Jung, M.; Kim, D.Y.; Lee, Y.-M.; Lee, M.S.; Hong, K.-W.; Bae, I.-G.; Hong, S.I.; Cho, O.-H. Effects of sub-inhibitory concentrations of nafcillin, vancomycibipn, ciprofloxacin, and rifampin on biofilm formation of clinical methicillin-resistant Staphylococcus aureus. Microbiol. Spectr. 2024, 12, 03412–03423. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Abdul–Aziz, M.H.; Brady, K.; Cotta, M.O.; Roberts, J.A. Therapeutic drug monitoring of antibiotics: Defining the therapeutic range. Ther. Drug Monit. 2022, 44, 19–31. [Google Scholar] [CrossRef]
- Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. 2004, 18, 451–465. [Google Scholar] [CrossRef]
- Rodríguez-Gascón, A.; Solinís, M.Á.; Isla, A. The role of PK/PD analysis in the development and evaluation of antimicrobials. Pharmaceutics 2021, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Negri, M.C. Challenges: Selective compartments for resistant microorganisms in antibiotic gradients. Bioessays 1997, 19, 731–736. [Google Scholar] [CrossRef]
- Narimisa, N.; Amraei, F.; Kalani, B.S.; Mohammadzadeh, R.; Jazi, F.M. Effects of sub-inhibitory concentrations of antibiotics and oxidative stress on the expression of type II toxin-antitoxin system genes in Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 2020, 21, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Laureti, L.; Matic, I.; Gutierrez, A. Bacterial responses and genome instability induced by subinhibitory concentrations of antibiotics. Antibiotics 2013, 2, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Odenholt, I. Pharmacodynamic effects of subinhibitory antibiotic concentrations. Int. J. Antimicrob. Agents 2001, 17, 1–8. [Google Scholar] [CrossRef]
- Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436, 1171–1175. [Google Scholar] [CrossRef]
- Morita, Y.; Tomida, J.; Kawamura, Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front. Microbiol. 2014, 4, 75337. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Organs 2011, 34, 737–751. [Google Scholar] [CrossRef]
- Wood, T.K.; Knabel, S.J.; Kwan, B.W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 2013, 79, 7116–7121. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Grooters, K.E.; Ku, J.; Richter, D.M.; Kirnock, M.J.; Minor, A.; Li, P.; Kim, A.; Sawyer, R.; Li, Y. Strategies for Combating Antibiotic Resistance in Bacterial Biofilms. Front. Cell. Infect. Microbiol. 2024, 14, 1352273. [Google Scholar] [CrossRef]
- Singh, R.; Sahore, S.; Kaur, P.; Rani, A.; Ray, P. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain-and antibiotic-specific differences. FEMS Pathog. Dis. 2016, 74, ftw056. [Google Scholar] [CrossRef]
- Yao, S.; Hao, L.; Zhou, R.; Jin, Y.; Huang, J.; Wu, C. Multispecies biofilms in fermentation: Biofilm formation, microbial interactions, and communication. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3346–3375. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Amod, A.; Pandey, P.; Bose, P.; Pingali, M.S.; Shivalkar, S.; Varadwaj, P.K.; Sahoo, A.K.; Samanta, S.K. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed. Mater. 2022, 17, 022003. [Google Scholar] [CrossRef]
- Tian, C.; Yuan, M.; Tao, Q.; Xu, T.; Liu, J.; Huang, Z.; Wu, Q.; Pan, Y.; Zhao, Y.; Zhang, Z. Discovery of Novel Resistance Mechanisms of Vibrio parahaemolyticus Biofilm against Aminoglycoside Antibiotics. Antibiotics 2023, 12, 638. [Google Scholar] [CrossRef]
- Mulcahy, H.; Charron-Mazenod, L.; Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008, 4, e1000213. [Google Scholar] [CrossRef]
- Sharma, D.K.; Rajpurohit, Y.S. Multitasking functions of bacterial extracellular DNA in biofilms. J. Bacteriol. 2024, 206, e00006–e00024. [Google Scholar] [CrossRef] [PubMed]
- Mah, T.-F.C.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Urbaniec, J.; Xu, Y.; Hu, Y.; Hingley-Wilson, S.; McFadden, J. Phenotypic heterogeneity in persisters: A novel ‘hunker’theory of persistence. FEMS Microbiol. Rev. 2022, 46, fuab042. [Google Scholar] [CrossRef]
- Lila, A.S.A.; Rajab, A.A.; Abdallah, M.H.; Rizvi, S.M.D.; Moin, A.; Khafagy, E.-S.; Tabrez, S.; Hegazy, W.A. Biofilm lifestyle in recurrent urinary tract infections. Life 2023, 13, 148. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Menghani, E.; Verma, N. Antibiotic Resistance: A Result of Microbial Biofilm Association. In Biofilm Associated Livestock Diseases and Their Management; Springer: Berlin/Heidelberg, Germany, 2025; pp. 101–117. [Google Scholar]
- Vareschi, S.; Jaut, V.; Vijay, S.; Allen, R.J.; Schreiber, F. Antimicrobial efflux and biofilms: An interplay leading to emergent resistance evolution. Trends Microbiol. 2025, 33, 1018–1032. [Google Scholar] [CrossRef]
- Azeem, K.; Fatima, S.; Ali, A.; Ubaid, A.; Husain, F.M.; Abid, M. Biochemistry of bacterial biofilm: Insights into antibiotic resistance mechanisms and therapeutic intervention. Life 2025, 15, 49. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Xiu, W.; Wan, L.; Yang, K.; Li, X.; Yuwen, L.; Dong, H.; Mou, Y.; Yang, D.; Wang, L. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat. Commun. 2022, 13, 3875. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Bassler, B.L. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 2019, 26, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Dawan, J.; Wei, S.; Ahn, J. Role of antibiotic stress in phenotypic switching to persister cells of antibiotic-resistant Staphylococcus aureus. Ann. Microbiol. 2020, 70, 1. [Google Scholar] [CrossRef]
- Stewart, P.S.; White, B.; Boegli, L.; Hamerly, T.; Williamson, K.S.; Franklin, M.J.; Bothner, B.; James, G.A.; Fisher, S.; Vital-Lopez, F.G. Conceptual model of biofilm antibiotic tolerance that integrates phenomena of diffusion, metabolism, gene expression, and physiology. J. Bacteriol. 2019, 201, 00307–00319. [Google Scholar] [CrossRef]
- Almatroudi, A. Biofilm resilience: Molecular mechanisms driving antibiotic resistance in clinical contexts. Biology 2025, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bai, P.; Zhang, B.; Su, X.; Jiang, X.; Fang, T.; Wang, J.; Liu, C. Decreased biofilm formation in Proteus mirabilis after short-term exposure to a simulated microgravity environment. Braz. J. Microbiol. 2021, 52, 2021–2030. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.B.; Rudin, S.D.; Bonomo, R.A.; Rather, P.N. Acinetobacter nosocomialis: Defining the role of efflux pumps in resistance to antimicrobial therapy, surface motility, and biofilm formation. Front. Microbiol. 2018, 9, 1902. [Google Scholar] [CrossRef]
- Gilbert, P.; Allison, D.; McBain, A. Biofilms in vitro and in vivo: Do singular mechanisms imply cross-resistance? J. Appl. Microbiol. 2002, 92, 98S–110S. [Google Scholar] [CrossRef]
- Ren, J.; Wang, M.; Zhou, W.; Liu, Z. Efflux pumps as potential targets for biofilm inhibition. Front. Microbiol. 2024, 15, 1315238. [Google Scholar] [CrossRef]
- Lewis, K. Multidrug tolerance of biofilms and persister cells. Bact. Biofilms 2008, 322, 107–131. [Google Scholar]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
- Li, X.-F.; Shi, H.-Q.; Liang, Y.; Li, J.; Jiang, B.; Song, G.-B. Interaction of biofilm efflux pump in clinical isolates of carbapenem resistant, P. aeruginosa. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Hancock, R.E. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012, 25, 661–681. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Sionov, R.V.; Feldman, M.; Smoum, R.; Mechoulam, R.; Steinberg, D. Anandamide alters the membrane properties, halts the cell division and prevents drug efflux in multidrug resistant Staphylococcus aureus. Sci. Rep. 2021, 11, 8690. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.W.; Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef]
- Giwercman, B.; Jensen, E.T.; Høiby, N.; Kharazmi, A.; Costerton, J.W. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob. Agents Chemother. 1991, 35, 1008–1010. [Google Scholar] [CrossRef]
- Marti, E.; Variatza, E.; Balcazar, J.L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014, 22, 36–41. [Google Scholar] [CrossRef]
- Smith, W.P.; Wucher, B.R.; Nadell, C.D.; Foster, K.R. Bacterial defences: Mechanisms, evolution and antimicrobial resistance. Nat. Rev. Microbiol. 2023, 8, 519–534. [Google Scholar] [CrossRef]
- Johnson, T.A.; Stedtfeld, R.D.; Wang, Q.; Cole, J.R.; Hashsham, S.A.; Looft, T.; Zhu, Y.-G.; Tiedje, J.M. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture. MBio 2016, 7, e02214-15. [Google Scholar] [CrossRef]
- Dunny, G.M.; Berntsson, R.P.-A. Enterococcal sex pheromones: Evolutionary pathways to complex, two-signal systems. J. Bacteriol. 2016, 198, 1556–1562. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Tokuda, M.; Shintani, M. Microbial evolution through horizontal gene transfer by mobile genetic elements. Microb. Biotechnol. 2024, 17, e14408. [Google Scholar] [CrossRef] [PubMed]
- Arnold, B.J.; Huang, I.-T.; Hanage, W.P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 2022, 20, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, O.J.; Balling, R.C.; Larsen, P. Evidence for frequent horizontal gene transfer of resistance genes between bacterial species in natural marine environments. Appl. Environ. Microbiol. 2014, 80, 3387–3395. [Google Scholar]
- Traglia, G.M.; Place, K.; Dotto, C.; Fernandez, J.S.; Montaña, S.; dos Santos Bahiense, C.; Soler-Bistue, A.; Iriarte, A.; Perez, F.; Tolmasky, M.E. Interspecies DNA acquisition by a naturally competent Acinetobacter baumannii strain. Int. J. Antimicrob. Agents 2019, 53, 483–490. [Google Scholar] [CrossRef]
- Nolan, L.M.; Turnbull, L.; Katrib, M.; Osvath, S.R.; Losa, D.; Lazenby, J.J.; Whitchurch, C.B. Pseudomonas aeruginosa is capable of natural transformation in biofilms. Microbiology 2020, 166, 995–1003. [Google Scholar] [CrossRef]
- Gill, J.J.; Rapala, M.P.; Malone, J.G.; Svenson, G.M. Shiga toxin-encoding bacteriophage-phage interactions contribute to the emergence of multiple phage types within single outbreaks. J. Virol. 2009, 83, 5137–5145. [Google Scholar]
- Wright, G.D. Antibiotic resistance by design. Nat. Rev. Drug Discov. 2015, 14, 875–889. [Google Scholar]
- Chen, X.; Lorenzen, J.; Xu, Y.; Jonikaite, M.; Thaarup, I.C.; Bjarnsholt, T.; Kirketerp-Møller, K.; Thomsen, T.R. A novel chronic wound biofilm model sustaining coexistence of Pseudomonas aeruginosa and Staphylococcus aureus suitable for testing of antibiofilm effect of antimicrobial solutions and wound dressings. Wound Repair. Regen. 2021, 29, 820–829. [Google Scholar] [CrossRef]
- Boudarel, H.; Mathias, J.-D.; Blaysat, B.; Grédiac, M. Towards standardized mechanical characterization of microbial biofilms: Analysis and critical review. Npj Biofilms Microbiomes 2018, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Mota-Rojas, D. The importance of animal models in biomedical research: Current insights and applications. Animals 2023, 13, 1223. [Google Scholar] [CrossRef] [PubMed]
- Abbott, I.J.; Roberts, J.A.; Meletiadis, J.; Peleg, A.Y. Antimicrobial pharmacokinetics and preclinical in vitro models to support optimized treatment approaches for uncomplicated lower urinary tract infections. Expert. Rev. Anti-Infect. Ther. 2021, 19, 271–295. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.; Pedersen, H.T.; Lerche, C.J.; Kolpen, M.; Line, L.; Thomsen, K.; Høiby, N.; Jensen, P.Ø. Biofilms and host response–helpful or harmful. Apmis 2017, 125, 320–338. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Whiteley, M.; Rumbaugh, K.P.; Stewart, P.S.; Jensen, P.Ø.; Frimodt-Møller, N. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 2022, 22, e88–e92. [Google Scholar] [CrossRef]
- Brackman, G.; Coenye, T. In vitro and in vivo biofilm wound models and their application. Adv. Exp. Med. Biol. 2016, 897, 15–32. [Google Scholar]
- Rogers, J.; Norkett, D.; Bracegirdle, P.; Dowsett, A.; Walker, J.; Brooks, T.; Keevil, C. Examination of biofilm formation and risk of infection associated with the use of urinary catheters with leg bags. J. Hosp. Infect. 1996, 32, 105–115. [Google Scholar] [CrossRef]
- Crivello, G.; Fracchia, L.; Ciardelli, G.; Boffito, M.; Mattu, C. In vitro models of bacterial biofilms: Innovative tools to improve understanding and treatment of infections. Nanomaterials 2023, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Gloede, J.; Scheerans, C.; Derendorf, H.; Kloft, C. In vitro pharmacodynamic models to determine the effect of antibacterial drugs. J. Antimicrob. Chemother. 2010, 65, 186–201. [Google Scholar] [CrossRef]
- Lowdin, E.; Odenholt, I.; Cars, O. In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 1998, 42, 2739–2744. [Google Scholar] [CrossRef]
- Krömer, N. In Vitro and In Silico Studies Elucidating Pharmacodynamic Interactions of β-Lactam/β-Lactamase-Inhibitor Combi-Nations with Last-Resort Antibiotics; Universitaet Hamburg: Hamburg, Germany, 2024. [Google Scholar]
- Abbott, I.J.; van Gorp, E.; Wijma, R.A.; Meletiadis, J.; Mouton, J.W.; Peleg, A.Y. Evaluation of pooled human urine and synthetic alternatives in a dynamic bladder infection in vitro model simulating oral fosfomycin therapy. J. Microbiol. Methods 2020, 171, 105861. [Google Scholar] [CrossRef]
- Abbott, I.J.; van Gorp, E.; van Der Meijden, A.; Wijma, R.A.; Meletiadis, J.; Roberts, J.A.; Mouton, J.W.; Peleg, A.Y. Oral fosfomycin treatment for enterococcal urinary tract infections in a dynamic in vitro model. Antimicrob. Agents Chemother. 2020, 64, e00342-20. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukovic, D.; Hola, V.; Di Bonaventura, G.; Djukic, S.; Cirkovic, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Lebeaux, D.; Chauhan, A.; Rendueles, O.; Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2013, 2, 288–356. [Google Scholar] [CrossRef]
- Cleaver, L.; Garnett, J.A. How to study biofilms: Technological advancements in clinical biofilm research. Front. Cell. Infect. Microbiol. 2023, 13, 1335389. [Google Scholar] [CrossRef] [PubMed]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.S.; Almeida, C.; Gomes, L.C.; Ferreira, C.; Mergulhão, F.J.; Melo, L.F.; Azevedo, N.F. An in vitro model of catheter-associated urinary tract infections to investigate the role of uncommon bacteria on the Escherichia coli microbial consortium. Biochem. Eng. J. 2017, 118, 64–69. [Google Scholar] [CrossRef]
- Coenye, T.; Nelis, H.J. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods 2010, 83, 89–105. [Google Scholar] [CrossRef]
- Luo, T.L.; Vanek, M.E.; Gonzalez-Cabezas, C.; Marrs, C.F.; Foxman, B.; Rickard, A.H. In vitro model systems for exploring oral biofilms: From single-species populations to complex multi-species communities. J. Appl. Microbiol. 2022, 132, 855–871. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Nielsen, E.I.; Friberg, L.E. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol. Rev. 2013, 65, 1053–1090. [Google Scholar] [CrossRef]
- Zheng, S.; Amado, P.; Obrist, D.; Burkhard, F.; Clavica, F. An in vitro bladder model with physiological dynamics: Vesicoureteral reflux alters stent encrustation pattern. Front. Bioeng. Biotechnol. 2022, 10, 1028325. [Google Scholar] [CrossRef]
- Gander, S.; Finch, R. The effects of exposure at constant (1 h) or exponentially decreasing concentrations of quinupristin/dalfopristin on biofilms of Gram-positive bacteria. J. Antimicrob. Chemother. 2000, 46, 61–67. [Google Scholar] [CrossRef]
- Nissanka, M.C.; Dilhari, A.; Wijesinghe, G.K.; Weerasekera, M.M. Advances in experimental bladder models: Bridging the gap between in vitro and in vivo approaches for investigating urinary tract infections. BMC Urol. 2024, 24, 206. [Google Scholar] [CrossRef]
- Gorman, S.P.; Garvin, C.P.; Quigley, F.; Jones, D.S. Design and validation of a dynamic flow model simulating encrustation of biomaterials in the urinary tract. J. Pharm. Pharmacol. 2003, 55, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.O.; Flores, C.; Williams, C.; Flusberg, D.A.; Marr, E.E.; Kwiatkowska, K.M.; Charest, J.L.; Isenberg, B.C.; Rohn, J.L. Recurrent urinary tract infection: A mystery in search of better model systems. Front. Cell. Infect. Microbiol. 2021, 11, 691210. [Google Scholar] [CrossRef]
- Zhuo, Z.; Dan, H.; Gensong, L.; Ping, S.; Xining, P. Design of a mechatronics model of urinary bladder and realization and evaluation of its prototype. Appl. Bionics Biomech. 2019, 2019, 9431781. [Google Scholar] [CrossRef]
- Read, B.; Tan Sze Wuan, A.; Pietropaolo, A.; Somani, B.K.; Carugo, D.; Mosayyebi, A. Artificial urinary bladder model. Proceedings of the Institution of Mechanical Engineers, Part H. J. Eng. Med. 2024, 238, 588–597. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, G.V.; Lentini, G.; Famà, A.; Coppolino, F.; Beninati, C. In vivo role of two-component regulatory systems in models of urinary tract infections. Pathogens 2023, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Mi, G.; Wang, M.; Webster, T.J. In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 2019, 198, 228–249. [Google Scholar] [CrossRef]
- Magana, M.; Sereti, C.; Ioannidis, A.; Mitchell, C.A.; Ball, A.R.; Magiorkinis, E.; Chatzipanagiotou, S.; Hamblin, M.R.; Hadjifrangiskou, M.; Tegos, G.P. Options and limitations in clinical investigation of bacterial biofilms. Clin. Microbiol. Rev. 2018, 31, e00084-16. [Google Scholar] [CrossRef]
- Wale, Y.M.; Roberts, J.A.; Sime, F.B. Dynamic In Vitro PK/PD Infection Models for the Development and Optimisation of Antimicrobial Regimens: A Narrative Review. Antibiotics 2024, 13, 1201. [Google Scholar] [CrossRef]
- Yang, Z.; Khan, S.A.; Walsh, L.J.; Ziora, Z.M.; Seneviratne, C.J. Classical and Modern Models for Biofilm Studies: A Comprehensive Review. Antibiotics 2024, 13, 1228. [Google Scholar] [CrossRef]
- Greenwood, D.; O’Grady, F. An in vitro model of the urinary bladder. J. Antimicrob. Chemother. 1978, 4, 113–120. [Google Scholar] [CrossRef]
- Abbott, I.J.; van Gorp, E.; Wijma, R.A.; Dekker, J.; Croughs, P.D.; Meletiadis, J.; Mouton, J.W.; Peleg, A.Y. Efficacy of single and multiple oral doses of fosfomycin against Pseudomonas aeruginosa urinary tract infections in a dynamic in vitro bladder infection model. J. Antimicrob. Chemother. 2020, 75, 1879–1888. [Google Scholar] [CrossRef]
- Kim, R. Advanced organotypic in vitro model systems for host–microbial coculture. Biochip J. 2023, 17, 147–173. [Google Scholar] [CrossRef]
- Stahlhut, S.G.; Struve, C.; Krogfelt, K.A.; Reisner, A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol. Med. Microbiol. 2012, 65, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Abbott, I.J.; Mouton, J.W.; Peleg, A.Y.; Meletiadis, J. Pharmacokinetic/pharmacodynamic analysis of oral fosfomycin against Enterobacterales, Pseudomonas aeruginosa and Enterococcus spp. in an in vitro bladder infection model: Impact on clinical breakpoints. J. Antimicrob. Chemother. 2021, 76, 3201–3211. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Soto, I.; McTiernan, C.; Gonzalez-Gomez, M.; Ross, A.; Gupta, K.; Suuronen, E.J.; Mah, T.-F.; Griffith, M.; Alarcon, E.I. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. Iscience 2021, 24, 102443. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Young, P.; Marosszeky, J. Treatment of infection in the presence of an indwelling urethral catheter. Br. J. Urol. 1982, 54, 316–319. [Google Scholar] [CrossRef]
- Nickel, J.; Gristina, A.; Costerton, J. Electron microscopic study of an infected Foley catheter. Can. J. Surg. J. Can. Chir. 1985, 28, 50–51, 54. [Google Scholar]
- Cirioni, O.; Ghiselli, R.; Silvestri, C.; Minardi, D.; Gabrielli, E.; Orlando, F.; Rimini, M.; Brescini, L.; Muzzonigro, G.; Guerrieri, M. Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. J. Antimicrob. Chemother. 2011, 66, 1318–1323. [Google Scholar] [CrossRef]
- Fung, L.; Mittelman, M.W.; Thorner, P.S.; Khoury, A.E. A novel rabbit model for the evaluation of biomaterial associated urinary tract infection. Can. J. Urol. 2003, 10, 2007–2012. [Google Scholar]
- Flores-Mireles, A.L.; Walker, J.N.; Potretzke, A.; Schreiber, I.V.H.L.; Pinkner, J.S.; Bauman, T.M.; Park, A.M.; Desai, A.; Hultgren, S.J.; Caparon, M.G. Antibody-based therapy for enterococcal catheter-associated urinary tract infections. MBio 2016, 7, e01653-16. [Google Scholar] [CrossRef] [PubMed]
- Guiton, P.S.; Hung, C.S.; Hancock, L.E.; Caparon, M.G.; Hultgren, S.J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect. Immun. 2010, 78, 4166–4175. [Google Scholar] [CrossRef]
- Lodhi, A.F.; Zhang, Y.; Adil, M.; Deng, Y. Antibiotic discovery: Combining isolation chip (iChip) technology and co-culture technique. Appl. Microbiol. Biotechnol. 2018, 102, 7333–7341. [Google Scholar] [CrossRef]
- Castelo-Branco, D.d.S.C.M.; Amando, B.R.; Ocadaque, C.J.; Aguiar Ld Paiva, D.D.d.Q.; Diógenes, E.M.; Guedes, G.M.d.M.; Costa, C.L.; Santos-Filho, A.S.P.; Andrade, A.R.C.d. Mini-review: From in vitro to ex vivo studies: An overview of alternative methods for the study of medical biofilms. Biofouling 2020, 36, 1129–1148. [Google Scholar] [CrossRef]
- Valic, M.S.; Zheng, G. Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans. Theranostics 2019, 9, 3365. [Google Scholar] [CrossRef]
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-associated urinary tract infections: The molecular basis for challenges to effective treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef]
- AlQurashi, D.M.; AlQurashi, T.F.; Alam, R.I.; Shaikh, S.; Tarkistani, M.A.M. Advanced nanoparticles in combating antibiotic resistance: Current innovations and future directions. J. Nanotheranostics 2025, 6, 9. [Google Scholar] [CrossRef]
- Cortado, H.H.; Kercsmar, M.M.; Li, B.; Gupta, S.; Ching, C.B.; Jackson, A.R.; de Dios Ruiz-Rosado, J.; Becknell, B. Phagocyte-Derived Ribonuclease 3 Promotes Bacterial Clearance during Urinary Tract Infection: FR-PO699. J. Am. Soc. Nephrol. 2024, 35, 10-1681. [Google Scholar] [CrossRef]
- Wang, C.; Bauckman, K.A.; Ross, A.S.; Symington, J.W.; Ligon, M.M.; Scholtes, G.; Kumar, A.; Chang, H.-W.; Twentyman, J.; Fashemi, B.E. A non-canonical autophagy-dependent role of the ATG16L1T300A variant in urothelial vesicular trafficking and uropathogenic Escherichia coli persistence. Autophagy 2019, 15, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Jafari, N.V.; Rohn, J.L. An immunoresponsive three-dimensional urine-tolerant human urothelial (3D-UHU) model to study urinary tract infection. Front. Cell. Infect. Microbiol. 2023, 13, 1128132. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.D.; Hultgren, S.J. Urinary tract infections: Microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020, 18, 211–226. [Google Scholar] [CrossRef]
- Zheng, P.; Liu, F.; Long, J.; Jin, Y.; Chen, S.; Duan, G.; Yang, H. Latest advances in the application of humanized mouse model for Staphylococcus aureus. J. Infect. Dis. 2023, 228, 800–809. [Google Scholar] [CrossRef]
- Patel, P.K.; Advani, S.D.; Kofman, A.D.; Lo, E.; Maragakis, L.L.; Pegues, D.A.; Pettis, A.M.; Saint, S.; Trautner, B.; Yokoe, D.S. Strategies to prevent catheter-associated urinary tract infections in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2023, 44, 1209–1231. [Google Scholar] [CrossRef]
- Mishra, S.; Gupta, A.; Upadhye, V.; Singh, S.C.; Sinha, R.P.; Häder, D.-P. Therapeutic strategies against biofilm infections. Life 2023, 13, 172. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, X.; Wang, Y. Alternatives to conventional antibiotic therapy: Potential therapeutic strategies of combating antimicrobial-resistance and biofilm-related infections. Mol. Biotechnol. 2021, 63, 1103–1124. [Google Scholar] [CrossRef]
- Melo, L.D.; Oliveira, H.; Pires, D.P.; Dabrowska, K.; Azeredo, J. Phage therapy efficacy: A review of the last 10 years of preclinical studies. Crit. Rev. Microbiol. 2020, 46, 78–99. [Google Scholar] [CrossRef]
- Mirzaei, A.; Wagemans, J.; Nasr Esfahani, B.; Lavigne, R.; Moghim, S. A phage cocktail to control surface colonization by proteus mirabilis in catheter-associated urinary tract infections. Microbiol. Spectr. 2022, 10, e02092-22. [Google Scholar] [CrossRef]
- Melo, L.D.; Veiga, P.; Cerca, N.; Kropinski, A.M.; Almeida, C.; Azeredo, J.; Sillankorva, S. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front. Microbiol. 2016, 7, 1024. [Google Scholar] [CrossRef] [PubMed]
- Channabasappa, S.; Durgaiah, M.; Chikkamadaiah, R.; Kumar, S.; Joshi, A.; Sriram, B. Efficacy of novel antistaphylococcal ectolysin P128 in a rat model of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob. Agents Chemother. 2018, 62, e01358-17. [Google Scholar] [CrossRef]
- Brüssow, H. Bacteriophage–host interaction: From splendid isolation into a messy reality. Curr. Opin. Microbiol. 2013, 16, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Gu Liu, C.; Green, S.I.; Min, L.; Clark, J.R.; Salazar, K.C.; Terwilliger, A.L.; Kaplan, H.B.; Trautner, B.W.; Ramig, R.F.; Maresso, A.W. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. MBio 2020, 11, e01462-20. [Google Scholar] [CrossRef] [PubMed]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, H.; Gan, D.; Wang, M.; Deng, H.; Yang, Q.E. Antibacterial effect of phage cocktails and phage-antibiotic synergy against pathogenic Klebsiella pneumoniae. Msystems 2024, 9, e0060724. [Google Scholar] [CrossRef]
- Yosef, I.; Manor, M.; Kiro, R.; Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA. 2015, 112, 7267–7272. [Google Scholar] [CrossRef]
- Engeman, E.; Freyberger, H.R.; Corey, B.W.; Ward, A.M.; He, Y.; Nikolich, M.P.; Filippov, A.A.; Tyner, S.D.; Jacobs, A.C. Synergistic killing and re-sensitization of Pseudomonas aeruginosa to antibiotics by phage-antibiotic combination treatment. Pharmaceuticals 2021, 14, 184. [Google Scholar] [CrossRef]
- Zalewska-Piątek, B.; Nagórka, M. Phages as potential life-saving therapeutic option in the treatment of multidrug-resistant urinary tract infections. Acta Biochim. Pol. 2025, 72, 14264. [Google Scholar] [CrossRef]
- Wójcicki, M.; Cieślik, M.; Haraźna, K.; Sobczak-Kupiec, A.; Górski, A.; Jończyk-Matysiak, E. Phage-and enzybiotic-coated urinary catheters to prevent recurrent multidrug-resistant bacterial infections. Expert Rev. Anti-Infect. Ther. 2025. ahead of print. [Google Scholar] [CrossRef]
- Ali, S.; Karaynir, A.; Salih, H.; Öncü, S.; Bozdoğan, B. Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage. Virus Res. 2023, 326, 199049. [Google Scholar] [CrossRef]
- Brown, K.L.; Hancock, R.E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 2006, 18, 24–30. [Google Scholar] [CrossRef]
- Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci. 2009, 10, 585–606. [Google Scholar] [CrossRef] [PubMed]
- Pavelka, A.; Vacek, L.; Norek, A.; Kobzová, Š.; Janda, L. Recombinant production of human antimicrobial peptide LL-37 and its secondary structure. Biologia 2023, 79, 263–273. [Google Scholar] [CrossRef]
- Grassi, L.; Maisetta, G.; Esin, S.; Batoni, G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front. Microbiol. 2017, 8, 314440. [Google Scholar] [CrossRef]
- Al-Wrafy, F.A.; Al-Gheethi, A.A.; Ponnusamy, S.K.; Noman, E.A.; Fattah, S.A. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. Chemosphere 2022, 288, 132603. [Google Scholar] [CrossRef]
- Shkodenko, L.; Kassirov, I.; Koshel, E. Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms 2020, 8, 1545. [Google Scholar] [CrossRef]
- Lethongkam, S.; Paosen, S.; Bilhman, S.; Dumjun, K.; Wunnoo, S.; Choojit, S.; Siri, R.; Daengngam, C.; Voravuthikunchai, S.P.; Bejrananda, T. Eucalyptus-mediated synthesized silver nanoparticles-coated urinary catheter inhibits microbial migration and biofilm formation. Nanomaterials 2022, 12, 4059. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Eckhard, U.; Delgado, L.M.; de Roo Puente, Y.J.; Hoyos-Nogués, M.; Gil, F.J.; Perez, R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021, 6, 4470–4490. [Google Scholar] [CrossRef]
- Mi, G.; Shi, D.; Wang, M.; Webster, T.J. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces. Adv. Healthc. Mater. 2018, 7, 1800103. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Matsuo, T.; Mitsunari, K.; Asai, A.; Ohba, K.; Sakai, H. A review of oxidative stress and urinary dysfunction caused by bladder outlet obstruction and treatments using antioxidants. Antioxidants 2019, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.V.; Navarro, N.; Catalán-Figueroa, J.; Morales, J.O. Nanoparticles as potential novel therapies for urinary tract infections. Front. Cell. Infect. Microbiol. 2021, 11, 656496. [Google Scholar] [CrossRef]
- Mandakhalikar, K.D.; Chua, R.R.; Tambyah, P.A. New technologies for prevention of catheter associated urinary tract infection. Curr. Treat. Options Infect. Dis. 2016, 8, 24–41. [Google Scholar] [CrossRef]
- Benoit, D.S.; Sims, K.R., Jr.; Fraser, D. Nanoparticles for oral biofilm treatments. ACS Nano 2019, 13, 4869–4875. [Google Scholar] [CrossRef]
- Roe, D.; Karandikar, B.; Bonn-Savage, N.; Gibbins, B.; Roullet, J.-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008, 61, 869–876. [Google Scholar] [CrossRef]
- Stærk, K.; Grønnemose, R.B.; Palarasah, Y.; Kolmos, H.J.; Lund, L.; Alm, M.; Thomsen, P.; Andersen, T.E. A novel device-integrated drug delivery system for local inhibition of urinary tract infection. Front. Microbiol. 2021, 12, 685698. [Google Scholar] [CrossRef]
- Gotlib, O. The Design and Investigation of a Passive Electricidal Urinary Catheter Surface; University of California: San Diego, CA, USA, 2019. [Google Scholar]
- Chadha, J.; Thakur, N.; Chhibber, S.; Harjai, K. A comprehensive status update on modification of foley catheter to combat cath-eter-associated urinary tract infections and microbial biofilms. Crit. Rev. Microbiol. 2024, 50, 168–195. [Google Scholar] [CrossRef] [PubMed]
- Kanti, S.Y.; Csóka, I.; Jójárt-Laczkovich, O.; Adalbert, L. Recent advances in antimicrobial coatings and material modification strategies for preventing urinary catheter-associated complications. Biomedicines 2022, 10, 2580. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Wu, Y.; Xu, C.; Reghu, S.; Shang, Z.; Chen, J.; Pranantyo, D.; Marimuth, K.; De, P.P.; Ng, O.T. Precisely structured nitric-oxide-releasing copolymer brush defeats broad-spectrum catheter-associated biofilm infections in vivo. ACS Cent. Sci. 2020, 6, 2031–2045. [Google Scholar] [CrossRef]
- Saini, H.; Vadekeetil, A.; Chhibber, S.; Harjai, K. Azithromycin-ciprofloxacin-impregnated urinary catheters avert bacterial colo-nization, biofilm formation, and inflammation in a murine model of foreign-body-associated urinary tract infections caused by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01906-16. [Google Scholar] [CrossRef]
- Milo, S.; Nzakizwanayo, J.; Hathaway, H.J.; Jones, B.V.; Jenkins, A.T.A. Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage. Proceedings of the Institution of Mechanical Engineers, Part H. J. Eng. Med. 2019, 233, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun. 2020, 41, 1900430. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Nisar, P.; Ali, N.; Rahman, L.; Ali, M.; Shinwari, Z.K. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. JBIC J. Biol. Inorg. Chem. 2019, 24, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K. Antibiofilm activity of epoxy/Ag-TiO2 polymer nanocomposite coatings against Staphylococcus aureus and Escherichia coli. Coatings 2015, 5, 95–114. [Google Scholar]
- Rocca, D.M.; Aiassa, V.; Zoppi, A.; Silvero Compagnucci, J.; Becerra, M.C. Nanostructured gold coating for prevention of biofilm development in medical devices. J. Endourol. 2020, 34, 345–351. [Google Scholar] [CrossRef]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Yong, Y.Y.; Dykes, G.A.; Choo, W.S. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit. Rev. Microbiol. 2019, 45, 201–222. [Google Scholar] [CrossRef]
- Gonçalves, A.S.; Leitão, M.M.; Simões, M.; Borges, A. The action of phytochemicals in biofilm control. Nat. Prod. Rep. 2023, 40, 595–627. [Google Scholar] [CrossRef]
- Al Mamari, H.H. Phenolic compounds: Classification, chemistry, and updated techniques of analysis and synthesis. In Phenolic Compounds: Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; IntechOpen: Londan, UK, 2021; pp. 73–94. [Google Scholar]
- Jagani, S.; Chelikani, R.; Kim, D.-S. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 2009, 25, 321–324. [Google Scholar] [CrossRef]
- Lahiri, D.; Dash, S.; Dutta, R.; Nag, M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J. Biosci. 2019, 44, 52. [Google Scholar] [CrossRef]
- Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef]
- Shaheen, G.; Akram, M.; Jabeen, F.; Ali Shah, S.M.; Munir, N.; Daniyal, M.; Riaz, M.; Tahir, I.M.; Ghauri, A.O.; Sultana, S. Therapeutic potential of medicinal plants for the management of urinary tract infection: A systematic review. Clin. Exp. Pharmacol. Physiol. 2019, 46, 613–624. [Google Scholar] [CrossRef]
- Manga, M.; Viktorovna, P.; Davares, A.; Esther, N.; Nikolaevich, S. Urinary tract infections: Virulence factors, resistance to antibiotics, an d management of uropathogenic bacteria with medicinal plants—A review. J. Appl. Pharm. Sci. 2021, 11, 001–012. [Google Scholar]
- Akram, M.; Idrees, M. Progress and prospects in the management of kidney stones and developments in phyto-therapeutic modalities. Int. J. Immunopathol. Pharmacol. 2019, 33. [Google Scholar] [CrossRef]
- Chauhan, N.; Kumar, D.; Kasana, M. Medicinal plants of Muzaffarnagar district used in treatment of urinary tract and kidney stones. Indian J. Tradit. Knowl. 2009, 8, 191–195. [Google Scholar]
- Giri, K.; Shrestha, B.K.; Shakya, J.; Sah, S.N.; Khanal, H. Antibacterial effect of green tea extract against multi drug resistant Escherichia coli isolated from urine sample of patients visiting tertiary care hospital of Eastern Nepal. Int. J. Appl. Sci. Biotechnol. 2020, 8, 45–51. [Google Scholar] [CrossRef]
- Gatea Kaabi, S.; Abdulrazaq, R.; Rasool, K.; Khassaf, S. Western herbal remedies for Urinary Tract infections. Arch. Urol. Res. 2020, 4, 049–060. [Google Scholar] [CrossRef]
- Nasrollahian, S.; Moradi, F.; Hadi, N.; Ranjbar, R.; Ranjbar, S. An update on alternative therapy for Escherichia coli caused urinary tract infections; a narrative review. Photodiagnosis Photodyn. Ther. 2024, 46, 104075. [Google Scholar] [CrossRef]
Components | Examples of Bacterial Species | Chemical Group | Functions |
---|---|---|---|
Polysaccharides | E. faecalis | Enterococcal polysaccharide antigen (EPA) | Adhesion, biofilm formation, resistance to antibiotics and phagocytosis, and colonization |
E. coli | Polysaccharide intercellular adhesin (PIA) | Adhesion, biofilm formation, resistance to antibiotics and phagocytosis, and colonization | |
S. aureus | Polysaccharide intercellular adhesin (PIA) | Adhesion, cohesion, scaffolding, stability, and protection against antibiotics | |
P. aeruginosa | Alginate | Adhesion and protection from environmental factors | |
S. mutans | Glucans/fructans | Adhesion, cohesion, scaffolding, stability, cell-to-cell binding, acidic microenvironment, protection against antimicrobials, and nutrient source | |
Proteins | E. faecalis | Enterococcal surface protein (ESP) and cell wall-anchored protein | Facilitate primary attachment and build-up of biofilm |
E. coli | Poly-beta-1,6-N-acetyl-D-glucosamine synthase | Synthesis of PGA polymer, which helps in biofilm adhesion | |
S. aureus | S. aureus surface protein G (SasG) | Adhesion and cell-to-cell binding | |
P. aeruginosa | Lectins (LecA/LecB) | Adhesion, cell-to-cell binding, stability, and respiratory epithelial cell toxicity | |
S. mutans | Dextranase | EPS degradation/remodeling | |
Nucleic acid (DNA or RNA) | Wide distribution in bacteria | eDNA | Scaffolding, adhesion, cohesion, nutrient source, DNA damage repair, gene transfer, and interaction with other matrix components |
Lipids | S. aureus | Teichoic and lipoteichoic acids | Adhesion, cohesion, protection, and immune evasion |
Lipopolysaccharides | Wide distribution in Gram-negative bacteria | Lipopolysaccharide (endotoxin) | Adhesion, colonization and host invasion, and activation of immune response |
Mechanism | Description | Examples | References |
---|---|---|---|
Conjugation | Transfer of plasmids carrying ARGs through direct cell-to-cell contact | Plasmid pESI-1 transfers vancomycin resistance among E. faecalis within biofilms. | [147] |
Transformation | Uptake of free-floating DNA containing ARGs by competent bacteria | P. aeruginosa within biofilms is capable of naturally taking up and incorporating both genomic and plasmid DNA. Moreover, A. baumannii can acquire DNA from other species, and this transformation may contribute to the rise of multidrug-resistant strains. | [151,152,153] |
Transduction | Bacteriophages carrying ARGs transduce recipient bacteria within the biofilm | Bacteriophage CTXφ carries and transfers blaCTX-M genes encoding extended-spectrum β-lactamase resistance in K. pneumoniae biofilms. | [154] |
MGEs | Plasmids and transposons readily move within the biofilm, facilitating HGT of ARGs | Conjugative transposon Tn1549 encodes vancomycin resistance and spreads among E. faecium in biofilms. | [155] |
Nanoparticle Type | Mechanisms of Action | Target Biofilm-Forming Bacteria | Delivery Methods | Reference |
---|---|---|---|---|
Silver nanoparticles (AgNPs) | Membrane disruption, reactive oxygen species (ROS) generation, and protein inactivation | S. aureus, E. coli, and P. aeruginosa | Coatings and topical application | [251] |
Zinc oxide nanoparticles (ZnO NPs) | Membrane disruption, ROS generation, and DNA damage | S. aureus, S. enterica, and E. coli | Coatings, hydrogels, and nanoparticles in solution | [252] |
Copper nanoparticles (CuNPs) | Membrane disruption, metal ion release, and enzyme inhibition | E. coli, P. aeruginosa, and S. aureus | Surface modification and nanoparticles in solution | [253] |
Titanium dioxide nanoparticles (TiO2 NPs) | Photocatalytic activity, ROS generation, and membrane disruption | S. aureus, E. coli, and P. aeruginosa | Coatings and nanoparticle–polymer composites | [254] |
Gold nanoparticles | Generation of ROS and interference with metabolic processes | E. coli and S. aureus | Surface modification and nanoparticles in solution | [255] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tegegne, D.T.; Abbott, I.J.; Poźniak, B. Catheter-Associated Urinary Tract Infections: Understanding the Interplay Between Bacterial Biofilm and Antimicrobial Resistance. Int. J. Mol. Sci. 2025, 26, 9193. https://doi.org/10.3390/ijms26189193
Tegegne DT, Abbott IJ, Poźniak B. Catheter-Associated Urinary Tract Infections: Understanding the Interplay Between Bacterial Biofilm and Antimicrobial Resistance. International Journal of Molecular Sciences. 2025; 26(18):9193. https://doi.org/10.3390/ijms26189193
Chicago/Turabian StyleTegegne, Desiye Tesfaye, Iain J. Abbott, and Błażej Poźniak. 2025. "Catheter-Associated Urinary Tract Infections: Understanding the Interplay Between Bacterial Biofilm and Antimicrobial Resistance" International Journal of Molecular Sciences 26, no. 18: 9193. https://doi.org/10.3390/ijms26189193
APA StyleTegegne, D. T., Abbott, I. J., & Poźniak, B. (2025). Catheter-Associated Urinary Tract Infections: Understanding the Interplay Between Bacterial Biofilm and Antimicrobial Resistance. International Journal of Molecular Sciences, 26(18), 9193. https://doi.org/10.3390/ijms26189193