Increasing Temperature Activates TREK Potassium Currents in Vagal Afferent Neurons from the Nodose Ganglion
Abstract
1. Introduction
2. Results
2.1. Classifying NG Neurons
2.2. The Increase in Temperature Changes the Membrane Potential
2.3. Physiological Temperature Increases Neuronal Excitability
2.4. Heat Induces an Increase in Macroscopic TREK-like Current and Conductance
2.5. Open Probability of TREK Increases at Physiological Temperature
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Electrophysiology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Cutler, B.; Haesemeyer, M. Vertebrate behavioral thermoregulation: Knowledge and future directions. Neurophotonics 2024, 11, 033409. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, O.; Meseguer, V.; Belmonte, C.; Viana, F. TRPA1 Channels Mediate Cold Temperature Sensing in Mammalian Vagal Sensory Neurons: Pharmacological and Genetic Evidence. J. Neurosci. 2008, 28, 7863–7875. [Google Scholar] [CrossRef] [PubMed]
- McKemy, D.D.; Neuhausser, W.M.; Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416, 52–58. [Google Scholar] [CrossRef]
- Morrison, S.F.; Nakamura, K. Central neural pathways for thermoregulation. Front. Biosci. 2011, 16, 74–104. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, D.; Cadaveira-Mosquera, A.; Rueda-Ruzafa, L.; Herrera-Pérez, S.; Veale, E.L.; Reboreda, A.; Mathie, A.; Lamas, J.A.; Obukhov, A.G. Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons. PLoS ONE 2018, 13, e0199282. [Google Scholar] [CrossRef]
- Schild, J.H.; Kunze, D.L. Experimental and Modeling Study of Na+ Current Heterogeneity in Rat Nodose Neurons and Its Impact on Neuronal Discharge. J Neurophysiol. 1997, 78, 3198–3209. [Google Scholar] [CrossRef]
- Li, B.; Schild, J. Patch clamp electrophysiology in nodose ganglia of adult rat. J. Neurosci. Methods 2002, 115, 157–167. [Google Scholar] [CrossRef]
- Schild, J.H.; Kunze, D.L. Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents. Auton. Neurosci. 2012, 172, 4–12. [Google Scholar] [CrossRef]
- Lu, X.-L.; Xu, W.-X.; Yan, Z.-Y.; Qian, Z.; Xu, B.; Liu, Y.; Han, L.-M.; Gao, R.-C.; Li, J.-N.; Yuan, M.; et al. Subtype Identification in Acutely Dissociated Rat Nodose Ganglion Neurons Based on Morphologic Parameters. Int. J. Biol. Sci. 2013, 9, 716–727. [Google Scholar] [CrossRef][Green Version]
- Zhang, L.; Jones, S.; Brody, K.; Costa, M.; Brookes, S.J.H. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am. J. Physiol. Liver Physiol. 2004, 286, G983–G991. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Flonta, M.-L. Cold current in thermoreceptive neurons. Nature 2001, 413, 480. [Google Scholar] [CrossRef] [PubMed]
- Cadaveira-Mosquera, A.; Pérez, M.; Reboreda, A.; Rivas-Ramírez, P.; Fernández-Fernández, D.; Lamas, J.A. Expression of K2P Channels in Sensory and Motor Neurons of the Autonomic Nervous System. J. Mol. Neurosci. 2012, 48, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Cadaveira-Mosquera, A.; Ribeiro, S.J.; Reboreda, A.; Pérez, M.; Lamas, J.A. Activation of TREK Currents by the Neuroprotective Agent Riluzole in Mouse Sympathetic Neurons. J. Neurosci. 2011, 31, 1375–1385. [Google Scholar] [CrossRef]
- Kang, D.; Choe, C.; Kim, D. Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J. Physiol. 2005, 564, 103–116. [Google Scholar] [CrossRef]
- Noël, J.; Zimmermann, K.; Busserolles, J.; Deval, E.; Alloui, A.; Diochot, S.; Guy, N.; Borsotto, M.; Reeh, P.; Eschalier, A.; et al. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 2009, 28, 1308–1318. [Google Scholar] [CrossRef]
- Dhaka, A.; Viswanath, V.; Patapoutian, A. TRP ION CHANNELS AND TEMPERATURE SENSATION. Annu. Rev. Neurosci. 2006, 29, 135–161. [Google Scholar] [CrossRef]
- Mazzone, S.B.; Undem, B.J. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol. Rev. 2016, 96, 975–1024. [Google Scholar] [CrossRef]
- Kennard, L.E.; Chumbley, J.R.; Ranatunga, K.M.; Armstrong, S.J.; Veale, E.L.; Mathie, A. Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br. J. Pharmacol. 2005, 144, 821–829. [Google Scholar] [CrossRef]
- Maati, H.M.O.; Veyssiere, J.; Labbal, F.; Coppola, T.; Gandin, C.; Widmann, C.; Mazella, J.; Heurteaux, C.; Borsotto, M. Spadin as a new antidepressant: Absence of TREK-1-related side effects. Neuropharmacology 2012, 62, 278–288. [Google Scholar] [CrossRef]
- Mazella, J.; Pétrault, O.; Lucas, G.; Deval, E.; Béraud-Dufour, S.; Gandin, C.; El-Yacoubi, M.; Widmann, C.; Guyon, A.; Chevet, E.; et al. Spadin, a Sortilin-Derived Peptide, Targeting Rodent TREK-1 Channels: A New Concept in the Antidepressant Drug Design. PLoS Biol. 2010, 8, e1000355. [Google Scholar] [CrossRef]
- Voets, T.; Droogmans, G.; Wissenbach, U.; Janssens, A.; Flockerzi, V.; Nilius, B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 2004, 430, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Lamas, J.A.; Rueda-Ruzafa, L.; Herrera-Pérez, S. Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int. J. Mol. Sci. 2019, 20, 2371. [Google Scholar] [CrossRef] [PubMed]
- Maingret, F.; Honoré, E.; Lazdunski, M.; Patel, A.J. Molecular Basis of the Voltage-Dependent Gating of TREK-1, a Mechano-Sensitive K+ Channel. Biochem. Biophys. Res. Commun. 2002, 292, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Choe, C.; Kim, D. Functional expression of TREK-2 in insulin-secreting MIN6 cells. Biochem. Biophys. Res. Commun. 2004, 323, 323–331. [Google Scholar] [CrossRef]
- Kang, D.; Kim, D. TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am. J. Physiol. Physiol. 2006, 291, C138–C146. [Google Scholar] [CrossRef]
- Blin, S.; Ben Soussia, I.; Kim, E.-J.; Brau, F.; Kang, D.; Lesage, F.; Bichet, D. Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties. Proc. Natl. Acad. Sci. USA 2016, 113, 4200–4205. [Google Scholar] [CrossRef]
- Doan, T.N.; Kunze, D.L. Contribution of the hyperpolarization-activated current to the resting membrane potential of rat nodose sensory neurons. J. Physiol. 1999, 514, 125–138. [Google Scholar] [CrossRef]
- Kang, T.-H.; Kim, K.-T. Negative regulation of ERK activity by VRK3-mediated activation of VHR phosphatase. Nat. Cell Biol. 2006, 8, 863–869. [Google Scholar] [CrossRef]
- Rivas-Ramírez, P.; Reboreda, A.; Rueda-Ruzafa, L.; Herrera-Pérez, S.; Lamas, J.A. Contribution of KCNQ and TREK Channels to the Resting Membrane Potential in Sympathetic Neurons at Physiological Temperature. Int. J. Mol. Sci. 2020, 21, 5796. [Google Scholar] [CrossRef]
- Bang, H.; Kim, Y.; Kim, D. TREK-2, a New Member of the Mechanosensitive Tandem-pore K+ Channel Family. J. Biol. Chem. 2000, 275, 17412–17419. [Google Scholar] [CrossRef]
- Fink, M.; Duprat, F.; Lesage, F.; Reyes, R.; Romey, G.; Heurteaux, C.; Lazdunski, M. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 1996, 15, 6854–6862. [Google Scholar] [CrossRef]
- Sandoz, G.; Douguet, D.; Chatelain, F.; Lazdunski, M.; Lesage, F. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc. Natl. Acad. Sci. USA 2009, 106, 14628–14633. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor. Science 2000, 288, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Maati, H.M.O.; Borsotto, M.; Chatelain, F.; Widmann, C.; Lazdunski, M.; Heurteaux, C. Activation of ATP-sensitive potassium channels as an element of the neuroprotective effects of the Traditional Chinese Medicine MLC901 against oxygen glucose deprivation. Neuropharmacology 2012, 63, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef]
- Maingret, F.; Lauritzen, I.; Patel, A.J.; Heurteaux, C.; Reyes, R.; Lesage, F.; Lazdunski, M.; Honoré, E. TREK-1 is a heat-activated background K+ channel. EMBO J. 2000, 19, 2483–2491. [Google Scholar] [CrossRef]
- Lamas, J.A.; Fernández-Fernández, D. Tandem pore TWIK-related potassium channels and neuroprotection. Neural Regen. Res. 2019, 14, 1293–1308. [Google Scholar] [CrossRef]
- Talley, E.M.; Solórzano, G.; Lei, Q.; Kim, D.; Bayliss, D.A. CNS Distribution of Members of the Two-Pore-Domain (KCNK) Potassium Channel Family. J. Neurosci. 2001, 21, 7491–7505. [Google Scholar] [CrossRef]
- Alloui, A.; Zimmermann, K.; Mamet, J.; Duprat, F.; Noël, J.; Chemin, J.; Guy, N.; Blondeau, N.; Voilley, N.; Rubat-Coudert, C.; et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 2006, 25, 2368–2376. [Google Scholar] [CrossRef]
- Honoré, E. The neuronal background K2P channels: Focus on TREK1. Nat. Rev. Neurosci. 2007, 8, 251–261. [Google Scholar] [CrossRef]
- Sano, Y.; Inamura, K.; Miyake, A.; Mochizuki, S.; Kitada, C.; Yokoi, H.; Nozawa, K.; Okada, H.; Matsushime, H.; Furuichi, K. A Novel Two-pore Domain K+ Channel, TRESK, Is Localized in the Spinal Cord. J. Biol. Chem. 2003, 278, 27406–27412. [Google Scholar] [CrossRef]
- Viatchenko-Karpinski, V.; Ling, J.; Gu, J.G. Characterization of temperature-sensitive leak K+ currents and expression of TRAAK, TREK-1, and TREK2 channels in dorsal root ganglion neurons of rats. Mol. Brain 2018, 11, 40. [Google Scholar] [CrossRef]
- Pereira, V.; Busserolles, J.; Christin, M.; Devilliers, M.; Poupon, L.; Legha, W.; Alloui, A.; Aissouni, Y.; Bourinet, E.; Lesage, F.; et al. Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. PAIN® 2014, 155, 2534–2544. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Shin, D.H.; Kim, H.J.; Yoo, H.Y.; Zhang, Y.-H.; Nam, J.H.; Kim, W.K.; Kim, S.J. Inhibition of TREK-2 K+ channels by PI(4,5)P2: An intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase. Pflugers Arch. 2016, 468, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Ruzafa, L.; Herrera-Pérez, S.; Campos-Ríos, A.; Lamas, J.A. Are TREK Channels Temperature Sensors? Front. Cell. Neurosci. 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, S.; Musinszki, M. Thermosensitivity of TREK K2P channels is controlled by a PKA switch and depends on the microtubular network. Pflugers Arch. 2025, 477, 953–966. [Google Scholar] [CrossRef]
- Romero, M.; Reboreda, A.; Sánchez, E.; Lamas, J.A. Newly developed blockers of the M-current do not reduce spike frequency adaptation in cultured mouse sympathetic neurons. Eur. J. Neurosci. 2004, 19, 2693–2702. [Google Scholar] [CrossRef]
- Vriens, J.; Owsianik, G.; Hofmann, T.; Philipp, S.E.; Stab, J.; Chen, X.; Benoit, M.; Xue, F.; Janssens, A.; Kerselaers, S.; et al. TRPM3 Is a Nociceptor Channel Involved in the Detection of Noxious Heat. Neuron 2011, 70, 482–494. [Google Scholar] [CrossRef]
- Eckert, M.; Egenberger, B.; Döring, F.; Wischmeyer, E. TREK-1 isoforms generated by alternative translation initiation display different susceptibility to the antidepressant fluoxetine. Neuropharmacology 2011, 61, 918–923. [Google Scholar] [CrossRef]
- Kim, E.-J.; Lee, D.K.; Hong, S.-G.; Han, J.; Kang, D. Activation of TREK-1, but Not TREK-2, Channel by Mood Stabilizers. Int. J. Mol. Sci. 2017, 18, 2460. [Google Scholar] [CrossRef]
- Heurteaux, C.; Lucas, G.; Guy, N.; El Yacoubi, M.; Thümmler, S.; Peng, X.-D.; Noble, F.; Blondeau, N.; Widmann, C.; Borsotto, M.; et al. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat. Neurosci. 2006, 9, 1134–1141. [Google Scholar] [CrossRef]
A-Type (mV) | Ah-Type (mV) | C-Type (mV) | ||||
---|---|---|---|---|---|---|
37 °C | 50 °C | 37 °C | 50 °C | 37 °C | 50 °C | |
Control | −10.8 ± 1.1 (n = 7) | 30.4 ± 5.5 (n = 7) | −9.3 ± 1 (n = 10) | 29.36 ± 8.9 (n = 10) | −8.2 ± 1 (n = 8) | 28.53 ± 3.1 (n = 8) |
Fluoxetine | −2.74 ± 0.4 (n = 5) | 20.7 ± 1.2 (n = 5) | −4.7 ± 0.7 (n = 12) | 20.71 ± 1.3 (n = 12) | −2.2 ± 0.36 (n = 7) | 17.94 ± 1.8 (n = 7) |
Spadin | −2.17 ± 0.31 (n = 8) | 17.67 ± 6.7 (n = 8) | −2.89 ± 0.4 (n = 6) | 17.27 ± 2.9 (n = 6) | 2.03 ± 0.2 (n = 4) | 21.2 ± 3.8 (n = 4) |
Current Injected (pA) | A-Type | Ah-Type | C-Type | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
24 °C | 24 °C + Sp | 37 °C | 37 °C + Sp | 24 °C | 24 °C + Sp | 37 °C | 37 °C + Sp | 24 °C | 24 °C + Sp | 37 °C | 37 °C + Sp | |
n = 10 | n = 7 | n = 10 | n = 7 | n = 10 | n = 10 | n = 10 | n = 10 | n = 10 | n = 7 | n = 10 | n = 7 | |
50 | 1.4 ± 0.58 | 3.7 ± 1.5 | 3.8 ± 1.12 | 2.1 ± 1.9 | 1.2 ± 0.3 | 2 ± 1.2 | 4 ± 1.3 | 3.6 ± 2.7 | 2.3 ± 0.5 | 3.3 ± 1.1 | 5.7 ± 1.67 | 18.4 ± 4.5 |
100 | 2.5 ± 0.73 | 7.5 ± 3.6 | 9.1 ± 2.83 | 18.1 ± 4.2 | 3.1 ± 0.8 | 4.6 ± 2.3 | 9.1 ± 2.9 | 16.1 ± 4.8 | 3.2 ± 0.74 | 8 ± 2.2 | 12.9 ± 3.79 | 33.6 ± 4.9 |
150 | 3.4 ± 0.89 | 8.8 ± 4.2 | 16.6 ± 4.54 | 34.6 ± 7.1 | 3.5 ± 0.7 | 6.5 ± 2.5 | 19 ± 6.1 | 34.7 ± 6.4 | 3.2 ± 0.63 | 10.6 ± 2.9 | 18.5 ± 3.98 | 44 ± 3.4 |
200 | 4.1 ± 1.16 | 9.5 ± 4.5 | 20.2 ± 4.74 | 44.9 ± 8.6 | 1.4 ± 0.7 | 8.4 ± 1.8 | 24.3 ± 6.7 | 49.1 ± 5.7 | 3.4 ± 0.56 | 11.7 ± 3.3 | 17.9 ± 4.62 | 49.4 ± 7.1 |
250 | 4.7 ± 1.47 | 9.5 ± 5.2 | 21.4 ± 3.63 | 50.9 ± 9.7 | 3.6 ± 0.7 | 8.3 ± 1.4 | 25.5 ± 5 | 58.2 ± 7.1 | 3.5 ± 0.62 | 12.3 ± 3.7 | 19.3 ± 4.88 | 56.4 ± 7.8 |
300 | 5 ± 1.50 | 9.3 ± 5.3 | 20.8 ± 3.2 | 55 ± 9.8 | 4.4 ± 0.9 | 10 ± 1.9 | 28.7 ± 5.6 | 62 ± 8.8 | 3.4 ± 0.06 | 11.4 ± 3.2 | 20 ± 4.9 | 64.9 ± 9.6 |
350 | 4.9 ± 1.55 | 9.8 ± 5.4 | 21.9 ± 3.3 | 53 ± 9 | 3.8 ± 0.6 | 9.2 ± 1.9 | 27.8 ± 5.9 | 71.5 ± 13.2 | 3.3 ± 0.54 | 11.4 ± 3.2 | 21.2 ± 5.05 | 69.7 ± 10.3 |
Individual Parameters | A-Type (n = 10) | Ah-Type (n = 10) | C-Type (n = 10) | |||
---|---|---|---|---|---|---|
24 °C | 37 °C | 24 °C | 37 °C | 24 °C | 37 °C | |
Amplitude (mV) | 124.24 ± 2.2 | 116.83 ± 3.32 ** | 130.4 ± 4.29 | 122.22 ± 6.23 * | 124.69 ± 5.74 | 115.01 ± 6.29 * |
AP halfwidth (ms) | 2.34 ± 0.17 | 1.58 ± 0.10 * | 2.61 ± 0.20 | 2.40 ± 0.43 | 2.66 ± 0.27 | 2.27 ± 0.42 |
AHP (mV) | −4.05 ± 1.28 | −15.17 ± 1.95 *** | −6.19 ± 1.11 | −27.29 ± 3.12 *** | −3.25 ± 0.81 | −21.60 ± 4.24 ** |
Threshold (mV) | −21.09 ± 2.90 | −30.35 ± 2.57 ** | −21.76 ± 1.62 | −31.60 ± 1.18 *** | −21.−85 ± 2.10 | −29.88 ± 1.76 ** |
VDmax (mV/ms) | 95.35 ± 7.37 | 133.47 ± 9.12 *** | 93.40 ± 9.61 | 132.22 ± 15.62 ** | 89.07 ± 14.49 | 113.77 ± 17.13 * |
VRmax (mV/ms) | −71.56 ± 7.46 | −100.70 ± 6.12 ** | −66.66 ± 5.95 | −135.38 ± 6.13 *** | −66.95 ± 8.65 | −124.90 ± 8.90 *** |
A-Type | Ah-Type | C-Type | |
---|---|---|---|
COCKTAIL A | |||
Heat-induced current (pA) | 82.20 ± 5.49 (n = 18) | 111.75 ± 9.52 (n = 26) | 72.66 ± 7.60 (n = 21) |
Conductance at 24 °C (nS) | 2.13 ± 0.24 (n = 5) | 2.02 ± 0.18 (n = 13) | 1.98 ± 0.12 (n = 10) |
Conductance at 37 °C (nS) | 3.25 ± 0.29 (n = 5) *** | 5.59 ± 0.66 (n = 13) *** | 3.30 ± 0.24 (n = 10) *** |
COCKTAIL B | |||
Heat-induced current (pA) | 65.91 ± 8.41 (n = 13) | 110.51 ± 10.46 (n = 21) | 72.60 ± 10.80 (n = 14) |
Conductance at 24 °C (nS) | 2.09 ± 0.20 (n = 10) *** | 2.30 ± 0.19 (n = 16) *** | 2.18 ± 0.17 (n = 9) *** |
Conductance at 37 °C (nS) | 3.82 ± 0.37 (n = 10) *** | 5.24 ± 0.39 (n = 16) *** | 3.73 ± 0.39 (n = 9) *** |
TREK1 (n = 11) | TREK2 (n = 3) | TRAAK (n = 5) | ||||
---|---|---|---|---|---|---|
24 °C | 37 °C | 24 °C | 37 °C | 24 °C | 37 °C | |
Po | 0.006 ± 0.002 | 0.044 ± 0.02 *** | 0.004 ± 0.002 | 0.04 ± 0.008 * | 0.004 ± 0.002 | 0.037 ± 0.017 * |
Dwell time (ms) | 0.475 ± 0.17 | 0.308 ± 0.092 *** | 0.483 ± 0.1 | 0.21 ± 0.04 * | 0.4 ± 0.15 | 0.19 ± 0.07 ** |
Amplitude (pA) | 6.70 ± 0.31 | 6.82 ± 0.56 | 7.68 ± 0.065 | 7.87 ± 0.27 | 7.06 ± 0.16 | 7.14 ± 0.15 * |
Conductance (pS) | 111.7 ± 5.2 | 113.7 ± 9.3 | 128 ± 1.1 | 131.2 ± 4.5 | 117.7 ± 2.7 | 119 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rueda-Ruzafa, L.; Campos-Ríos, A.; Rivas-Ramírez, P.; Rodríguez-Castañeda, M.; Herrera-Pérez, S.; Lamas, J.A. Increasing Temperature Activates TREK Potassium Currents in Vagal Afferent Neurons from the Nodose Ganglion. Int. J. Mol. Sci. 2025, 26, 9119. https://doi.org/10.3390/ijms26189119
Rueda-Ruzafa L, Campos-Ríos A, Rivas-Ramírez P, Rodríguez-Castañeda M, Herrera-Pérez S, Lamas JA. Increasing Temperature Activates TREK Potassium Currents in Vagal Afferent Neurons from the Nodose Ganglion. International Journal of Molecular Sciences. 2025; 26(18):9119. https://doi.org/10.3390/ijms26189119
Chicago/Turabian StyleRueda-Ruzafa, Lola, Ana Campos-Ríos, Paula Rivas-Ramírez, Manuela Rodríguez-Castañeda, Salvador Herrera-Pérez, and José Antonio Lamas. 2025. "Increasing Temperature Activates TREK Potassium Currents in Vagal Afferent Neurons from the Nodose Ganglion" International Journal of Molecular Sciences 26, no. 18: 9119. https://doi.org/10.3390/ijms26189119
APA StyleRueda-Ruzafa, L., Campos-Ríos, A., Rivas-Ramírez, P., Rodríguez-Castañeda, M., Herrera-Pérez, S., & Lamas, J. A. (2025). Increasing Temperature Activates TREK Potassium Currents in Vagal Afferent Neurons from the Nodose Ganglion. International Journal of Molecular Sciences, 26(18), 9119. https://doi.org/10.3390/ijms26189119