Long-Term Cardiovascular Toxicity of Immunotherapy: Too Important to Ignore
Abstract
1. Introduction
2. Immune Checkpoint Inhibition Therapy and the Atherosclerotic Process
3. Long-Term Atherosclerosis-Related Cardiovascular Toxicity of Immunotherapy
Author, Year | Population | Study Design | Main Observation | Relevance (H/M/L) and Limitation |
---|---|---|---|---|
Drobni, 2020 [41] | 2842 pts and 2842 controls | Retrospective, paired cohorts |
| M Retrospective but paired controls |
Drobni, 2020 [41] | 40 ICI-treated melanoma patients | Retrospective Sub analysis |
| L Retrospective, small sample size |
Gong, 2024 [33] | 487 ICI-treated NSCLC pts; 971 controls | Retrospective, case–control |
| M/L Retrospective, adequate sample size |
Nso, 2020 [36] | 4622 pts receiving ICIs | Meta-analysis |
| M Meta-analysis, possible reporting bias |
Solinas, 2020 [37] | 20,273 pts | Meta-analysis |
| M Retrospective; few trials with control arm, based on initial clinical experience with IT |
Hu, 2017 [38] | 4828 NSCLC pts | Meta-analysis |
| M/L Retrospective, post hoc analysis, data on old trials |
Oren, 2020 [40] | 3326 pts receiving ICIs | Retrospective |
| L Retrospective, single center, short follow-up |
Drobni, 2023 [32] | 40 ICI-treated NSCLC patients paired with 20 controls | Retrospective, case–control |
| L Retrospective, small sample size |
Tan, 2024 [45] | 366 pts no control arm | Cohort study | 7.1% incidence of ASCVD events (median follow-up of 3.4 years) which could occur even after treatment stop. Previous ASCVD predicted toxicity. | L Retrospective, single center, small sample size |
Nichetti, 2019 [46] | 217 ICI-treated NSCLC pts | Retrospective |
| L Retrospective, small sample size |
Dolladille, 2021 [47] | 48 RCTs (29,592 pts) with control arm | Meta-analysis | Increased risk of AMI (7.4/1000 pts on ICIs, OR 1.51 vs. controls) and cerebral arterial ischaemia (8.8/1000 pts, OR 1.56 vs. controls). | H/M Retrospective, post hoc analysis limited to RCTs reporting CV events |
Salem, 2018 [48] | 31,321 adverse events reports (on a total of 16,343.451) | Retrospective based on pharmacovigilance reports |
| M Retrospective; potential reporting bias, based on initial clinical experience with IT |
Wang, 2022 [50] | 289 ICI-treated melanoma vs. 357 controls | Retrospective |
| L Retrospective, relatively small sample size |
4. Cardiovascular Risk Assessment and Monitoring for ASCVD
5. Preventive Strategies
6. Future Research Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Lesch, S.; Gill, S. The promise and perils of immunotherapy. Blood Adv. 2021, 5, 3709–3725. [Google Scholar] [CrossRef]
- Sadreddini, S.; Baradaran, B.; Aghebati-Maleki, A.; Sadreddini, S.; Shanehbandi, D.; Fotouhi, A.; Aghebati-Maleki, L. Immune checkpoint blockade opens a new way to cancer immunotherapy. J. Cell. Physiol. 2019, 234, 8541–8549. [Google Scholar] [CrossRef]
- Kyi, C.; Postow, M.A. Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 2014, 588, 368–376. [Google Scholar] [CrossRef]
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef]
- Kalvapudi, S.; Vedire, Y.; Yendamuri, S.; Barbi, J. Neoadjuvant therapy in non-small cell lung cancer: Basis, promise, and challenges. Front. Oncol. 2023, 13, 1286104. [Google Scholar] [CrossRef]
- Catania, C.; Proto, C.; Bennati, C.; Grisanti, S.; Colantonio, I.; Petrella, F.; Filippi, A.R.; Genova, C.; Piperno, G.; Teodorani, N.; et al. Navigating chemotherapy and immunotherapy in early-stage lung cancer. A critical review and statements from INTERACTION group. Crit. Rev. Oncol./Hematol. 2025, 208, 104633. [Google Scholar] [CrossRef]
- Wang, X.; Ma, S.; Zhu, S.; Zhu, L.; Guo, W. Advances in Immunotherapy and Targeted Therapy of Malignant Melanoma. Biomedicines 2025, 13, 225. [Google Scholar] [CrossRef]
- Chen, Y.W.; Panian, J.; Rose, B.; Bagrodia, A.; McKay, R.R. Recent Developments in the Management of Renal Cell Cancer. JCO Oncol. Pract. 2025, OP2400875. [Google Scholar] [CrossRef]
- Morris, Z.S.; Demaria, S.; Monjazeb, A.M.; Formenti, S.C.; Weichselbaum, R.R.; Welsh, J.; Enderling, H.; Schoenfeld, J.D.; Brody, J.D.; McGee, H.M.; et al. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: Challenges and opportunities for clinical translation. Lancet Oncol. 2025, 26, e152–e170. [Google Scholar] [CrossRef]
- Wang, Y.; Safi, M.; Hirsch, F.R.; Lu, S.; Peters, S.; Govindan, R.; Rosell, R.; Park, K.; Zhang, J.J. Immunotherapy for advanced-stage squamous cell lung cancer: The state of the art and outstanding questions. Nat. Rev. Clin. Oncol. 2025, 22, 200–214. [Google Scholar] [CrossRef]
- Inno, A.; Metro, G.; Bironzo, P.; Grimaldi, A.M.; Grego, E.; Di Nunno, V.; Picasso, V.; Massari, F.; Gori, S. Pathogenesis, clinical manifestations and management of immune checkpoint inhibitors toxicity. Tumori J. 2017, 103, 405–421. [Google Scholar] [CrossRef]
- Michot, J.M.; Lappara, A.; Le Pavec, J.; Simonaggio, A.; Collins, M.; De Martin, E.; Danlos, F.X.; Ammari, S.; Cauquil, C.; Ederhy, S.; et al. The 2016–2019 ImmunoTOX assessment board report of collaborative management of immune-related adverse events, an observational clinical study. Eur. J. Cancer 2020, 130, 39–50. [Google Scholar] [CrossRef]
- Palaskas, N.L.; Ali, H.J.; Koutroumpakis, E.; Ganatra, S.; Deswal, A. Cardiovascular toxicity of immune therapies for cancer. BMJ 2024, 385, e075859, Correction in BMJ 2024, 385. [Google Scholar] [CrossRef] [PubMed]
- Inno, A.; Tarantini, L.; Parrini, I.; Silvestris, N.; Russo, A.; Gori, S. Cardiovascular Effects of Immune Checkpoint Inhibitors: More Than Just Myocarditis. Curr. Oncol. Rep. 2023, 25, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Canale, M.L.; Greco, A.; Inno, A.; Tedeschi, A.; De Biasio, M.; Oliva, S.; Bisceglia, I.; Maurea, N.; Tarantini, L.; Gallucci, G.; et al. Aterosclerosi, cancro e inibitori dei checkpoint immunitari [Atherosclerosis, cancer and immune checkpoint inhibitors]. G. Ital. Di Cardiol. 2024, 25, 711–719. (In Italian) [Google Scholar] [CrossRef]
- Owen, C.N.; Bai, X.; Quah, T.; Lo, S.N.; Allayous, C.; Callaghan, S.; Martínez-Vila, C.; Wallace, R.; Bhave, P.; Reijers, I.L.M.; et al. Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma. Ann. Oncol. 2021, 32, 917–925. [Google Scholar] [CrossRef]
- Couey, M.A.; Bell, R.B.; Patel, A.A.; Romba, M.C.; Crittenden, M.R.; Curti, B.D.; Urba, W.J.; Leidner, R.S. Delayed immune-related events (DIRE) after discontinuation of immunotherapy: Diagnostic hazard of autoimmunity at a distance. J. Immunother. Cancer 2019, 7, 165. [Google Scholar] [CrossRef]
- Gallucci, G.; Larocca, M.; Navazio, A.; Turazza, F.M.; Inno, A.; Canale, M.L.; Oliva, S.; Besutti, G.; Tedeschi, A.; Aschieri, D.; et al. Atherosclerosis and the Bidirectional Relationship Between Cancer and Cardiovascular Disease: From Bench to Bedside, Part 2 Management. Int. J. Mol. Sci. 2025, 26, 334. [Google Scholar] [CrossRef]
- Jo, W.; Won, T.; Daoud, A.; Čiháková, D. Immune checkpoint inhibitors associated cardiovascular immune-related adverse events. Front. Immunol. 2024, 15, 1340373. [Google Scholar] [CrossRef]
- Matsumoto, T.; Sasaki, N.; Yamashita, T.; Emoto, T.; Kasahara, K.; Mizoguchi, T.; Hayashi, T.; Yodoi, K.; Kitano, N.; Saito, T.; et al. Overexpression of Cytotoxic T-Lymphocyte-Associated Antigen-4 Prevents Atherosclerosis in Mice. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1141–1151. [Google Scholar] [CrossRef]
- Poels, K.; van Leent, M.M.T.; Reiche, M.E.; Kusters, P.J.H.; Huveneers, S.; de Winther, M.P.J.; Mulder, W.J.M.; Lutgens, E.; Seijkens, T.T.P. Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells 2020, 9, 1987. [Google Scholar] [CrossRef] [PubMed]
- Ewing, M.M.; Karper, J.C.; Abdul, S.; de Jong, R.C.; Peters, H.A.; de Vries, M.R.; Redeker, A.; Kuiper, J.; Toes, R.E.; Arens, R.; et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int. J. Cardiol. 2013, 168, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Gotsman, I.; Grabie, N.; Dacosta, R.; Sukhova, G.; Sharpe, A.; Lichtman, A.H. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Investig. 2007, 117, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
- Grievink, H.W.; Smit, V.; Verwilligen, R.A.F.; Bernabé Kleijn, M.N.A.; Smeets, D.; Binder, C.J.; Yagita, H.; Moerland, M.; Kuiper, J.; Bot, I.; et al. Stimulation of the PD-1 Pathway Decreases Atherosclerotic Lesion Development in Ldlr Deficient Mice. Front. Cardiovasc. Med. 2021, 8, 740531. [Google Scholar] [CrossRef]
- Lee, J.; Zhuang, Y.; Wei, X.; Shang, F.; Wang, J.; Zhang, Y.; Liu, X.; Yang, Y.; Liu, L.; Zheng, Q. Contributions of PD-1/PD-L1 pathway to interactions of myeloid DCs with T cells in atherosclerosis. J. Mol. Cell. Cardiol. 2009, 46, 169–176. [Google Scholar] [CrossRef]
- Li, S.H.; Chen, W.J.; Yan, M.; Shu, Y.W.; Liao, Y.H. Expression of coinhibitory PD-L1 on CD4+CD25+FOXP3+ regulatory T cells is elevated in patients with acute coronary syndrome. Coron. Artery Dis. 2015, 26, 598–603. [Google Scholar] [CrossRef]
- Mulholland, M.; Kritikou, E.; Katra, P.; Nilsson, J.; Björkbacka, H.; Lichtman, A.H.; Rodriguez, A.; Engelbertsen, D. LAG3 Regulates T Cell Activation and Plaque Infiltration in Atherosclerotic Mice. JACC CardioOncology 2022, 4, 635–645, Correction in JACC CardioOncology 2022, 4, 635–645. [Google Scholar] [CrossRef]
- Xiong, X.; Duan, Z.; Zhou, H.; Niu, L.; Luo, Z.; Li, W. The relationship between soluble lymphocyte activation gene-3 and coronary artery disease. Front. Cardiovasc. Med. 2022, 9, 988582. [Google Scholar] [CrossRef]
- Chowdhury, R.R.; D’Addabbo, J.; Huang, X.; Veizades, S.; Sasagawa, K.; Louis, D.M.; Cheng, P.; Sokol, J.; Jensen, A.; Tso, A.; et al. Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circ. Res. 2022, 130, 1510–1530. [Google Scholar] [CrossRef]
- Inno, A.; Chiampan, A.; Lanzoni, L.; Verzè, M.; Molon, G.; Gori, S. Immune Checkpoint Inhibitors and Atherosclerotic Vascular Events in Cancer Patients. Front. Cardiovasc. Med. 2021, 8, 652186. [Google Scholar] [CrossRef] [PubMed]
- Drobni, Z.D.; Gongora, C.; Taron, J.; Suero-Abreu, G.A.; Karady, J.; Gilman, H.K.; Supraja, S.; Nikolaidou, S.; Leeper, N.; Merkely, B.; et al. Impact of immune checkpoint inhibitors on atherosclerosis progression in patients with lung cancer. J. Immunother. Cancer 2023, 11, e007307. [Google Scholar] [CrossRef]
- Gong, B.; Guo, Y.; Li, Y.; Wang, J.; Zhou, G.; Chen, Y.H.; Nie, T.; Yang, M.; Luo, K.; Zheng, C.; et al. Immune checkpoint inhibitors in cancer: The increased risk of atherosclerotic cardiovascular disease events and progression of coronary artery calcium. BMC Med. 2024, 22, 44. [Google Scholar] [CrossRef] [PubMed]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76, Erratum in Lancet 2017, 390, 848. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Nso, N.; Antwi-Amoabeng, D.; Beutler, B.D.; Ulanja, M.B.; Ghuman, J.; Hanfy, A.; Nimo-Boampong, J.; Atanga, S.; Doshi, R.; Enoru, S.; et al. Cardiac adverse events of immune checkpoint inhibitors in oncology patients: A systematic review and meta-analysis. World J. Cardiol. 2020, 12, 584–598. [Google Scholar] [CrossRef]
- Solinas, C.; Saba, L.; Sganzerla, P.; Petrelli, F. Venous and arterial thromboembolic events with immune checkpoint inhibitors: A systematic review. Thromb. Res. 2020, 196, 444–453. [Google Scholar] [CrossRef]
- Hu, Y.B.; Zhang, Q.; Li, H.J.; Michot, J.M.; Liu, H.B.; Zhan, P.; Lv, T.F.; Song, Y. Evaluation of rare but severe immune related adverse effects in PD-1 and PD-L1 inhibitors in non–small cell lung cancer: A meta-analysis. Transl. Lung Cancer Res. 2017, 6 (Suppl. S1), S8. [Google Scholar] [CrossRef]
- Laenens, D.; Yu, Y.; Santens, B.; Jacobs, J.; Beuselinck, B.; Bechter, O.; Wauters, E.; Staessen, J.; Janssens, S.; Van Aelst, L. Incidence of cardiovascular events in patients treated with immune checkpoint inhibitors. J. Clin. Oncol. 2022, 40, 3430–3438. [Google Scholar] [CrossRef]
- Oren, O.; Yang, E.H.; Molina, J.R.; Bailey, K.R.; Blumenthal, R.S.; Kopecky, S.L. Cardiovascular Health and Outcomes in Cancer Patients Receiving Immune Checkpoint Inhibitors. Am. J. Cardiol. 2020, 125, 1920–1926. [Google Scholar] [CrossRef]
- Drobni, Z.D.; Alvi, R.M.; Taron, J.; Zafar, A.; Murphy, S.P.; Rambarat, P.K.; Mosarla, R.C.; Lee, C.; Zlotoff, D.A.; Raghu, V.K.; et al. Association Between Immune Checkpoint Inhibitors with Cardiovascular Events and Atherosclerotic Plaque. Circulation. 2020, 142, 2299–2311. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, R.; Hoeller, C.; Pichler, V.; Mitterhauser, M.; Karanikas, G.; Haug, A.; Li, X.; Hacker, M. Immune Checkpoint Inhibitor Therapy Induces Inflammatory Activity in Large Arteries. Circulation 2020, 142, 2396–2398. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, R.; Beer, L.; Prosch, H.; Kifjak, D.; Zisser, L.; Binder, P.; Grünert, S.; Langsteger, W.; Li, X.; Hacker, M. Induction of Arterial Inflammation by Immune Checkpoint Inhibitor Therapy in Lung Cancer Patients as Measured by 2-[18F]FDG Positron Emission Tomography/Computed Tomography Depends on Pre-Existing Vascular Inflammation. Life 2024, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, Y.; Zhang, Y.; Wang, W.; Wang, Y.; Lu, Z.; Zhang, Y.; Lei, H.; Li, D.; Long, B.; et al. Association of immune checkpoint inhibitors therapy with arterial thromboembolic events in cancer patients: A retrospective cohort study. Cancer Med. 2023, 12, 18531–18541. [Google Scholar] [CrossRef]
- Tan, S.; Spear, E.; Sane, N.; Chan, J.; Nelson, A.J.; Alamgeer, M.; Nerlekar, N.; Segelov, E.; Nicholls, S.J. Atherosclerotic Cardiovascular Events in Cancer Patients Treated with Immune Checkpoint Inhibitors: A Retrospective Cohort Study. Heart Lung Circ. 2024, 33, 721–729. [Google Scholar] [CrossRef]
- Nichetti, F.; Ligorio, F.; Zattarin, E.; Signorelli, D.; Prelaj, A.; Proto, C.; Galli, G.; Marra, A.; Apollonio, G.; Porcu, L.; et al. Is There an Interplay between Immune Checkpoint Inhibitors, Thromboprophylactic Treatments and Thromboembolic Events? Mechanisms and Impact in Non-Small Cell Lung Cancer Patients. Cancers 2019, 12, 67. [Google Scholar] [CrossRef]
- Dolladille, C.; Akroun, J.; Morice, P.M.; Dompmartin, A.; Ezine, E.; Sassier, M.; Da-Silva, A.; Plane, A.F.; Legallois, D.; L'Orphelin, J.M.; et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: A safety meta-analysis. Eur. Heart J. 2021, 42, 4964–4977. [Google Scholar] [CrossRef]
- Salem, J.E.; Manouchehri, A.; Moey, M.; Lebrun-Vignes, B.; Bastarache, L.; Pariente, A.; Gobert, A.; Spano, J.P.; Balko, J.M.; Bonaca, M.P.; et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018, 19, 1579–1589. [Google Scholar] [CrossRef]
- Bar, J.; Markel, G.; Gottfried, T.; Percik, R.; Leibowitz-Amit, R.; Berger, R.; Golan, T.; Daher, S.; Taliansky, A.; Dudnik, E.; et al. Acute vascular events as a possibly related adverse event of immunotherapy: A single-institute retrospective study. Eur. J. Cancer 2019, 120, 122–131. [Google Scholar] [CrossRef]
- Wang, C.; Zoungas, S.; Yan, M.; Wolfe, R.; Haydon, A.; Shackleton, M.; Voskoboynik, M.; Moore, M.; Andrews, M.C.; Nicholls, S.J.; et al. Immune checkpoint inhibitors and the risk of major atherosclerotic cardiovascular events in patients with high-risk or advanced melanoma: A retrospective cohort study. Cardiooncology 2022, 8, 23. [Google Scholar] [CrossRef]
- Suero-Abreu, G.A.; Zanni, M.V.; Neilan, T.G. Atherosclerosis with Immune Checkpoint Inhibitor Therapy: Evidence, Diagnosis, and Management: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncology 2022, 4, 598–615. [Google Scholar] [CrossRef] [PubMed]
- Vuong, J.T.; Stein-Merlob, A.F.; Nayeri, A.; Sallam, T.; Neilan, T.G.; Yang, E.H. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 577–593. [Google Scholar] [CrossRef] [PubMed]
- SCORE2 Working Group; ESCCardiovascular Risk Collaboration. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361, Erratum in Eur. Heart J. 2023, 44, 1621. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337, Erratum in Eur. Heart J. 2022, 43, 4468. https://doi.org/10.1093/eurheartj/ehac458. [Google Scholar] [CrossRef]
- Davies, M. Nutritional screening and assessment in cancer-associated malnutrition. Eur. J. Oncol. Nurs. 2005, 9 (Suppl. S2), S64–S73. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, A.; Tucci, M.; Adamo, V.; Stucci, L.S.; Russo, A.; Tanda, E.T.; Spagnolo, F.; Rastelli, F.; Bisonni, R.; Santini, D.; et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J. Immunother. Cancer 2020, 8, e001361. [Google Scholar] [CrossRef]
- Quagliariello, V.; Bisceglia, I.; Berretta, M.; Iovine, M.; Canale, M.L.; Maurea, C.; Giordano, V.; Paccone, A.; Inno, A.; Maurea, N. PCSK9 Inhibitors in Cancer Patients Treated with Immune-Checkpoint Inhibitors to Reduce Cardiovascular Events: New Frontiers in Cardioncology. Cancers 2023, 15, 1397. [Google Scholar] [CrossRef]
- Tan, S.; Spear, E.; Sane, N.; Nelson, A.J.; Nerlekar, N.; Segelov, E.; Nicholls, S.J. Blood pressure surveillance in cancer patients treated with immune checkpoint inhibitors. J. Hum. Hypertens. 2023, 37, 1043–1046. [Google Scholar] [CrossRef]
- Oh, M.S.; Guzner, A.; Wainwright, D.A.; Mohindra, N.A.; Chae, Y.K.; Behdad, A.; Villaflor, V.M. The Impact of Beta Blockers on Survival Outcomes in Patients with Non-small-cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, e57–e62. [Google Scholar] [CrossRef]
- Wu, Y.L.; van Hyfte, G.; Özbek, U.; Reincke, M.; Gampa, A.; Mohamed, Y.I.; Nishida, N.; Wietharn, B.; Amara, S.; Lee, P.C.; et al. Outcomes of beta blocker use in advanced hepatocellular carcinoma treated with immune checkpoint inhibitors. Front. Oncol. 2023, 13, 1128569. [Google Scholar] [CrossRef] [PubMed]
- Duarte Mendes, A.; Freitas, A.R.; Vicente, R.; Ferreira, R.; Martins, T.; Ramos, M.J.; Baptista, C.; Silva, B.M.; Margarido, I.; Vitorino, M.; et al. Beta-Adrenergic Blockade in Advanced Non-Small Cell Lung Cancer Patients Receiving Immunotherapy: A Multicentric Study. Cureus 2024, 16, e52194. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.W.; Sood, A.K. Molecular pathways: Beta-adrenergic signaling in cancer. Clin. Cancer Res. 2012, 18, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.H.; Chen, Y.J.; Chen, C.Y.; Chang, Y.C.; Wang, S.S.; See, X.Y.; Horng, C.S.; Peng, C.Y.; Hsia, Y.P.; Peng, C.M.; et al. Effect of metformin on outcomes of patients treated with immune checkpoint inhibitors: A retrospective cohort study. Cancer Immunol. Immunother. 2023, 72, 1951–1956. [Google Scholar] [CrossRef]
- Cortellini, A.; D’Alessio, A.; Cleary, S.; Buti, S.; Bersanelli, M.; Bordi, P.; Tonini, G.; Vincenzi, B.; Tucci, M.; Russo, A.; et al. Type 2 Diabetes Mellitus and Efficacy Outcomes from Immune Checkpoint Blockade in Patients with Cancer. Clin. Cancer Res. 2023, 29, 2714–2724. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.C.; Ding, Q.; Ning, J.; Zhu, H. Metformin as a booster or obstacle of immunotherapy in patients with non-small cell lung cancer and diabetes mellitus. Cancer 2024, 130, 322–323. [Google Scholar] [CrossRef]
- Greco, A.; Canale, M.L.; Quagliariello, V.; Oliva, S.; Tedeschi, A.; Maurea, N.; De Biasio, M.; Bisceglia, I.; Tarantini, L.; Maurea, N.; et al. SGLT2 Inhibitors in Cancer Patients: A Comprehensive Review of Clinical, Biochemical, and Therapeutic Implications in Cardio-Oncology. Int. J. Mol. Sci. 2025, 26, 4780. [Google Scholar] [CrossRef]
- Greco, A.; Quagliariello, V.; Rizzo, G.; Tedeschi, A.; Schirinzi, S.; Turco, A.; Galiazzo, M.; Acquaro, M.; De Amicis, M.; Klersy, C.; et al. SGLT2i Dapagliflozin in primary prevention of chemotherapy induced cardiotoxicity in breast cancer patients treated with neo-adjuvant anthracycline-based chemotherapy +/− trastuzumab: Rationale and design of the multicenter PROTECT trial. Cardiooncology 2025, 11, 79. [Google Scholar] [CrossRef]
- Quagliariello, V.; Canale, M.L.; Bisceglia, I.; Iovine, M.; Giordano, V.; Giacobbe, I.; Scherillo, M.; Gabrielli, D.; Maurea, C.; Barbato, M.; et al. Glucagon-like Peptide 1 Receptor Agonists in Cardio-Oncology: Pathophysiology of Cardiometabolic Outcomes in Cancer Patients. Int. J. Mol. Sci. 2024, 25, 11299. [Google Scholar] [CrossRef]
Risk Factor | Goal | Strategy |
---|---|---|
Smoking | Complete smoking cessation |
|
Obesity and physical inactivity | Encourage physical activity (adapt recommendations to patient’s performance and cancer-related limitations) |
|
Diet | Switch to Mediterranean diet |
|
Cholesterol | Lower LDL cholesterol levels (below 100 mg/dL if no ASCVD and below 55 mg/dL if ASCVD) |
|
Diabetes | Optimal blood glucose control |
|
Hypertension | Lower blood pressure levels |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camerini, A.; Inno, A.; Canale, M.L.; Oliva, S.; Tedeschi, A.; Greco, A.; De Biasio, M.; Maurea, N.; Bisceglia, I.; Tarantini, L.; et al. Long-Term Cardiovascular Toxicity of Immunotherapy: Too Important to Ignore. Int. J. Mol. Sci. 2025, 26, 9100. https://doi.org/10.3390/ijms26189100
Camerini A, Inno A, Canale ML, Oliva S, Tedeschi A, Greco A, De Biasio M, Maurea N, Bisceglia I, Tarantini L, et al. Long-Term Cardiovascular Toxicity of Immunotherapy: Too Important to Ignore. International Journal of Molecular Sciences. 2025; 26(18):9100. https://doi.org/10.3390/ijms26189100
Chicago/Turabian StyleCamerini, Andrea, Alessandro Inno, Maria Laura Canale, Stefano Oliva, Andrea Tedeschi, Alessandra Greco, Marzia De Biasio, Nicola Maurea, Irma Bisceglia, Luigi Tarantini, and et al. 2025. "Long-Term Cardiovascular Toxicity of Immunotherapy: Too Important to Ignore" International Journal of Molecular Sciences 26, no. 18: 9100. https://doi.org/10.3390/ijms26189100
APA StyleCamerini, A., Inno, A., Canale, M. L., Oliva, S., Tedeschi, A., Greco, A., De Biasio, M., Maurea, N., Bisceglia, I., Tarantini, L., Gallucci, G., Riccio, C., Geraci, G., Bilato, C., Navazio, A., Iacovoni, A., Colivicchi, F., Grimaldi, M., & Oliva, F. (2025). Long-Term Cardiovascular Toxicity of Immunotherapy: Too Important to Ignore. International Journal of Molecular Sciences, 26(18), 9100. https://doi.org/10.3390/ijms26189100