Phenotypic Switching of VSMCs in the Development of CVDs: Focus on miRs
Abstract
1. Introduction
2. Origin and Distribution of VSMCs
3. Phenotypes of VSMCs
3.1. Contractile VSMCs
3.2. Fibroblast-like VSMCs
3.3. Macrophage-like and Proliferating VSMCs
3.4. Secretory and Synthetic Phenotypes of VSMCs
3.5. Mesenchymal-like, Adipocyte-like, and Osteoblast-like VSMCs
4. Factors Regulating the Phenotypic Switching of VSMCs
4.1. TGF-β and KLF4
4.2. The Impact of Immune System Cells on VSMC Phenotype Modulation
4.3. miRs
4.3.1. miRs-143/145
4.3.2. miRs-221/222
4.3.3. miR-21
4.3.4. miR-24
4.3.5. miR-126
4.3.6. miR-155
5. The Development of miR-Based Therapeutic Strategies for the Treatment of CVDs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACTA2 | Alpha-actin 2 |
ASMCs | Airway smooth muscle cells |
BMP2 | Bone morphogenetic protein 2 |
CNN1 | Calponin 1 |
CVDs | Cardiovascular diseases |
ECM | Extracellular matrix |
IL | Interleukin |
KLF4 | Kruppel-like factor 4 |
LDL | Low density lipoprotein |
miR | MicroRNA |
MYH11 | Myosin heavy chain 11 |
MYOCD | Myocardin |
PDGRF-BB | Platelet-derived growth factor BB |
SHF | Second heart field |
SN22α | Smooth muscle protein 22-α |
SRF | Serum response factor |
TGF-β | Transforming growth factor-β |
TNF | Tumor necrosis factor |
VSMCs | Vascular smooth muscle cells |
References
- Gao, J.; Cao, H.; Hu, G.; Wu, Y.; Xu, Y.; Cui, H.; Lu, H.S.; Zheng, L. The Mechanism and Therapy of Aortic Aneurysms. Signal Transduct. Target. Ther. 2023, 8, 55. [Google Scholar] [CrossRef]
- Krafcik, B.M.; Stone, D.H.; Cai, M.; Jarmel, I.A.; Eid, M.; Goodney, P.P.; Columbo, J.A.; Mayo Smith, M.F. Changes in Global Mortality from Aortic Aneurysm. J. Vasc. Surg. 2024, 80, 81–88. [Google Scholar] [CrossRef]
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 31 July 2025).
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Grootaert, M.O.J.; Bennett, M.R. Vascular Smooth Muscle Cells in Atherosclerosis: Time for a Re-Assessment. Cardiovasc. Res. 2021, 117, 2326. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Watanabe, T. Atherosclerosis: Known and Unknown. Pathol. Int. 2022, 72, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.B.; Martin-Ventura, J.L.; Egido, J.; Sakalihasan, N.; Treska, V.; Lindholt, J.; Allaire, E.; Thorsteinsdottir, U.; Cockerill, G.; Swedenborg, J. Novel Aspects of the Pathogenesis of Aneurysms of the Abdominal Aorta in Humans. Cardiovasc. Res. 2011, 90, 18–27. [Google Scholar] [CrossRef]
- Altobelli, E.; Rapacchietta, L.; Profeta, V.F.; Fagnano, R. Risk Factors for Abdominal Aortic Aneurysm in Population-Based Studies: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2805. [Google Scholar] [CrossRef]
- Khovantseva, U.S.; Kiseleva, D.G.; Cherednichenko, V.R.; Fotin, D.P.; Bogatyreva, A.I.; Boyarskaya, N.V.; Chakal, D.A.; Breshenkov, D.G.; Markina, Y.V.; Malashicheva, A.B.; et al. Functional Features of Smooth Muscle Cells of the Human Aortic Wall and Their Role in the Pathogenesis of Aneurysms. Morphology 2024, 162, 174–188. [Google Scholar] [CrossRef]
- Khovantseva, U.S.; Matveeva, D.K.; Chakal, D.A.; Breshenkov, D.G.; Charchyan, E.R. Phagocytic Activity and Proinflammatory Activation Potential of Smooth Muscle Cells of the Tunica Intima of Human Aorta Under Experimental Conditions. Russ. J. Immunol. 2024, 27, 887–892. [Google Scholar] [CrossRef]
- Fukuda, D.; Aikawa, M. Intimal Smooth Muscle Cells: The Context-Dependent Origin. Circulation 2010, 122, 2005–2008. [Google Scholar] [CrossRef]
- Chen, R.; McVey, D.G.; Shen, D.; Huang, X.; Ye, S. Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2023, 12, e031121. [Google Scholar] [CrossRef]
- Khovantseva, U.; Kiseleva, D.; Cherednichenko, V.; Chakal, D.; Breshenkov, D.; Markina, Y.; Ziganshin, R.; Charchyan, E.; Markin, A. The New Perspective on Understanding the Mechanisms of Cardiovascular Diseases Development. Sci. Rep. 2025, 15, 26596. [Google Scholar] [CrossRef]
- Kelly, R.G. The Second Heart Field. Curr. Top. Dev. Biol. 2012, 100, 33–65. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Lu, H.S.; Daugherty, A.; Sawada, H. Embryonic Heterogeneity of Smooth Muscle Cells in the Complex Mechanisms of Thoracic Aortic Aneurysms. Genes 2022, 13, 1618. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, E.G.; Parker, S.J.; Shin, J.Y.; Ziegler, S.G.; Creamer, T.J.; Bagirzadeh, R.; Bedja, D.; Chen, Y.; Calderon, J.F.; Weissler, K.; et al. Lineage-Specific Events Underlie Aortic Root Aneurysm Pathogenesis in Loeys-Dietz Syndrome. J. Clin. Investig. 2019, 129, 659. [Google Scholar] [CrossRef] [PubMed]
- Pedroza, A.J.; Dalal, A.R.; Shad, R.; Yokoyama, N.; Nakamura, K.; Cheng, P.; Wirka, R.C.; Mitchel, O.; Baiocchi, M.; Hiesinger, W.; et al. Embryologic Origin Influences Smooth Muscle Cell Phenotypic Modulation Signatures in Murine Marfan Syndrome Aortic Aneurysm. Arter. Thromb. Vasc. Biol. 2022, 42, 1154. [Google Scholar] [CrossRef]
- Descamps, B.; Emanueli, C. Vascular Differentiation from Embryonic Stem Cells: Novel Technologies and Therapeutic Promises. Vasc. Pharmacol. 2012, 56, 267–279. [Google Scholar] [CrossRef]
- Le Douarin, N.M.; Dupin, E. The “Beginnings” of the Neural Crest. Dev. Biol. 2018, 444, S3–S13. [Google Scholar] [CrossRef]
- Bergwerff, M.; Verberne, M.E.; DeRuiter, M.C.; Poelmann, R.E.; Gittenberger-de Groot, A.C. Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology? Circ. Res. 1998, 82, 221–231. [Google Scholar] [CrossRef]
- Kulesa, P.M.; Fraser, S.E. In Ovo Time-Lapse Analysis of Chick Hindbrain Neural Crest Cell Migration Shows Cell Interactions during Migration to the Branchial Arches. Development 2000, 127, 1161–1172. [Google Scholar] [CrossRef]
- Trainor, P.A.; Krumlauf, R. Patterning the Cranial Neural Crest: Hinbrain Segmentation and Hox Gene Plasticity. Nat. Rev. Neurosci. 2000, 1, 116–124. [Google Scholar] [CrossRef]
- Voiculescu, O.; Papanayotou, C.; Stern, C.D. Spatially and Temporally Controlled Electroporation of Early Chick Embryos. Nat. Protoc. 2008, 3, 419–426. [Google Scholar] [CrossRef]
- Li, M.L.; Luo, J.; Ellis, M.W.; Riaz, M.; Ajaj, Y.; Qyang, Y. Methods for Differentiating HiPSCs into Vascular Smooth Muscle Cells. Methods Mol. Biol. 2022, 2375, 21–34. [Google Scholar] [CrossRef]
- Gittenberger-De Groot, A.C.; DeRuiter, M.C.; Bergwerff, M.; Poelmann, R.E. Smooth Muscle Cell Origin and Its Relation to Heterogeneity in Development and Disease. Arter. Thromb. Vasc. Biol. 1999, 19, 1589–1594. [Google Scholar] [CrossRef] [PubMed]
- Tulachan, S.S.; Tei, E.; Hembree, M.; Crisera, C.; Prasadan, K.; Koizumi, M.; Shah, S.; Guo, P.; Bottinger, E.; Gittes, G.K. TGF-β Isoform Signaling Regulates Secondary Transition and Mesenchymal-Induced Endocrine Development in the Embryonic Mouse Pancreas. Dev. Biol. 2007, 305, 508. [Google Scholar] [CrossRef]
- Sawada, H.; Rateri, D.L.; Moorleghen, J.J.; Majesky, M.W.; Daugherty, A. Smooth Muscle Cells Derived from Second Heart Field and Cardiac Neural Crest Reside in Spatially Distinct Domains in the Media of the Ascending Aorta-Brief Report. Arter. Thromb. Vasc. Biol. 2017, 37, 1722–1726. [Google Scholar] [CrossRef]
- Waldo, K.L.; Hutson, M.R.; Ward, C.C.; Zdanowicz, M.; Stadt, H.A.; Kumiski, D.; Abu-Issa, R.; Kirby, M.L. Secondary Heart Field Contributes Myocardium and Smooth Muscle to the Arterial Pole of the Developing Heart. Dev. Biol. 2005, 281, 78–90. [Google Scholar] [CrossRef]
- Jauhiainen, S.; Kiema, M.; Hedman, M.; Laakkonen, J.P. Large Vessel Cell Heterogeneity and Plasticity: Focus in Aortic Aneurysms. Arter. Thromb. Vasc. Biol. 2022, 42, 811–818. [Google Scholar] [CrossRef]
- Debakey, M.E.; Glaeser, D.H. Patterns of Atherosclerosis: Effect of Risk Factors on Recurrence and Survival-Analysis of 11,890 Cases with More than 25-Year Follow-Up. Am. J. Cardiol. 2000, 85, 1045–1053. [Google Scholar] [CrossRef]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, X.; Xia, Y.; Mao, L. An Update on the Phenotypic Switching of Vascular Smooth Muscle Cells in the Pathogenesis of Atherosclerosis. Cell. Mol. Life Sci. 2022, 79, 6. [Google Scholar] [CrossRef]
- Yap, C.; Mieremet, A.; De Vries, C.J.M.; Micha, D.; De Waard, V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arter. Thromb. Vasc. Biol. 2021, 41, 2693. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, K.B.; van Merrienboer, T.A.R.; Ket, J.C.F.; Bogunovic, N.; van der Velden, J.; Yeung, K.K. The Role of Vascular Smooth Muscle Cells in the Development of Aortic Aneurysms and Dissections. Eur. J. Clin. Investig. 2022, 52, e13697. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Xuan, X.; Hu, J.; Zhang, R.; Jin, H.; Dong, H. How Vascular Smooth Muscle Cell Phenotype Switching Contributes to Vascular Disease. Cell Commun. Signal. 2022, 20, 180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Lei, Q.Q.; He, J.; Guan, X.; Zhang, X.; Huang, Y.; Zhou, Z.Y.; Fan, R.X.; Wang, T.; Li, C.X.; et al. Bestrophin3 Deficiency in Vascular Smooth Muscle Cells Activates MEKK2/3-MAPK Signaling to Trigger Spontaneous Aortic Dissection. Circulation 2023, 148, 589–606. [Google Scholar] [CrossRef]
- Pedroza, A.J.; Tashima, Y.; Shad, R.; Cheng, P.; Wirka, R.; Churovich, S.; Nakamura, K.; Yokoyama, N.; Cui, J.Z.; Iosef, C.; et al. Single-Cell Transcriptomic Profiling of Vascular Smooth Muscle Cell Phenotype Modulation in Marfan Syndrome Aortic Aneurysm. Arter. Thromb. Vasc. Biol. 2020, 40, 2195–2211. [Google Scholar] [CrossRef]
- Wirka, R.C.; Wagh, D.; Paik, D.T.; Pjanic, M.; Nguyen, T.; Miller, C.L.; Kundu, R.; Nagao, M.; Coller, J.; Koyano, T.K.; et al. Atheroprotective Roles of Smooth Muscle Cell Phenotypic Modulation and the TCF21 Disease Gene as Revealed by Single-Cell Analysis. Nat. Med. 2019, 25, 1280–1289. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Kwartler, C.S.; Kaw, K.; Li, Y.; Kaw, A.; Chen, J.; Lemaire, S.A.; Shen, Y.H.; Milewicz, D.M. Cholesterol-Induced Phenotypic Modulation of Smooth Muscle Cells to Macrophage/Fibroblast–like Cells Is Driven by an Unfolded Protein Response. Arter. Thromb. Vasc. Biol. 2020, 41, 302. [Google Scholar] [CrossRef]
- Wolf, M.P.; Hunziker, P. Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. J. Cardiovasc. Transl. Res. 2020, 13, 744–757. [Google Scholar] [CrossRef]
- Vengrenyuk, Y.; Nishi, H.; Long, X.; Ouimet, M.; Savji, N.; Martinez, F.O.; Cassella, C.P.; Moore, K.J.; Ramsey, S.A.; Miano, J.M.; et al. Cholesterol Loading Re-Programs the MiR-143/145-Myocardin Axis to Convert Aortic Smooth Muscle Cells to a Dysfunctional Macrophage-like Phenotype. Arter. Thromb. Vasc. Biol. 2015, 35, 535. [Google Scholar] [CrossRef]
- Rong, J.X.; Shapiro, M.; Trogan, E.; Fisher, E.A. Transdifferentiation of Mouse Aortic Smooth Muscle Cells to a Macrophage-like State after Cholesterol Loading. Proc. Natl. Acad. Sci. USA 2003, 100, 13531–13536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Chakraborty, A.; Li, Y.; Rebello, K.R.; Ren, P.; Luo, W.; Zhang, L.; Lu, H.S.; Cassis, L.A.; et al. Aortic Stress Activates an Adaptive Program in Thoracic Aortic Smooth Muscle Cells That Maintains Aortic Strength and Protects Against Aneurysm and Dissection in Mice. Arter. Thromb. Vasc. Biol. 2023, 43, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Qin, L.; Li, G.; Malagon-Lopez, J.; Wang, Z.; Bergaya, S.; Gujja, S.; Caulk, A.W.; Murtada, S., II; Zhang, X.; et al. Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell 2020, 26, 542. [Google Scholar] [CrossRef]
- Cao, G.; Xuan, X.; Li, Y.; Hu, J.; Zhang, R.; Jin, H.; Dong, H. Single-Cell RNA Sequencing Reveals the Vascular Smooth Muscle Cell Phenotypic Landscape in Aortic Aneurysm. Cell Commun. Signal 2023, 21, 113. [Google Scholar] [CrossRef] [PubMed]
- Voelkl, J.; Lang, F.; Eckardt, K.U.; Amann, K.; Kuro-O, M.; Pasch, A.; Pieske, B.; Alesutan, I. Signaling Pathways Involved in Vascular Smooth Muscle Cell Calcification during Hyperphosphatemia. Cell Mol. Life Sci. 2019, 76, 2077. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Li, Z.X.; Zhang, L.L.; Wang, D.; Liu, Y.P. Phenotypic Plasticity of Vascular Smooth Muscle Cells in Vascular Calcification: Role of Mitochondria. Front. Cardiovasc. Med. 2022, 9, 972836. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.Y.; Giachelli, C.M. BMP-2 Promotes Phosphate Uptake, Phenotypic Modulation, and Calcification of Human Vascular Smooth Muscle Cells. Atherosclerosis 2008, 199, 271–277. [Google Scholar] [CrossRef]
- Zhang, M.; Sara, J.D.; Wang, F.L.; Liu, L.P.; Su, L.X.; Zhe, J.; Wu, X.; Liu, J.H. Increased Plasma BMP-2 Levels Are Associated with Atherosclerosis Burden and Coronary Calcification in Type 2 Diabetic Patients. Cardiovasc. Diabetol. 2015, 14, 64. [Google Scholar] [CrossRef]
- Brauer, P.R.; Yee, J.A. Cranial Neural Crest Cells Synthesize and Secrete a Latent Form of Transforming Growth Factor Beta That Can Be Activated by Neural Crest Cell Proteolysis. Dev. Biol. 1993, 155, 281–285. [Google Scholar] [CrossRef]
- Shah, N.M.; Groves, A.K.; Anderson, D.J. Alternative Neural Crest Cell Fates Are Instructively Promoted by TGFbeta Superfamily Members. Cell 1996, 85, 331–343. [Google Scholar] [CrossRef]
- Leblanc, G.G.; Holbert, T.E.; Darland, T. Role of the Transforming Growth Factor-Beta Family in the Expression of Cranial Neural Crest-Specific Phenotypes. J. Neurobiol. 1995, 26, 497–510. [Google Scholar] [CrossRef]
- Guo, X.; Chen, S.-Y. Transforming Growth Factor-β and Smooth Muscle Differentiation. World J. Biol. Chem. 2012, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Pinard, A.; Jones, G.T.; Milewicz, D.M. Genetics of Thoracic and Abdominal Aortic Diseases: Aneurysms, Dissections, and Ruptures. Circ. Res. 2019, 124, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Spinale, F.G.; Ikonomidis, J.S. Transforming Growth Factor-Beta Signaling in Thoracic Aortic Aneurysm Development: A Paradox in Pathogenesis. J. Vasc. Res. 2009, 46, 119. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, J.M.; Jones, J.A.; Ikonomidis, J.S. Pathophysiology of thoracic aortic aneurysm (TAA): Is it not one uniform aorta? Role of embryologic origin. Prog. Cardiovasc. Dis. 2013, 56, 68–73. [Google Scholar] [CrossRef]
- Stein, J.J.; Iwuchukwu, C.; Maier, K.G.; Gahtan, V. Thrombospondin-1-induced smooth muscle cell chemotaxis and proliferation are dependent on transforming growth factor-β2 and hyaluronic acid synthase. Mol. Cell Biochem. 2013, 384, 181–186. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, N.; Xing, H.; Tian, J.; Zhang, D.; Gao, D.; Hsia, H.C.; Lu, J.; Raredon, M.S.B.; Kyriakides, T.R. Alteration of skin fibroblast steady state contributes to healing outcomes. bioRxiv 2024. [Google Scholar] [CrossRef]
- Flügel-Koch, C.; Ohlmann, A.; Piatigorsky, J.; Tamm, E.R. Disruption of Anterior Segment Development by TGF-Beta1 Overexpression in the Eyes of Transgenic Mice. Dev. Dyn. 2002, 225, 111–125. [Google Scholar] [CrossRef]
- Santibañez, J.F.S.; Quintanilla, M.; Bernabeu, C. TGF-β/TGF-β Receptor System and Its Role in Physiological and Pathological Conditions. Clin. Sci. 2011, 121, 233–251. [Google Scholar] [CrossRef]
- Morty, R.E.; Königshoff, M.; Eickelberg, O. Transforming Growth Factor-Beta Signaling across Ages: From Distorted Lung Development to Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2009, 6, 607–613. [Google Scholar] [CrossRef]
- Halayko, A.; Tran, T.; Ji, S.; Yamasaki, A.; Gosens, R. Airway Smooth Muscle Phenotype and Function: Interactions with Current Asthma Therapies. Curr. Drug Targets 2006, 7, 525–540. [Google Scholar] [CrossRef]
- Chun, G.L.; Kang, H.R.; Homer, R.J.; Chupp, G.; Elias, J.A. Transgenic Modeling of Transforming Growth Factor-Beta(1): Role of Apoptosis in Fibrosis and Alveolar Remodeling. Proc. Am. Thorac. Soc. 2006, 3, 418–423. [Google Scholar] [CrossRef]
- Le Saux, C.J.; Teeters, K.; Miyasato, S.K.; Hoffmann, P.R.; Bollt, O.; Douet, V.; Shohet, R.V.; Broide, D.H.; Tam, E.K. Down-Regulation of Caveolin-1, an Inhibitor of Transforming Growth Factor-Beta Signaling, in Acute Allergen-Induced Airway Remodeling. J. Biol. Chem. 2008, 283, 5760–5768. [Google Scholar] [CrossRef]
- Wang, Y.; Panicker, I.S.; Anesi, J.; Sargisson, O.; Atchison, B.; Habenicht, A.J.R. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int. J. Mol. Sci. 2024, 25, 901. [Google Scholar] [CrossRef] [PubMed]
- Majesky, M.W.; Horita, H.; Ostriker, A.; Lu, S.; Regan, J.N.; Bagchi, A.; Dong, X.R.; Poczobutt, J.; Nemenoff, R.A.; Weiser-Evans, M.C.M. Differentiated Smooth Muscle Cells Generate a Subpopulation of Resident Vascular Progenitor Cells in the Adventitia Regulated by Klf4. Circ. Res. 2017, 120, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Lu, H.; Liang, W.; Hu, W.; Zhang, J.; Chen, Y.E. Krüppel-like Factors and Vascular Wall Homeostasis. J. Mol. Cell Biol. 2017, 9, 352. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, X.; Guo, L.Y.; Zhang, L.; Zheng, F.; Li, S.; Li, X.Y.; Yuan, Y.; Liu, Y.; Yan, Y.W.; et al. S100B Is Required for Maintaining an Intermediate State with Double-Positive Sca-1+ Progenitor and Vascular Smooth Muscle Cells during Neointimal Formation. Stem Cell Res. Ther. 2019, 10, 294. [Google Scholar] [CrossRef]
- Zhao, G.; Lu, H.; Chang, Z.; Zhao, Y.; Zhu, T.; Chang, L.; Guo, Y.; Garcia-Barrio, M.T.; Chen, Y.E.; Zhang, J. Single-Cell RNA Sequencing Reveals the Cellular Heterogeneity of Aneurysmal Infrarenal Abdominal Aorta. Cardiovasc. Res. 2021, 117, 1402–1416. [Google Scholar] [CrossRef]
- Kiseleva, D.; Kolmogorov, V.; Cherednichenko, V.; Khovantseva, U.; Bogatyreva, A.; Markina, Y.; Gorelkin, P.; Erofeev, A.; Markin, A. Effect of LDL Extracted from Human Plasma on Membrane Stiffness in Living Endothelial Cells and Macrophages via Scanning Ion Conductance Microscopy. Cells 2024, 13, 358. [Google Scholar] [CrossRef]
- Rai, V.; Singh, H.; Agrawal, D.K. Targeting the Crosstalk of Immune Response and Vascular Smooth Muscle Cells Phenotype Switch for Arteriovenous Fistula Maturation. Int. J. Mol. Sci. 2022, 23, 12012. [Google Scholar] [CrossRef]
- Schäfer, S.; Gogiraju, R.; Rösch, M.; Kerstan, Y.; Beck, L.; Garbisch, J.; Saliba, A.E.; Gisterå, A.; Hermanns, H.M.; Boon, L.; et al. CD8+T Cells Drive Plaque Smooth Muscle Cell Dedifferentiation in Experimental Atherosclerosis. Arter. Thromb. Vasc. Biol. 2024, 44, 1852–1872. [Google Scholar] [CrossRef]
- Silvestre-Roig, C.; Braster, Q.; Wichapong, K.; Lee, E.Y.; Teulon, J.M.; Berrebeh, N.; Winter, J.; Adrover, J.M.; Santos, G.S.; Froese, A.; et al. Externalized Histone H4 Orchestrates Chronic Inflammation by Inducing Lytic Cell Death. Nature 2019, 569, 236–240. [Google Scholar] [CrossRef]
- Pei, H.; Tian, C.; Sun, X.; Qian, X.; Liu, P.; Liu, W.; Chang, Q. Overexpression of MicroRNA-145 Promotes Ascending Aortic Aneurysm Media Remodeling through TGF-Β1. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Gareev, I.F.; Beylerli, O.A. Circulating MicroRNAs as Biomarkers: What Are Perspectives? Russ. J. Prev. Med. 2018, 6, 142–150. [Google Scholar] [CrossRef]
- Elia, L.; Quintavalle, M.; Zhang, J.; Contu, R.; Cossu, L.; Latronico, M.V.G.; Peterson, K.L.; Indolfi, C.; Catalucci, D.; Chen, J.; et al. The Knockout of MiR-143 and -145 Alters Smooth Muscle Cell Maintenance and Vascular Homeostasis in Mice: Correlates with Human Disease. Cell Death Differ. 2009, 16, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, Y.; Zhang, S.; Lin, Y.; Yang, J.; Zhang, C. A Necessary Role of MiR-221 and MiR-222 in Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia. Circ. Res. 2009, 104, 476–486. [Google Scholar] [CrossRef]
- Sun, P.; Tang, L.N.; Li, G.Z.; Xu, Z.L.; Xu, Q.H.; Wang, M.; Li, L. Effects of MiR-21 on the Proliferation and Migration of Vascular Smooth Muscle Cells in Rats with Atherosclerosis via the Akt/ERK Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2216–2222. [Google Scholar] [CrossRef]
- Ramanujam, D.; Schön, A.P.; Beck, C.; Vaccarello, P.; Felician, G.; Dueck, A.; Esfandyari, D.; Meister, G.; Meitinger, T.; Schulz, C.; et al. MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation 2021, 143, 1513. [Google Scholar] [CrossRef]
- Fiedler, J.; Stöhr, A.; Gupta, S.K.; Hartmann, D.; Holzmann, A.; Just, A.; Hansen, A.; Hilfiker-Kleiner, D.; Eschenhagen, T.; Thum, T. Functional MicroRNA Library Screening Identifies the HypoxaMiR MiR-24 as a Potent Regulator of Smooth Muscle Cell Proliferation and Vascularization. Antioxid. Redox Signal 2014, 21, 1167–1176. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, L.; Li, Y.; Chen, W.; Hu, N.; Wang, H.; Ou, H. Roles of MiRNA-24 in Regulating Endothelial Nitric Oxide Synthase Expression and Vascular Endothelial Cell Proliferation. Mol. Cell. Biochem. 2015, 405, 281–289. [Google Scholar] [CrossRef]
- Arderiu, G.; Peña, E.; Civit-Urgell, A.; Badimon, L. Endothelium-Released Microvesicles Transport MiR-126 That Induces Proangiogenic Reprogramming in Monocytes. Front. Immunol. 2022, 13, 836662. [Google Scholar] [CrossRef]
- Kandell, W.M.; Donatelli, S.S.; Le Trinh, T.; Calescibetta, A.R.; So, T.; Tu, N.; Gilvary, D.L.; Chen, X.; Cheng, P.; Adams, W.A.; et al. MicroRNA-155 Governs SHIP-1 Expression and Localization in NK Cells and Regulates Subsequent Infiltration into Murine AT3 Mammary Carcinoma. PLoS ONE 2020, 15, e0225820. [Google Scholar] [CrossRef] [PubMed]
- Artlett, C.M.; Sassi-Gaha, S.; Hope, J.L.; Feghali-Bostwick, C.A.; Katsikis, P.D. Mir-155 Is Overexpressed in Systemic Sclerosis Fibroblasts and Is Required for NLRP3 Inflammasome-Mediated Collagen Synthesis during Fibrosis. Arthritis Res. Ther. 2017, 19, 144. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Hu, J.; Zhang, A.; Li, F.; Li, X. MiR-155 Induces Endothelial Cell Apoptosis and Inflammatory Response in Atherosclerosis by Regulating Bmal1. Exp. Ther. Med. 2020, 20, 128. [Google Scholar] [CrossRef]
- Urbich, C.; Kuehbacher, A.; Dimmeler, S. Role of MicroRNAs in Vascular Diseases, Inflammation, and Angiogenesis. Cardiovasc. Res. 2008, 79, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Grootaert, M.O.J.; Moulis, M.; Roth, L.; Martinet, W.; Vindis, C.; Bennett, M.R.; De Meyer, G.R.Y. Vascular Smooth Muscle Cell Death, Autophagy and Senescence in Atherosclerosis. Cardiovasc. Res. 2018, 114, 622–634. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, X.; Yang, J.; Lin, Y.; Xu, D.Z.; Lu, Q.; Deitch, E.A.; Huo, Y.; Delphin, E.S.; Zhang, C. MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation. Circ. Res. 2009, 105, 158–166. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Wu, Y.; Fang, P.; Shi, H.; Xu, J.; Li, M. Effects of MiRNA-145 on Airway Smooth Muscle Cells Function. Mol. Cell Biochem. 2015, 409, 135–143. [Google Scholar] [CrossRef]
- Kuhn, A.R.; Schlauch, K.; Lao, R.; Halayko, A.J.; Gerthoffer, W.T.; Singer, C.A. MicroRNA Expression in Human Airway Smooth Muscle Cells: Role of MiR-25 in Regulation of Airway Smooth Muscle Phenotype. Am. J. Respir. Cell Mol. Biol. 2009, 42, 506. [Google Scholar] [CrossRef]
- Rangrez, A.Y.; Massy, Z.A.; Meuth, V.M.-L.; Metzinger, L. MiR-143 and MiR-145 Molecular Keys to Switch the Phenotype of Vascular Smooth Muscle Cells. Circ. Cardiovasc. Genet. 2011, 4, 197–205. [Google Scholar] [CrossRef]
- Ye, Z.; Zhu, S.; Li, G.; Lu, J.; Huang, S.; Du, J.; Shao, Y.; Ji, Z.; Li, P. Early Matrix Softening Contributes to Vascular Smooth Muscle Cell Phenotype Switching and Aortic Dissection through Down-Regulation of MicroRNA-143/145. J. Mol. Cell Cardiol. 2024, 192, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Sobenin, I.A.; Orekhov, A.N.; Bobryshev, Y.V. Human MiR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed Res. Int. 2015, 2015, 354517. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Huang, H.; Xu, Y.; Zhu, H.; Zhong, C. MiR-222 in Cardiovascular Diseases: Physiology and Pathology. BioMed Res. Int. 2017, 2017, 4962426. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, N.C.W.; Staines, K.A.; Zhu, D.; Genever, P.; Macrae, V.E. MiRNA-221 and MiRNA-222 Synergistically Function to Promote Vascular Calcification. Cell Biochem. Funct. 2013, 32, 209. [Google Scholar] [CrossRef]
- Bazan, H.A.; Hatfield, S.A.; O’Malley, C.B.; Brooks, A.J.; Lightell, D.; Woods, T.C. Acute Loss of MIR-221 and MIR-222 in the Atherosclerotic Plaque Shoulder Accompanies Plaque Rupture. Stroke 2015, 46, 3285–3287. [Google Scholar] [CrossRef]
- Holland, A.; Enrick, M.; Diaz, A.; Yin, L. Is MiR-21 A Therapeutic Target in Cardiovascular Disease? Int. J. Drug Discov. Pharmacol. 2023, 2, 26. [Google Scholar] [CrossRef]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef]
- Fu, X.M.; Zhou, Y.Z.; Cheng, Z.; Liao, X.B.; Zhou, X.M. MicroRNAs: Novel Players in Aortic Aneurysm. BioMed Res. Int. 2015, 2015, 831641. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Yang, G.; Chen, X.; Zhang, Y.; Cao, G.; Wang, J.; Sun, Y.; Zhang, P.; Fan, M.; et al. Transforming Growth Factor-β-Regulated MiR-24 Promotes Skeletal Muscle Differentiation. Nucleic Acids Res. 2008, 36, 2690–2699. [Google Scholar] [CrossRef]
- Derynck, R.; Zhang, Y.E. Smad-Dependent and Smad-Independent Pathways in TGF-Beta Family Signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef]
- Van De Laar, I.M.B.H.; Oldenburg, R.A.; Pals, G.; Roos-Hesselink, J.W.; De Graaf, B.M.; Verhagen, J.M.A.; Hoedemaekers, Y.M.; Willemsen, R.; Severijnen, L.A.; Venselaar, H.; et al. Mutations in SMAD3 Cause a Syndromic Form of Aortic Aneurysms and Dissections with Early-Onset Osteoarthritis. Nat. Genet. 2011, 43, 121–126. [Google Scholar] [CrossRef]
- Theofilis, P.; Oikonomou, E.; Vogiatzi, G.; Sagris, M.; Antonopoulos, A.S.; Siasos, G.; Iliopoulos, D.C.; Perrea, D.; Vavouranakis, M.; Tsioufis, K.; et al. The Role of MicroRNA-126 in Atherosclerotic Cardiovascular Diseases. Curr. Med. Chem. 2022, 30, 1902–1921. [Google Scholar] [CrossRef]
- Martinez-Arroyo, O.; Ortega, A.; Flores-Chova, A.; Sanchez-Garcia, B.; Garcia-Garcia, A.B.; Chaves, F.J.; Martin-Escudero, J.C.; Forner, M.J.; Redon, J.; Cortes, R. High MiR-126-3p Levels Associated with Cardiovascular Events in a General Population. Eur. J. Intern. Med. 2023, 113, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, W.; Zhang, L.; Wang, L.; Li, J.; Shu, C.; Li, X. Roles of MicroRNAs in Peripheral Artery In-Stent Restenosis after Endovascular Treatment. BioMed Res. Int. 2021, 2021, 9935671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.L.; Wang, W.M.; Li, J.Q.; Li, R.W.; Zhang, J.; Wu, Y.; Liu, Y. The Role of MiR-155 in Cardiovascular Diseases: Potential Diagnostic and Therapeutic Targets. Int. J. Cardiol. Cardiovasc. Risk Prev. 2025, 24, 200355. [Google Scholar] [CrossRef] [PubMed]
- Iacobescu, L.; Ciobanu, A.-O.; Corlatescu, A.-D.; Simionescu, M.; Iacobescu, G.L.; Dragomir, E.; Vinereanu, D.; Iacobescu, L.; Ciobanu, A.; Corlatescu, A.-D.; et al. The Role of Circulating MicroRNAs in Cardiovascular Diseases: A Novel Biomarker for Diagnosis and Potential Therapeutic Targets? Cureus 2024, 16, e64100. [Google Scholar] [CrossRef]
- Cao, R.Y.; Li, Q.; Miao, Y.; Zhang, Y.; Yuan, W.; Fan, L.; Liu, G.; Mi, Q.; Yang, J. The Emerging Role of MicroRNA-155 in Cardiovascular Diseases. BioMed Res. Int. 2016, 2016, 9869208. [Google Scholar] [CrossRef]
- Kishore, R.; Verma, S.K.; Mackie, A.R.; Vaughan, E.E.; Abramova, T.V.; Aiko, I.; Krishnamurthy, P. Bone Marrow Progenitor Cell Therapy-Mediated Paracrine Regulation of Cardiac MiRNA-155 Modulates Fibrotic Response in Diabetic Hearts. PLoS ONE 2013, 8, e60161. [Google Scholar] [CrossRef]
- Laggerbauer, B.; Engelhardt, S. MicroRNAs as Therapeutic Targets in Cardiovascular Disease. J. Clin. Investig. 2022, 132, e159179. [Google Scholar] [CrossRef]
- Singh, R.; Chandi, S.K.; Sran, S.; Aulakh, S.K.; Nijjar, G.S.; Singh, K.; Singh, S.; Tanvir, F.; Kaur, Y.; Sandhu, A.P.S. Emerging Therapeutic Strategies in Cardiovascular Diseases. Cureus 2024, 16, e64388. [Google Scholar] [CrossRef]
- Iversen, P.L.; Kipshidze, N.; Kipshidze, N.; Dangas, G.; Ramacciotti, E.; Kakabadze, Z.; Fareed, J. A Novel Therapeutic Vaccine Targeting the Soluble TNFα Receptor II to Limit the Progression of Cardiovascular Disease: AtheroVaxTM. Front. Cardiovasc. Med. 2023, 10, 1206541. [Google Scholar] [CrossRef]
- Kipshidze, N.; Kakabadze, Z.; Paresishvili, T.; Fareed, J.; Ramacciotti, E.; Iversen, P. AtheroVax: A Peptide Vaccine with a Therapeutic Effect in Animal Model of Chronic Inflammation. Eur. Heart J. 2024, 45, ehae666.1428. [Google Scholar] [CrossRef]
- Chackerian, B.; Remaley, A.T. PCSK9 Vaccines: A Promising New Strategy for the Treatment of Hypercholesterolemia? J. Lipid Res. 2024, 65, 100524. [Google Scholar] [CrossRef]
- Vroom, M.M.; Lu, H.; Lewis, M.; Thibodeaux, B.A.; Brooks, J.K.; Longo, M.S.; Ramos, M.M.; Sahni, J.; Wiggins, J.; Boyd, J.D.; et al. VXX-401, a Novel Anti-PCSK9 Vaccine, Reduces LDL-C in Cynomolgus Monkeys. J. Lipid Res. 2024, 65, 100497. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.M.; Call, K.T.; Beebe, T.J.; McAlpine, D.D.; Johnson, P.J. Barriers to Care and Health Care Utilization among the Publicly Insured. Med. Care 2017, 55, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kepplinger, E.E. FDA’s Expedited Approval Mechanisms for New Drug Products. Biotechnol. Law Rep. 2015, 34, 15–37. [Google Scholar] [CrossRef]
- Williams, J.S.; Walker, R.J.; Egede, L.E. Achieving Equity in an Evolving Healthcare System: Opportunities and Challenges. Am. J. Med. Sci. 2016, 351, 33–43. [Google Scholar] [CrossRef] [PubMed]
miR | Localization |
---|---|
miRs-143/145 | vascular smooth muscle cells [76] |
miRs-221/222 | vascular smooth muscle cells [77] |
miR-21 | vascular smooth muscle cells [78], macrophages [79] |
miR-24 | vascular smooth muscle cells [80], endothelial cells [81] |
miR-126 | endothelial cells [82] |
miR-155 | macrophages [83], fibroblasts [84], endothelial cells [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khovantseva, U.; Markina, Y.; Kirichenko, T.; Goncharova, K.; Kiseleva, D.; Cherednichenko, V.; Markin, A. Phenotypic Switching of VSMCs in the Development of CVDs: Focus on miRs. Int. J. Mol. Sci. 2025, 26, 9078. https://doi.org/10.3390/ijms26189078
Khovantseva U, Markina Y, Kirichenko T, Goncharova K, Kiseleva D, Cherednichenko V, Markin A. Phenotypic Switching of VSMCs in the Development of CVDs: Focus on miRs. International Journal of Molecular Sciences. 2025; 26(18):9078. https://doi.org/10.3390/ijms26189078
Chicago/Turabian StyleKhovantseva, Ulyana, Yuliya Markina, Tatiana Kirichenko, Karina Goncharova, Diana Kiseleva, Vadim Cherednichenko, and Alexander Markin. 2025. "Phenotypic Switching of VSMCs in the Development of CVDs: Focus on miRs" International Journal of Molecular Sciences 26, no. 18: 9078. https://doi.org/10.3390/ijms26189078
APA StyleKhovantseva, U., Markina, Y., Kirichenko, T., Goncharova, K., Kiseleva, D., Cherednichenko, V., & Markin, A. (2025). Phenotypic Switching of VSMCs in the Development of CVDs: Focus on miRs. International Journal of Molecular Sciences, 26(18), 9078. https://doi.org/10.3390/ijms26189078