Piezo1 and Piezo2 Ion Channels in Neuronal and Astrocytic Responses to MEA Implants in the Rat Somatosensory Cortex
Abstract
1. Introduction
2. Results
2.1. Active Electrode Yield Decays over Time
2.2. Reactive Astrocytes Are Elevated near the Implant Site 16 Weeks Post-Implantation
2.3. Localized Neuronal Loss in Superficial Cortex
2.4. Piezo1 Shows Elevated Expression near the Implant Site Compared to Piezo2
2.5. Piezo1 Preferentially Colocalizes with Astrocytes near the Implant Site
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Animal Use and MEA Implantation
4.3. Electrophysiological Recordings and Data Processing
4.4. Immunohistochemistry
4.5. Image Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Normann, R.A.; Maynard, E.M.; Rousche, P.J.; Warren, D.J. A neural interface for a cortical vision prosthesis. Vis. Res. 1999, 39, 2577–2587. [Google Scholar] [CrossRef]
- Decramer, T.; Premereur, E.; Zhu, Q.; Van Paesschen, W.; van Loon, J.; Vanduffel, W.; Taubert, J.; Janssen, P.; Theys, T. Single-Unit Recordings Reveal the Selectivity of a Human Face Area. J. Neurosci. 2021, 41, 9340–9349. [Google Scholar] [CrossRef]
- Nicolelis, M.A.L.; Lebedev, M.A. Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nat. Rev. Neurosci. 2009, 10, 530–540. [Google Scholar] [CrossRef]
- Schroeder, K.E.; Chestek, C.A. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience. Front. Neurosci. 2016, 10, 291. [Google Scholar] [CrossRef]
- Zhang, S.; Song, Y.; Wang, M.; Xiao, G.; Gao, F.; Li, Z.; Tao, G.; Zhuang, P.; Yue, F.; Chan, P.; et al. Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson’s disease using nano-based microelectrode arrays. Microsyst. Nanoeng. 2018, 4, 17070. [Google Scholar] [CrossRef]
- Pandarinath, C.; Nuyujukian, P.; Blabe, C.H.; Sorice, B.L.; Saab, J.; Willett, F.R.; Hochberg, L.R.; Shenoy, K.V.; Henderson, J.M. High performance communication by people with paralysis using an intracortical brain-computer interface. eLife 2017, 6, e18554. [Google Scholar] [CrossRef] [PubMed]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Flesher, S.N.; Downey, J.E.; Weiss, J.M.; Hughes, C.L.; Herrera, A.J.; Tyler-Kabara, E.C.; Boninger, M.L.; Collinger, J.L.; Gaunt, R.A. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021, 372, 831–836. [Google Scholar] [CrossRef]
- Jorfi, M.; Skousen, J.L.; Weder, C.; Capadona, J.R. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J. Neural Eng. 2015, 12, 11001. [Google Scholar] [CrossRef]
- Bennett, C.; Samikkannu, M.; Mohammed, F.; Dietrich, W.D.; Rajguru, S.M.; Prasad, A. Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials 2018, 164, 1–10. [Google Scholar] [CrossRef]
- Ereifej, E.S.; Rial, G.M.; Hermann, J.K.; Smith, C.S.; Meade, S.M.; Rayyan, J.M.; Chen, K.; Feng, H.; Capadona, J.R. Implantation of Neural Probes in the Brain Elicits Oxidative Stress. Front. Bioeng. Biotechnol. 2018, 6, 9. [Google Scholar] [CrossRef]
- Wellman, S.M.; Kozai, T.D. In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation. Biomaterials 2018, 164, 121–133. [Google Scholar] [CrossRef]
- Saxena, T.; Karumbaiah, L.; Gaupp, E.A.; Patkar, R.; Patil, K.; Betancur, M.; Stanley, G.B.; Bellamkonda, R.V. The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials 2013, 34, 4703–4713. [Google Scholar] [CrossRef]
- Polikov, V.S.; Tresco, P.A.; Reichert, W.M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Mohammed, F.; Álvarez-Ciara, A.; Nguyen, M.A.; Dietrich, W.D.; Rajguru, S.M.; Streit, W.J.; Prasad, A. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response. Biomaterials 2019, 188, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Gilletti, A.; Muthuswamy, J. Brain micromotion around implants in the rodent somatosensory cortex. J. Neural Eng. 2006, 3, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Subbaroyan, J.; Martin, D.C.; Kipke, D.R. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2005, 2, 103–113. [Google Scholar] [CrossRef]
- Harris, J.P.; Capadona, J.R.; Miller, R.H.; Healy, B.C.; Shanmuganathan, K.; Rowan, S.J.; Weder, C.; Tyler, D.J. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies. J. Neural Eng. 2011, 8, 66011. [Google Scholar] [CrossRef]
- Coutiño, B.C.; Mayor, R. Mechanosensitive ion channels in cell migration. Cells Dev. 2021, 166, 203683. [Google Scholar] [CrossRef]
- Lo, C.-M.; Wang, H.-B.; Dembo, M.; Wang, Y.-L. Cell Movement Is Guided by the Rigidity of the Substrate. Biophys. J. 2000, 79, 144–152. [Google Scholar] [CrossRef]
- Vogel, V.; Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 2006, 7, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ranade, S.S.; Syeda, R.; Patapoutian, A. Mechanically Activated Ion Channels. Neuron 2015, 87, 1162–1179. [Google Scholar] [CrossRef] [PubMed]
- Coste, B.; Mathur, J.; Schmidt, M.; Earley, T.J.; Ranade, S.; Petrus, M.J.; Dubin, A.E.; Patapoutian, A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010, 330, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.E.; Dubin, A.E.; Patapoutian, A. Piezos thrive under pressure: Mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 771–783. [Google Scholar] [CrossRef]
- Qin, L.; He, T.; Chen, S.; Yang, D.; Yi, W.; Cao, H.; Xiao, G. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res. 2021, 9, 44. [Google Scholar] [CrossRef]
- Haghighi, P.; Schaub, M.K.; Shebindu, A.H.; Vijayakumar, G.; Sood, A.; Granja-Vazquez, R.; Patnaik, S.S.; Jones, C.N.; Dussor, G.O.; Pancrazio, J.J. In Vitro Pharmacological Modulation of PIEZO1 Channels in Frontal Cortex Neuronal Networks. Brain Sci. 2024, 14, 223. [Google Scholar] [CrossRef]
- Kefauver, J.M.; Ward, A.B.; Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020, 587, 567–576. [Google Scholar] [CrossRef]
- Wang, J.; Hamill, O.P. Piezo2—Peripheral baroreceptor channel expressed in select neurons of the mouse brain: A putative mechanism for synchronizing neural networks by transducing intracranial pressure pulses. J. Integr. Neurosci. 2021, 20, 825–837. [Google Scholar] [CrossRef]
- Choi, H.J.; Sun, D.; Jakobs, T.C. Astrocytes in the optic nerve head express putative mechanosensitive channels. Mol. Vis. 2015, 21, 749–766. [Google Scholar]
- Trotier, A.; Bagnoli, E.; Walski, T.; Evers, J.; Pugliese, E.; Lowery, M.; Kilcoyne, M.; Fitzgerald, U.; Biggs, M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. Adv. Sci. 2023, 10, e2301352. [Google Scholar] [CrossRef]
- Blumenthal, N.R.; Petravicz, J.C.; Breton-Provencher, V.; Hu, M.; Riemenschneider, F.; Sarem, M.; Sur, M.; Shastri, V.P. Stochastic Nanoroughness Inhibits and Reverses Glial Scarring In Vitro and In Vivo via a Mechanobiology Paradigm Involving Piezo-1. Adv. Funct. Mater. 2025, 35, 2411965. [Google Scholar] [CrossRef]
- Heyburn, L.; Abutarboush, R.; Goodrich, S.; Urioste, R.; Batuure, A.; Statz, J.; Wilder, D.; Ahlers, S.T.; Long, J.B.; Sajja, V.S.S.S. Repeated Low-Level Blast Overpressure Leads to Endovascular Disruption and Alterations in TDP-43 and Piezo2 in a Rat Model of Blast TBI. Front. Neurol. 2019, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Usoro, J.O.; Sturgill, B.S.; Musselman, K.C.; Capadona, J.R.; Pancrazio, J.J. Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation. Micromachines 2021, 12, 972. [Google Scholar] [CrossRef] [PubMed]
- Usoro, J.O.; Dogra, K.; Abbott, J.R.; Radhakrishna, R.; Cogan, S.F.; Pancrazio, J.J.; Patnaik, S.S. Influence of Implantation Depth on the Performance of Intracortical Probe Recording Sites. Micromachines 2021, 12, 1158. [Google Scholar] [CrossRef]
- Hoeferlin, G.F.; Bajwa, T.; Olivares, H.; Zhang, J.; Druschel, L.N.; Sturgill, B.S.; Sobota, M.; Boucher, P.; Duncan, J.; Hernandez-Reynoso, A.G.; et al. Antioxidant Dimethyl Fumarate Temporarily but Not Chronically Improves Intracortical Microelectrode Performance. Micromachines 2023, 14, 1902. [Google Scholar] [CrossRef]
- Druschel, L.N.; Kasthuri, N.M.; Song, S.S.; Wang, J.J.; Hess-Dunning, A.; Chan, E.R.; Capadona, J.R. Cell-specific spatial profiling of targeted protein expression to characterize the impact of intracortical microelectrode implantation on neuronal health. J. Mater. Chem. B 2024, 12, 12307–12319. [Google Scholar] [CrossRef]
- Abbott, J.R.; Jeakle, E.N.; Haghighi, P.; Usoro, J.O.; Sturgill, B.S.; Wu, Y.; Geramifard, N.; Radhakrishna, R.; Patnaik, S.; Nakajima, S.; et al. Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex. Biomaterials 2024, 308, 122543. [Google Scholar] [CrossRef]
- Haghighi, P.; Jeakle, E.N.; Sturgill, B.S.; Abbott, J.R.; Solis, E.; Devata, V.S.; Vijayakumar, G.; Hernandez-Reynoso, A.G.; Cogan, S.F.; Pancrazio, J.J. Enhanced Performance of Novel Amorphous Silicon Carbide Microelectrode Arrays in Rat Motor Cortex. Micromachines 2025, 16, 113. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zhang, X.; Wang, Y.; Pei, W. Implantable intracortical microelectrodes: Reviewing the present with a focus on the future. Microsyst. Nanoeng. 2023, 9, 7. [Google Scholar] [CrossRef]
- Letner, J.G.; Patel, P.R.; Hsieh, J.-C.; Flores, I.M.S.; della Valle, E.; A Walker, L.; Weiland, J.D.; Chestek, C.A.; Cai, D. Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology. J. Neural Eng. 2023, 20, 26019. [Google Scholar] [CrossRef]
- Chi, S.; Cui, Y.; Wang, H.; Jiang, J.; Zhang, T.; Sun, S.; Zhou, Z.; Zhong, Y.; Xiao, B. Astrocytic Piezo1-mediated mechanotransduction determines adult neurogenesis and cognitive functions. Neuron 2022, 110, 2984–2999.e8. [Google Scholar] [CrossRef]
- Zhu, J.; Xian, Q.; Hou, X.; Wong, K.F.; Zhu, T.; Chen, Z.; He, D.; Kala, S.; Murugappan, S.; Jing, J.; et al. The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation. Proc. Natl. Acad. Sci. USA 2023, 120, e2300291120. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Yang, Y.; Fang, X.; Wu, L.; Hu, J.; Li, J.; Mei, S. Piezo1: The key regulators in central nervous system diseases. Front. Cell. Neurosci. 2024, 18, 1441806. [Google Scholar] [CrossRef] [PubMed]
- Ranade, S.S.; Qiu, Z.; Woo, S.-H.; Hur, S.S.; Murthy, S.E.; Cahalan, S.M.; Xu, J.; Mathur, J.; Bandell, M.; Coste, B.; et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc. Natl. Acad. Sci. USA 2014, 111, 10347–10352. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Estevez, M.; Rolle, S.O.; Mampay, M.; Dev, K.K.; Sheridan, G.K. Piezo1 regulates calcium oscillations and cytokine release from astrocytes. Glia 2020, 68, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yu, Y.; Wang, S.; Xu, P.; Sun, Y.; Li, J.; Ge, X.; Pan, S. Piezo1 disrupts blood–brain barrier via CaMKII/Nrf2 in ischemic stroke. Cell. Mol. Life Sci. 2025, 82, 259. [Google Scholar] [CrossRef]
- Hernandez-Reynoso, A.G.; Sturgill, B.S.; Hoeferlin, G.F.; Druschel, L.N.; Krebs, O.K.; Menendez, D.M.; Thai, T.T.; Smith, T.J.; Duncan, J.; Zhang, J.; et al. The effect of a Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) coating on the chronic recording performance of planar silicon intracortical microelectrode arrays. Biomaterials 2023, 303, 122351. [Google Scholar] [CrossRef]
- Duncan, J.L.; Wang, J.J.; Glusauskas, G.; Weagraff, G.R.; Gao, Y.; Hoeferlin, G.F.; Hunter, A.H.; Hess-Dunning, A.; Ereifej, E.S.; Capadona, J.R. In Vivo Characterization of Intracortical Probes with Focused Ion Beam-Etched Nanopatterned Topographies. Micromachines 2024, 15, 286. [Google Scholar] [CrossRef]
- Ivkovic, S.; Major, T.; Mitic, M.; Loncarevic-Vasiljkovic, N.; Jovic, M.; Adzic, M. Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer’s disease. Life Sci. 2022, 297, 120470. [Google Scholar] [CrossRef]
- Stiller, A.M.; Black, B.J.; Kung, C.; Ashok, A.; Cogan, S.F.; Varner, V.D.; Pancrazio, J.J. A Meta-Analysis of Intracortical Device Stiffness and Its Correlation with Histological Outcomes. Micromachines 2018, 9, 443. [Google Scholar] [CrossRef]
- Sridharan, A.; Nguyen, J.K.; Capadona, J.R.; Muthuswamy, J. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo. J. Neural Eng. 2015, 12, 36002. [Google Scholar] [CrossRef]
- Pirri, C. PIEZO Channels in Mechano-Inflammation: Gatekeepers of Neuroimmune Crosstalk. Diseases 2025, 13, 263. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Wu, Y.; Cheon, C.; Khan, A.A.; Srinivasan, H.; Capadona, J.R.; Cogan, S.F.; Pancrazio, J.J.; Engineer, C.T.; Hernandez-Reynoso, A.G. Behavioral paradigm for the evaluation of stimulation-evoked somatosensory perception thresholds in rats. Front. Neurosci. 2023, 17, 1202258. [Google Scholar] [CrossRef]
- Smith, T.J.; Srinivasan, H.; Jiang, M.; Tahmasebi, G.; Vargas, S.; Villafranca, L.R.; Kumara, S.T.; Ogundipe, A.; Massaquoi, A.; Chandna, S.; et al. Investigating the spatial limits of somatotopic and depth-dependent sensory discrimination stimuli in rats via intracortical microstimulation. Front. Neurosci. 2025, 19, 1602996. [Google Scholar] [CrossRef]
- Rolston, J.D.; Gross, R.E.; Potter, S.M. (Eds.) Common median referencing for improved action potential detection with multielectrode arrays. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009. [Google Scholar]
- Murthy, S.E. Deciphering mechanically activated ion channels at the single-channel level in dorsal root ganglion neurons. J. Gen. Physiol. 2023, 155, e202213099. [Google Scholar] [CrossRef]
- Lee, K.L.; Guevarra, M.D.; Nguyen, A.M.; Chua, M.C.; Wang, Y.; Jacobs, C.R. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
Antibody | Target | Concentration | Supplier | Catalog Number |
---|---|---|---|---|
NeuN | Neuronal Nuclei | 1:500 | Abcam | ab4674 |
GFAP | Astrocytes | 1:500 | Abcam | ab104224 |
Piezo1 | Piezo1 channels | 1:50 | Novus Biologicals | NBP2-10504 |
RRID: AB_3252279 | ||||
Piezo2 | Piezo2 channels | 1:100 | Novus Biologicals | NBP178624SS |
RRID: AB_11005294 | ||||
Alexa Fluor 555 | NeuN | 1:4000 | Abcam | ab150118 |
Alexa Fluor 647 | GFAP | 1:4000 | Abcam | ab150171 |
Alexa Fluor 488 | Piezo1/2 | 1:2000 | Invitrogen (Carlsbad, CA, USA) | A11034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghighi, P.; Smith, T.J.; Tahmasebi, G.; Vargas, S.; Jiang, M.S.; Massaquoi, A.C.; Huff, J.; Capadona, J.R.; Pancrazio, J.J. Piezo1 and Piezo2 Ion Channels in Neuronal and Astrocytic Responses to MEA Implants in the Rat Somatosensory Cortex. Int. J. Mol. Sci. 2025, 26, 9001. https://doi.org/10.3390/ijms26189001
Haghighi P, Smith TJ, Tahmasebi G, Vargas S, Jiang MS, Massaquoi AC, Huff J, Capadona JR, Pancrazio JJ. Piezo1 and Piezo2 Ion Channels in Neuronal and Astrocytic Responses to MEA Implants in the Rat Somatosensory Cortex. International Journal of Molecular Sciences. 2025; 26(18):9001. https://doi.org/10.3390/ijms26189001
Chicago/Turabian StyleHaghighi, Pegah, Thomas J. Smith, Ghazaal Tahmasebi, Sophia Vargas, Madison S. Jiang, Ajaree C. Massaquoi, Johnathan Huff, Jeffrey R. Capadona, and Joseph J. Pancrazio. 2025. "Piezo1 and Piezo2 Ion Channels in Neuronal and Astrocytic Responses to MEA Implants in the Rat Somatosensory Cortex" International Journal of Molecular Sciences 26, no. 18: 9001. https://doi.org/10.3390/ijms26189001
APA StyleHaghighi, P., Smith, T. J., Tahmasebi, G., Vargas, S., Jiang, M. S., Massaquoi, A. C., Huff, J., Capadona, J. R., & Pancrazio, J. J. (2025). Piezo1 and Piezo2 Ion Channels in Neuronal and Astrocytic Responses to MEA Implants in the Rat Somatosensory Cortex. International Journal of Molecular Sciences, 26(18), 9001. https://doi.org/10.3390/ijms26189001