Small-Molecule Ligands of Rhodopsin and Their Therapeutic Potential in Retina Degeneration
Abstract
1. Introduction
1.1. Rhodopsin in the Classification of G Protein-Coupled Receptors
1.2. Biochemical and Biophysical Similarities and Distinctions of Rhodopsin Compared to Other GPCRs
1.3. Functional Mechanism of Rhodopsin and Its Role as a GPCR Model System
1.4. Biological and Clinical Importance of Rhodopsin
2. A Comprehensive Overview of Therapeutic Small-Molecule Ligands of Rhodopsin
2.1. Therapeutic Ligands Based on Core Scaffold Features and the Conformational States They Stabilize
2.2. Therapeutic Ligands Based on Binding Affinity to Rod Opsin and Effects on Maturation and Membrane Trafficking
2.3. Mapping Binding Location and Interaction of Therapeutic Ligand with Rod Opsin
- (I).
- The canonical or orthosteric chromophore binding pocket of rhodopsin, located deep between transmembrane helices TM3, TM5, TM6, and TM7, accommodates a diverse range of ligands including retinoids analogs (9-cis-retinal), non-retinoid compounds (YC-001, SRD005825, CR1–CR5, JC3/JC4), and covalent inhibitors such as retinyl-amine and retinoyl fluoride. Weak competitors like β-ionone and NSC 45012 also target this site. Ligand recognition is anchored by several key residues: (i) Lys296 (TM7), forms a covalent protonated Schiff base with retinoid aldehyde or engages in electrostatic hydrogen-bond interactions with non-aldehyde analogs; (ii) Glu113 (TM3), serves as the counter-ion to the Schiff base and helps shape the local electrostatics; and (iii) a hydrogen bonding network comprising Glu181, Tyr191, Tyr192, and Ser186 at the ECL2/TM5 interface, frequently engages with polar functional groups. Additionally, (iv) hydrophobic and aromatic (π–π) contacts with Trp265, Tyr268, Phe212, Ala117, Thr118, and Ala292 cradle β-ionone-like or aromatic scaffolds, acting as a hydrophobic anchor, whereas Glu122 (TM3) occasionally accepts H-bonds (e.g., from RS1 carbonyls, nerol, citronellol, and geraniol). Together, these residues enable diverse interaction types: covalent attachment (Schiff base or irreversible amide), hydrogen bonds and salt bridges with acidic side chains, van der Waals and π–π stacking, and water-mediated networks. Functionally, most orthosteric ligands act as inverse agonists or chemical chaperones, stabilizing the dark state, slowing Meta II transition kinetics, and rescuing folding/trafficking defects of Class 2 opsin mutants. Some compounds, such as 9-cis-retinyl acetate prodrug, can regenerate pigment and function as pro-agonist, while covalent agents like acyl fluorides or retinyl-amines can irreversibly inactivate constitutively active mutants.
- (II).
- The “β-ionone surface cleft”, also known as the peri-orthosteric pocket, is located near the outer leaflet of the membrane, spanning TM5, TM6, and ECL3. This shallow, hydrophobic site accommodates ligands such as the “stabilizers” reported by Pasqualetto et al. [62] and spiro ring elements of RS ligands during channel-like conformational openings [63]. Key residues forming this cleft include the Phe283–Ile290 belt at the TM6 tip and ECL3, notably Pro285, Ile286, Phe287, and Met288, with occasional hydrogen bonding to Asp282. Ligand interactions are predominantly characterized by shallow hydrophobic packing and, in some cases, a single polar contact. Rather than acting as direct competitors at the orthosteric site, these ligands typically function as allosteric facilitators, enhancing retinal binding kinetics and accelerating pigment regeneration without displacing the native chromophore.
- (III).
- The extracellular ECL2/N-terminus plug acts as a regulatory gate positioned above the orthosteric pocket, involving ECL2 and the N-terminal region [81]. Although no ligands are known to bind exclusively to this site, partial engagement has been observed with flavonoid or econazole [75], which promote an intradiscal channel-like conformation. Key residues include the acidic ECL2 stretch (Pro194–His195–Glu196–Glu197), Glu201 at the TM5 cap, Tyr191, and glycan-bearing residues Asn2 and Asn15 from the N-terminus. Occupation of this site functionally locks ECL2 over the binding pocket, biasing rhodopsin toward Lumi/Meta I or Meta III states and restricting the outward motion of TM5 and TM6. This negative allosteric modulation stabilizes the receptor dark state and can influence both signaling dynamics and folding efficiency in disease-associated rod opsin variants.
- (IV).
- The cytoplasmic clefts of rhodopsin formed around TM1/2/3 and TM2/6/7 near the ICL2 and ICL3 loops serve as regulatory allosteric sites accessible from the intracellular side. These regions accommodate ligands such as Ce6 [70], anthocyanin C3G [65], and valproate [71]. Key residues involved include Glu134 and Arg135 in the conserved E/DRY motif; surrounding hydrophobics such as Ile133, Val138, Leu72, and Phe146; and deeper contacts with Asn302, Thr58, and Met317 near the base of TM7. Ligand interactions include salt bridges and hydrogen bonds to Lys/Arg residues and hydrophobic packing parallel to the membrane plane. These interactions often result in weak (micromolar) bindings that subtly modulate global conformational dynamics, either stabilizing the dark state (as seen with Ce6) or modestly destabilizing Meta II in mutant contexts (high concentrations of C3G or valproic acid).
- (V).
- The dimer and oligomer interfaces, along with membrane-facing grooves, represent peripheral allosteric sites that modulate rhodopsin assembly and signaling. This can include dimer modulator compounds, such as econazole compounds [75], and lipidic molecules, such as cholesterol [73,78], as well as retigabine [68]. For dimer modulator ligands, direct contacts have not been resolved. However, their ability to quench Trp265 fluorescence suggests an allosteric binding mode near the β-ionone pocket but far from Lys296 [75,76]. Econazole ligands likely interact with the dimer at the TM1/TM7–8 interface, the TM3/TM5 or TM5/TM6 rim, and helix 8. While cholesterol binds at multiple grooves, including the TM2–TM3 rim, the TM1–TM2–TM4 cleft, and near the TM7 cap [73,78]. Through its 3β-hydroxyl group, cholesterol forms hydrogen bonds with tyrosine and threonine residues, while its sterol ring system engages in dense hydrophobic packing that influences transmembrane helix kinks. In addition, cholesterol stabilizes the inactive state ensemble by tightening helical packing and reinforcing the NPxxY/H8 motif, modulating photoreceptor responsiveness and long-term structural integrity [73]. Functionally, both these ligands can alter oligomerization dynamics, slow Meta II decay, and shift ERG response kinetics.
- (VI).
- Irreversible active-site-directed chemistries target the orthosteric lysine residue (Lys296) using electrophilic or nucleophilic ligands such as retinoyl fluorides (–COF) and retinyl-amines (–NH2). These compounds form stable amid or iminium linkages with Lys296 within the orthosteric site, resulting in non-bleachable pigments with characteristic absorption around λmax ~365 nm [50]. By covalently locking the chromophore site, these ligands permanently silence constitutively active opsin mutants, blocking unwanted activity and halting pathological signaling, offering a potential therapeutic route for dominant-negative retinal diseases.
2.4. Ligands with Counter-Intuitive or Mixed Functional Profiles
2.4.1. Ligands That Shorten Meta II Lifetime or Fail to Rescue Folding Defects
- (i).
- Sodium valproate, a weak intracellular-cleft binder with modest stabilization of the wild-type dark state, yet markedly reduced Meta II half-life in the I307N mutant (16.3 → 5.2 min) and offered no rescue of that mutant’s dark stability [71]. This suggests a cytoplasmic binding site near TM2/TM7 that perturbs the NPxxY/H8 microdomain, biasing the active-state landscape unfavorably. Therefore, sodium valproate is a poor chemical chaperone for Class 2 rod opsin mutans and can destabilize activation equilibria.
- (ii).
- Retigabine produces pronounced thermal stabilization and improves chromophore regeneration, yet it accelerates Meta II decay (half-time reduced by ~50%). This is consistent with negative allosteric modulation of activation. Retigabine stabilizes the dark state via a TM1/TM7 cleft but disfavors the active Meta II conformation once formed [68].
- (iii).
- Rhodopsin dimer modulators such as econazole series [75]. The R-econazole enantiomer traps Meta III (λmax ≈ 465 nm), fully quenches Trp265 fluorescence, and slows rod photo-response kinetics ex vivo, whereas the S-form primarily reduces sensitivity without kinetic slowing. These stereospecific effects are attributable to dimer/interface allostery rather than orthosteric stabilization and therefore fall outside the classical definition of “chemical chaperones”. Taken together, these distinct binding profiles highlight an unresolved therapeutic question: can such modulators, despite their unconventional mechanisms, be harnessed to counteract constitutively active rod opsin variants?
2.4.2. Dual Orthosteric-Allosteric Behavior in Flavonoids
- (i).
- Flavonoids. Docking and experimental data indicate that aglycone such as quercetin and myricetin can occupy either the rod opsin orthosteric pocket or external sites (ECL2/TM5–TM6), with binding preference modulated by the concentration, protonation state, and chromophore form (11-cis vs. 9-cis-retinal) [67,77]. Functionally, quercetin increases thermal stability and accelerates regeneration of opsin with 9-cis-retinal (chaperone-like effect). It modulates Meta II decay bidirectionally depending on dose and pigment context and promotes self-association (↑BRET), an effect absent in typical orthosteric inverse agonists. These outcomes reflect site promiscuity combined with pH-dependent chemistry of the flavylium core. Glycosides, being bulkier, cannot enter the orthosteric site and primarily act externally.
- (ii).
- Cyanidin-3-glucoside (C3G). At pH 6, increases regeneration rate (for ~65%) but reduces thermal and retinal-release stability (half-time 27.7 min → 10.5 min), and dampens transducin activation [65]. The most likely explanation is its binding to cytoplasmic side that facilitates chromophore entry while slightly destabilizing the pigment core, producing apparently contradictory kinetic and stability readouts.
2.4.3. Photosensitizers and Cytoplasmic Allosteric Ligands That Bias State Equilibria
2.4.4. Membrane Context as a Determinant of Apparent Paradox
2.4.5. Mechanistic Basis for Unexpected Outcomes
- (i).
- State bias determined by binding site. Orthosteric inverse agonists typically stabilize the dark state while often shortening Meta II lifetime. Extracellular allosteric ligands impede TM5/6 motions, suppressing Meta II formation and enriching Meta I/III, whereas cytoplasmic allosteric modulators perturb the NPxxY/H8 microdomain, accelerating active-state decay.
- (ii).
- Chemistry and environmental context. Ligand behavior can depend strongly on chemical form and surroundings. For example, for flavonoids, the receptor protonation state (pH-dependent flavylium vs. quinoidal forms), glycosylation-induced steric bulk, and membrane versus detergent environments alter site accessibility and apparent efficacy. These effects can produce mixed orthosteric and allosteric signatures even within a single chemical scaffold.
- (iii).
- Genotype specificity. Ligand effects can be highly mutation-dependent. A compound that stabilizes P23H may destabilize I307N variant. Sodium valproate exemplifies this, as certain mutants exhibit heightened sensitivity of Meta II to cytoplasmic perturbation. Conclusions must always consider the underlying mutant class (e.g., N-terminal misfolding versus TM7 micro-switch defects).
- (iv).
- Readout artifacts. Some ligands, such as econazole and Ce6, can quench Trp265 fluorescence, artificially distorting Meta II kinetics. Thus, confirmatory measurements using UV/Vis spectroscopy or hydroxylamine reactivity are essential to distinguish true kinetic effects from assay artifacts.
2.5. Ligand Strategies for Rescuing Rod Opsin-Associated Inherited Diseases
- Orthosteric inverse agonists remain the dominant approach for effective rescue of defective rod opsin, with most broad-spectrum correctors targeting the chromophore binding pocket to stabilize the dark state, either covalently (retinoids) or non-covalently (non-retinoids). The chemical class selection is critical for balancing efficacy and safety. Non-retinoid scaffolds, including butyrolactones, chromenones, and RS-series compounds, avoid aldehyde reactivity, enhancing light stability and reducing retinoic acid-related toxicity, while maintaining sub-micromolar affinities. The P23H rod opsin has emerged as the primary “workhorse” mutant for studies evaluation pharmacological properties of these ligands, in both cell and animal models. Promising hits emerging from these studies include YC 001, F5257 0462, CR5, JC3/JC4, quercetin, and SRD005825, as well as hydrophobic modulators like β-ionone. A secondary tier of mutants, including T17M, E181K, G90D/V, K296E/M, and I307N, is commonly used to represent distinct mechanistic classes, such as N-terminal signal sequence defects, ECL2 charge perturbations, constitutive activation, or cytoplasmic misfolding. This creates a key therapeutic trade-off between breadth and specificity: retinoids offer broad rescue potential but are limited by photolability and toxicity, whereas non-retinoids provide narrower target coverage but improved drug-like properties and better tolerability.
- Allosteric ligands, including flavonoids, econazole stereoisomers, cholesterol, Ce6, and C3G, offer valuable mechanistic insights by modulating Meta II/III kinetics or oligomerization states. However, their effects are often mutant-specific and may be destabilizing in certain contexts, emphasizing the importance of carefully matching ligand strategy to the mutation class.
3. Brief Overview of Photochemical Ligands
4. Development of Therapeutic Ligands for Rod Opsin: Status, Limitations, and Prospects
4.1. Current Stage of Small-Molecule Ligand Development
4.2. Limitations and Bottlenecks in Drug Development for Pathogenic Rhodopsin
4.3. Future Prospects and Strategic Roadmap
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
adRP | Autosomal dominant retinitis pigmentosa |
ATP | Adenosine triphosphate |
BRET | Bioluminescence resonance energy transfer |
cGMP | Cyclic guanosine monophosphate |
DHA/PE | Docosahexaenoic acid/Phosphatidylethanolamine |
ECL | Extracellular loop |
ERG | Electroretinography |
FDA | Food and Drugs Administration |
GPCR | G protein–coupled receptor |
GRK1 | Rhodopsin kinase |
Gt | G protein transducin |
ICL | Intracellular loop |
LCA | Leber Congenital Amaurosis |
LRAT | Lecithin retinol acyltransferase |
Meta I | Metarhodopsin I |
Meta II | Metarhodopsin II |
Meta III | Metharodopsin III |
ONL | Outer nuclear layer |
OS | Outer segments |
POPC | 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine |
PSB | Protonated Schiff base |
RP | Retinitis pigmentosa |
RPE | Retinal pigmented epithelium |
RPE65 | Retinyl pigment epithelium-specific protein 65 |
SAR | Structure-activity relation |
TM | Transmembrane |
References
- Fredriksson, R.; Lagerstrom, M.C.; Lundin, L.G.; Schioth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef]
- Lagerstrom, M.C.; Schioth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 2008, 7, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Basith, S.; Cui, M.; Macalino, S.J.Y.; Park, J.; Clavio, N.A.B.; Kang, S.; Choi, S. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design. Front. Pharmacol. 2018, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Pandy-Szekeres, G.; Munk, C.; Tsonkov, T.M.; Mordalski, S.; Harpsoe, K.; Hauser, A.S.; Bojarski, A.J.; Gloriam, D.E. GPCRdb in 2018: Adding GPCR structure models and ligands. Nucleic Acids Res. 2018, 46, D440–D446. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef]
- Fritze, O.; Filipek, S.; Kuksa, V.; Palczewski, K.; Hofmann, K.P.; Ernst, O.P. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc. Natl. Acad. Sci. USA 2003, 100, 2290–2295. [Google Scholar] [CrossRef]
- Terakita, A. The opsins. Genome Biol. 2005, 6, 213. [Google Scholar] [CrossRef]
- Sakmar, T.P.; Menon, S.T.; Marin, E.P.; Awad, E.S. Rhodopsin: Insights from recent structural studies. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 443–484. [Google Scholar] [CrossRef]
- Wald, G. Molecular basis of visual excitation. Science 1968, 162, 230–239. [Google Scholar] [CrossRef]
- Schoenlein, R.W.; Peteanu, L.A.; Mathies, R.A.; Shank, C.V. The first step in vision: Femtosecond isomerization of rhodopsin. Science 1991, 254, 412–415. [Google Scholar] [CrossRef]
- Rasmussen, S.G.; Choi, H.J.; Fung, J.J.; Pardon, E.; Casarosa, P.; Chae, P.S.; Devree, B.T.; Rosenbaum, D.M.; Thian, F.S.; Kobilka, T.S.; et al. Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 2011, 469, 175–180. [Google Scholar] [CrossRef]
- Farrens, D.L.; Altenbach, C.; Yang, K.; Hubbell, W.L.; Khorana, H.G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 1996, 274, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Standfuss, J.; Edwards, P.C.; D'Antona, A.; Fransen, M.; Xie, G.; Oprian, D.D.; Schertler, G.F. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 2011, 471, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Baylor, D.A.; Lamb, T.D.; Yau, K.W. Responses of retinal rods to single photons. J. Physiol. 1979, 288, 613–634. [Google Scholar] [CrossRef]
- Hofmann, K.P.; Lamb, T.D. Rhodopsin, light-sensor of vision. Prog. Retin. Eye Res. 2023, 93, 101116. [Google Scholar] [CrossRef]
- Smith, S.O. Mechanism of Activation of the Visual Receptor Rhodopsin. Annu. Rev. Biophys. 2023, 52, 301–317. [Google Scholar] [CrossRef]
- Leskov, I.B.; Klenchin, V.A.; Handy, J.W.; Whitlock, G.G.; Govardovskii, V.I.; Bownds, M.D.; Lamb, T.D.; Pugh, E.N., Jr.; Arshavsky, V.Y. The gain of rod phototransduction: Reconciliation of biochemical and electrophysiological measurements. Neuron 2000, 27, 525–537. [Google Scholar] [CrossRef]
- Burns, M.E.; Baylor, D.A. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu. Rev. Neurosci. 2001, 24, 779–805. [Google Scholar] [CrossRef]
- Gurevich, E.V.; Gurevich, V.V. Arrestins: Ubiquitous regulators of cellular signaling pathways. Genome Biol. 2006, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.; Palczewski, K. Retinal degeneration in animal models with a defective visual cycle. Drug Discov. Today Dis. Models 2013, 10, e163–e172. [Google Scholar] [CrossRef]
- Nickell, S.; Park, P.S.; Baumeister, W.; Palczewski, K. Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J. Cell Biol. 2007, 177, 917–925. [Google Scholar] [CrossRef]
- Nemet, I.; Ropelewski, P.; Imanishi, Y. Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms. Prog. Mol. Biol. Transl. Sci. 2015, 132, 39–71. [Google Scholar] [CrossRef] [PubMed]
- Young, R.W.; Bok, D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 1969, 42, 392–403. [Google Scholar] [CrossRef]
- Young, R.W. The renewal of rod and cone outer segments in the rhesus monkey. J. Cell Biol. 1971, 49, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Ragi, S.D.; Tsang, S.H. Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Mol. Ther. 2020, 28, 2139–2149, Erratum in Mol. Ther. 2022, 30, 2633. [Google Scholar] [CrossRef]
- Sakami, S.; Maeda, T.; Bereta, G.; Okano, K.; Golczak, M.; Sumaroka, A.; Roman, A.J.; Cideciyan, A.V.; Jacobson, S.G.; Palczewski, K. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J. Biol. Chem. 2011, 286, 10551–10567. [Google Scholar] [CrossRef]
- Zhen, F.; Zou, T.; Wang, T.; Zhou, Y.; Dong, S.; Zhang, H. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front. Neurosci. 2023, 17, 1132179. [Google Scholar] [CrossRef]
- Azam, M.; Jastrzebska, B. Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies. Cells 2025, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Sohocki, M.M.; Daiger, S.P.; Bowne, S.J.; Rodriquez, J.A.; Northrup, H.; Heckenlively, J.R.; Birch, D.G.; Mintz-Hittner, H.; Ruiz, R.S.; Lewis, R.A.; et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum. Mutat. 2001, 17, 42–51. [Google Scholar] [CrossRef]
- Mendes, H.F.; van der Spuy, J.; Chapple, J.P.; Cheetham, M.E. Mechanisms of cell death in rhodopsin retinitis pigmentosa: Implications for therapy. Trends Mol. Med. 2005, 11, 177–185. [Google Scholar] [CrossRef]
- Roushar, F.J.; McKee, A.G.; Kuntz, C.P.; Ortega, J.T.; Penn, W.D.; Woods, H.; Chamness, L.M.; Most, V.; Meiler, J.; Jastrzebska, B.; et al. Molecular basis for variations in the sensitivity of pathogenic rhodopsin variants to 9-cis-retinal. J. Biol. Chem. 2022, 298, 102266. [Google Scholar] [CrossRef]
- Ortega, J.T.; Gallagher, J.M.; McKee, A.G.; Tang, Y.; Carmena-Bargueno, M.; Azam, M.; Pashandi, Z.; Golczak, M.; Meiler, J.; Perez-Sanchez, H.; et al. Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa. PLoS Biol. 2025, 23, e3002932. [Google Scholar] [CrossRef] [PubMed]
- Cideciyan, A.V.; Aleman, T.S.; Boye, S.L.; Schwartz, S.B.; Kaushal, S.; Roman, A.J.; Pang, J.J.; Sumaroka, A.; Windsor, E.A.; Wilson, J.M.; et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc. Natl. Acad. Sci. USA 2008, 105, 15112–15117. [Google Scholar] [CrossRef]
- Noorwez, S.M.; Kuksa, V.; Imanishi, Y.; Zhu, L.; Filipek, S.; Palczewski, K.; Kaushal, S. Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J. Biol. Chem. 2003, 278, 14442–14450. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.T.; Parmar, T.; Carmena-Bargueno, M.; Perez-Sanchez, H.; Jastrzebska, B. Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice. J. Neurosci. Res. 2022, 100, 1063–1083. [Google Scholar] [CrossRef]
- Ortega, J.T.; McKee, A.G.; Roushar, F.J.; Penn, W.D.; Schlebach, J.P.; Jastrzebska, B. Chromenone derivatives as novel pharmacological chaperones for retinitis pigmentosa-linked rod opsin mutants. Hum. Mol. Genet. 2022, 31, 3439–3457. [Google Scholar] [CrossRef]
- Ortega, J.T.; Jastrzebska, B. The Retinoid and Non-Retinoid Ligands of the Rod Visual G Protein-Coupled Receptor. Int. J. Mol. Sci. 2019, 20, 6218. [Google Scholar] [CrossRef] [PubMed]
- Noorwez, S.M.; Ostrov, D.A.; McDowell, J.H.; Krebs, M.P.; Kaushal, S. A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin. Invest. Ophthalmol. Vis. Sci. 2008, 49, 3224–3230. [Google Scholar] [CrossRef]
- Xi, Y.; Chen, Y. Pharmacological strategies for treating misfolded rhodopsin-associated autosomal dominant retinitis pigmentosa. Neural Regen. Res. 2022, 17, 110–112. [Google Scholar] [CrossRef]
- Peng, B.; Xiao, J.; Wang, K.; So, K.F.; Tipoe, G.L.; Lin, B. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J. Neurosci. 2014, 34, 8139–8150. [Google Scholar] [CrossRef]
- Justin, G.A.; Girach, A.; Maldonado, R.S. Antisense oligonucleotide therapy for proline-23-histidine autosomal dominant retinitis pigmentosa. Curr. Opin. Ophthalmol. 2023, 34, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, G.; Ben M'Barek, K.; Chaffiol, A.; Slembrouck-Brec, A.; Conart, J.B.; Nanteau, C.; Rabesandratana, O.; Sahel, J.A.; Duebel, J.; Orieux, G.; et al. Characterization and Transplantation of CD73-Positive Photoreceptors Isolated from Human iPSC-Derived Retinal Organoids. Stem Cell Reports 2018, 11, 665–680. [Google Scholar] [CrossRef]
- Bakondi, B.; Lv, W.; Lu, B.; Jones, M.K.; Tsai, Y.; Kim, K.J.; Levy, R.; Akhtar, A.A.; Breunig, J.J.; Svendsen, C.N.; et al. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Mol. Ther. 2016, 24, 556–563. [Google Scholar] [CrossRef]
- Noorwez, S.M.; Malhotra, R.; McDowell, J.H.; Smith, K.A.; Krebs, M.P.; Kaushal, S. Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J. Biol. Chem. 2004, 279, 16278–16284. [Google Scholar] [CrossRef]
- Kono, M. Assays for inverse agonists in the visual system. Methods Enzymol. 2010, 485, 213–224. [Google Scholar] [CrossRef]
- Kono, M.; Crouch, R.K. In vitro assays of rod and cone opsin activity: Retinoid analogs as agonists and inverse agonists. Methods Mol. Biol. 2010, 652, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kuksa, V.; Bartl, F.; Maeda, T.; Jang, G.F.; Ritter, E.; Heck, M.; Preston Van Hooser, J.; Liang, Y.; Filipek, S.; Gelb, M.H.; et al. Biochemical and physiological properties of rhodopsin regenerated with 11-cis-6-ring- and 7-ring-retinals. J. Biol. Chem. 2002, 277, 42315–42324. [Google Scholar] [CrossRef]
- Maeda, A.; Maeda, T.; Golczak, M.; Chou, S.; Desai, A.; Hoppel, C.L.; Matsuyama, S.; Palczewski, K. Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J. Biol. Chem. 2009, 284, 15173–15183. [Google Scholar] [CrossRef]
- Hirano, T.; Lim, I.T.; Kim, D.M.; Zheng, X.G.; Yoshihara, K.; Oyama, Y.; Imai, H.; Shichida, Y.; Ishiguro, M. Constraints of opsin structure on the ligand-binding site: Studies with ring-fused retinals. Photochem. Photobiol. 2002, 76, 606–615. [Google Scholar] [CrossRef]
- Wong, C.G.; Rando, R.R. Specific reaction of 9-cis-retinoyl fluoride with bovine opsin. Biochemistry 1984, 23, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Snider, B.B.; Oprian, D.D. Synthesis and characterization of a novel retinylamine analog inhibitor of constitutively active rhodopsin mutants found in patients with autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 1997, 94, 13559–13564. [Google Scholar] [CrossRef]
- Golczak, M.; Kuksa, V.; Maeda, T.; Moise, A.R.; Palczewski, K. Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 8162–8167. [Google Scholar] [CrossRef]
- Maeda, T.; Maeda, A.; Casadesus, G.; Palczewski, K.; Margaron, P. Evaluation of 9-cis-retinyl acetate therapy in Rpe65-/- mice. Invest. Ophthalmol. Vis. Sci. 2009, 50, 4368–4378. [Google Scholar] [CrossRef]
- Pasqualetto, G.; Pileggi, E.; Schepelmann, M.; Varricchio, C.; Rozanowska, M.; Brancale, A.; Bassetto, M. Ligand-based rational design, synthesis and evaluation of novel potential chemical chaperones for opsin. Eur. J. Med. Chem. 2021, 226, 113841. [Google Scholar] [CrossRef] [PubMed]
- Behnen, P.; Felline, A.; Comitato, A.; Di Salvo, M.T.; Raimondi, F.; Gulati, S.; Kahremany, S.; Palczewski, K.; Marigo, V.; Fanelli, F. A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. iScience 2018, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ohgane, K.; Dodo, K.; Hashimoto, Y. Retinobenzaldehydes as proper-trafficking inducers of folding-defective P23H rhodopsin mutant responsible for retinitis pigmentosa. Bioorg Med. Chem. 2010, 18, 7022–7028. [Google Scholar] [CrossRef]
- Ahmed, C.M.; Dwyer, B.T.; Romashko, A.; Van Adestine, S.; Park, E.H.; Lou, Z.; Welty, D.; Josiah, S.; Savinainen, A.; Zhang, B.; et al. SRD005825 Acts as a Pharmacologic Chaperone of Opsin and Promotes Survival of Photoreceptors in an Animal Model of Autosomal Dominant Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2019, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Brooks, M.J.; Gieser, L.; Swaroop, A.; Palczewski, K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacol. Res. 2017, 115, 1–13. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.; Chen, Y.; Jastrzebska, B.; Golczak, M.; Gulati, S.; Tang, H.; Seibel, W.; Li, X.; Jin, H.; Han, Y.; et al. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nat. Commun. 2018, 9, 1976. [Google Scholar] [CrossRef]
- Manian, K.V.; Ludwig, C.H.; Zhao, Y.; Abell, N.; Yang, X.; Root, D.E.; Albert, M.L.; Comander, J. A comprehensive map of missense trafficking variants in rhodopsin and their response to pharmacologic correction. bioRxiv 2025. [Google Scholar] [CrossRef]
- Vats, A.; Xi, Y.; Feng, B.; Clinger, O.D.; St Leger, A.J.; Liu, X.; Ghosh, A.; Dermond, C.D.; Lathrop, K.L.; Tochtrop, G.P.; et al. Nonretinoid chaperones improve rhodopsin homeostasis in a mouse model of retinitis pigmentosa. JCI Insight 2022, 7, e153717. [Google Scholar] [CrossRef]
- Pasqualetto, G.; Schepelmann, M.; Varricchio, C.; Pileggi, E.; Khogali, C.; Morgan, S.R.; Boostrom, I.; Rozanowska, M.; Brancale, A.; Ferla, S.; et al. Computational Studies towards the Identification of Novel Rhodopsin-Binding Compounds as Chemical Chaperones for Misfolded Opsins. Molecules 2020, 25, 4904. [Google Scholar] [CrossRef] [PubMed]
- Mattle, D.; Kuhn, B.; Aebi, J.; Bedoucha, M.; Kekilli, D.; Grozinger, N.; Alker, A.; Rudolph, M.G.; Schmid, G.; Schertler, G.F.X.; et al. Ligand channel in pharmacologically stabilized rhodopsin. Proc. Natl. Acad. Sci. USA 2018, 115, 3640–3645. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, S.; Nishat, S.; Khan, M.I. Docking of human rhodopsin mutant (Gly90-->Asp) with beta-arrestin and cyanidin 3-rutinoside to cure night blindness. Bioinformation 2012, 8, 128–133. [Google Scholar] [CrossRef]
- Tirupula, K.C.; Balem, F.; Yanamala, N.; Klein-Seetharaman, J. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 2. Functional aspects. Photochem. Photobiol. 2009, 85, 463–470. [Google Scholar] [CrossRef]
- Ortega, J.T.; Parmar, T.; Golczak, M.; Jastrzebska, B. Protective Effects of Flavonoids in Acute Models of Light-Induced Retinal Degeneration. Mol. Pharmacol. 2021, 99, 60–77. [Google Scholar] [CrossRef]
- Ortega, J.T.; Parmar, T.; Jastrzebska, B. Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. J. Biol. Chem. 2019, 294, 8101–8122. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Fernandez-Gonzalez, P.; Perez, J.J.; Morillo, M.; Garriga, P. Retigabine increases the conformational stability of the visual photoreceptor rhodopsin. Int. J. Biol. Macromol. 2024, 279, 135343. [Google Scholar] [CrossRef]
- Woods, K.N.; Pfeffer, J.; Klein-Seetharaman, J. Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways. Front. Mol. Biosci. 2017, 4, 85. [Google Scholar] [CrossRef]
- Mitchell, J.; Yanamala, N.; Tan, Y.L.; Gardner, E.E.; Tirupula, K.C.; Balem, F.; Sheves, M.; Nietlispach, D.; Klein-Seetharaman, J. Structural and Functional Consequences of the Weak Binding of Chlorin e6 to Bovine Rhodopsin. Photochem. Photobiol. 2019, 95, 787–802. [Google Scholar] [CrossRef]
- Razzaghi, N.; Fernandez-Gonzalez, P.; Mas-Sanchez, A.; Vila-Julia, G.; Perez, J.J.; Garriga, P. Effect of Sodium Valproate on the Conformational Stability of the Visual G Protein-Coupled Receptor Rhodopsin. Molecules 2021, 26, 3032. [Google Scholar] [CrossRef]
- Dong, X.; Herrera-Hernandez, M.G.; Ramon, E.; Garriga, P. Docosahexaenoic acid phospholipid differentially modulates the conformation of G90V and N55K rhodopsin mutants associated with retinitis pigmentosa. Biochim. Biophys. Acta Biomembr. 2017, 1859, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Khelashvili, G.; Grossfield, A.; Feller, S.E.; Pitman, M.C.; Weinstein, H. Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations. Proteins 2009, 76, 403–417. [Google Scholar] [CrossRef]
- Lobysheva, E.; Taylor, C.M.; Marshall, G.R.; Kisselev, O.G. Tauroursodeoxycholic acid binds to the G-protein site on light activated rhodopsin. Exp. Eye Res. 2018, 170, 51–57. [Google Scholar] [CrossRef]
- Getter, T.; Gulati, S.; Zimmerman, R.; Chen, Y.; Vinberg, F.; Palczewski, K. Stereospecific modulation of dimeric rhodopsin. FASEB J. 2019, 33, 9526–9539. [Google Scholar] [CrossRef]
- Getter, T.; Kemp, A.; Vinberg, F.; Palczewski, K. Identification of small-molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. J. Biol. Chem. 2021, 297, 101401. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Hernandez, M.G.; Ramon, E.; Lupala, C.S.; Tena-Campos, M.; Perez, J.J.; Garriga, P. Flavonoid allosteric modulation of mutated visual rhodopsin associated with retinitis pigmentosa. Sci. Rep. 2017, 7, 11167. [Google Scholar] [CrossRef] [PubMed]
- Jastrzebska, B.; Debinski, A.; Filipek, S.; Palczewski, K. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Prog. Lipid Res. 2011, 50, 267–277. [Google Scholar] [CrossRef]
- Gulati, S.; Jastrzebska, B.; Banerjee, S.; Placeres, A.L.; Miszta, P.; Gao, S.; Gunderson, K.; Tochtrop, G.P.; Filipek, S.; Katayama, K.; et al. Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proc. Natl. Acad. Sci. USA 2017, 114, E2608–E2615. [Google Scholar] [CrossRef]
- Nakamichi, H.; Buss, V.; Okada, T. Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by x-ray crystallography. Biophys. J. 2007, 92, L106–L108. [Google Scholar] [CrossRef][Green Version]
- Janz, J.M.; Fay, J.F.; Farrens, D.L. Stability of dark state rhodopsin is mediated by a conserved ion pair in intradiscal loop E-2. J. Biol. Chem. 2003, 278, 16982–16991. [Google Scholar] [CrossRef]
- deGrip, W.J.; Bovee-Geurts, P.H.; Wang, Y.; Verhoeven, M.A.; Lugtenburg, J. Cyclopropyl and isopropyl derivatives of 11-cis and 9-cis retinals at C-9 and C-13: Subtle steric differences with major effects on ligand efficacy in rhodopsin. J. Nat. Prod. 2011, 74, 383–390. [Google Scholar] [CrossRef]
- Koch, D.; Gartner, W. Steric hindrance between chromophore substituents as the driving force of rhodopsin photoisomerization: 10-methyl-13-demethyl retinal containing rhodopsin. Photochem. Photobiol. 1997, 65, 181–186. [Google Scholar] [CrossRef]
- Vogel, R.; Siebert, F.; Yan, E.C.; Sakmar, T.P.; Hirshfeld, A.; Sheves, M. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base. J. Am. Chem. Soc. 2006, 128, 10503–10512. [Google Scholar] [CrossRef]
- Buczylko, J.; Saari, J.C.; Crouch, R.K.; Palczewski, K. Mechanisms of opsin activation. J. Biol. Chem. 1996, 271, 20621–20630. [Google Scholar] [CrossRef]
- Szundi, I.; de Lera, A.R.; Pazos, Y.; Alvarez, R.; Oliana, M.; Sheves, M.; Lewis, J.W.; Kliger, D.S. Bleaching kinetics of artificial visual pigments with modifications near the ring-polyene chain connection. Biochemistry 2002, 41, 2028–2035. [Google Scholar] [CrossRef]
- DeGrip, W.J.; Bovee-Geurts, P.H.; van der Hoef, I.; Lugtenburg, J. 7,8-dihydro retinals outperform the native retinals in conferring photosensitivity to visual opsin. J. Am. Chem. Soc. 2007, 129, 13265–13269. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.D.; Palczewski, K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023, 45, e2300068. [Google Scholar] [CrossRef]
- Tsutsui, K.; Shichida, Y. Multiple functions of Schiff base counterion in rhodopsins. Photochem. Photobiol. Sci. 2010, 9, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Hall, S.E.; Vaidehi, N. Agonist-induced conformational changes in bovine rhodopsin: Insight into activation of G-protein-coupled receptors. J. Mol. Biol. 2008, 382, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Deupi, X. Relevance of rhodopsin studies for GPCR activation. Biochim. Biophys. Acta 2014, 1837, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Alcaraz, A.; Martinez-Archundia, M.; Ramon, E.; Garriga, P. Salt effects on the conformational stability of the visual G-protein-coupled receptor rhodopsin. Biophys. J. 2011, 101, 2798–2806. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kircheva, N.; Dobrev, S.; Nikolova, V.; Angelova, S.; Dudev, T. Zinc and Its Critical Role in Retinitis pigmentosa: Insights from DFT/SMD Calculations. Inorg. Chem. 2020, 59, 17347–17355. [Google Scholar] [CrossRef] [PubMed]
- Norris, C.E.; Keener, J.E.; Perera, S.; Weerasinghe, N.; Fried, S.D.E.; Resager, W.C.; Rohrbough, J.G.; Brown, M.F.; Marty, M.T. Native Mass Spectrometry Reveals the Simultaneous Binding of Lipids and Zinc to Rhodopsin. Int. J. Mass. Spectrom. 2021, 460, 116477. [Google Scholar] [CrossRef]
- Vogel, R.; Fan, G.B.; Siebert, F.; Sheves, M. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base. Biochemistry 2001, 40, 13342–13352. [Google Scholar] [CrossRef]
Class (Family) | A (Rhodopsin) | B1 (Secretin) | B2 (Adhesion) | C (Glutamate) | D1 (Ste2-Like Fungal Pheromone) | F (Frizzled) | O1 (Fish-Like Odorant) | O2 (Tetrapod Specific Odorant) | T2 (Taste 2) | Total |
---|---|---|---|---|---|---|---|---|---|---|
Receptors * | 185 | 15 | 9 | 13 | 1 | 7 | 3 | 3 | 2 | 238 |
Receptor-ligand | 851 | 97 | 13 | 64 | 1 | 19 | 4 | 3 | 6 | 1058 |
complexes | ||||||||||
Receptor-G protein complexes | 170 | 15 | 9 | 5 | 1 | 5 | 3 | 3 | 2 | 213 |
Active-state | ||||||||||
receptors ** | 174 | 15 | 9 | 5 | 1 | 5 | 3 | 3 | 2 | 219 |
Ligands | Type | Binding Site | Induced Conformation | References | |
---|---|---|---|---|---|
Retinal Analogs (Schiff base forming) | 11-cis retinal | Inverse Agonist | Orthosteric | Ground state | [34,44] |
9-cis-retinal | Inverse Agonist | Orthosteric | Ground state | [45,46] | |
11-cis-7-ring retinal | Inverse Agonist | Orthosteric | Ground state | [34,47] | |
11-cis-6-ring retinal | Inverse Agonist | Orthosteric | Ground state | [34,47] | |
11-cis-9-demethyl-7-ring retinal | Inverse Agonist | Orthosteric | Orthosteric | [34] | |
All-trans-retinal | Agonist | Orthosteric | Meta II | [48] | |
C17-retinal | Inverse/Partial Agonist | Orthosteric | Ground state | [46] | |
C11–C13 five-membered ring-fused 9-cis-retinal | Inverse/Partial Agonist | Orthosteric | Ground state | [49] | |
C12–C14 five-membered ring-fused 9-cis-retinal | Inverse Agonist | Orthosteric | Ground state | [49] | |
9-cis-retinoyl fluoride | Irreversible Inhibitor | Orthosteric | Ground state | [50] | |
all-trans-retinoyl fluoride | Irreversible Inhibitor | Orthosteric | N/A | [50] | |
13-cis-retinoyl fluoride | Irreversible Inhibitor | Orthosteric | Ground state | [50] | |
C19-retinyl-amine | Irreversible Inhibitor | Orthosteric | Ground state | [51,52] | |
11-cis-2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,5,7-octatrien-1-amine | Irreversible Inhibitor | Orthosteric | N/A | [51] | |
11-cis-n-propyl-retinyl-amine | Irreversible Inhibitor | Orthosteric | N/A | [51] | |
Retinoid Mimics | 9-cis-retinyl acetate | Inverse/Pro-Agonist | Orthosteric | Ground state | [48,53] |
all-trans-retinol | Agonist | Orthosteric | Meta II | [48] | |
all-trans-retinoic acid | Agonist | Orthosteric | Meta II | [48,50] | |
13-cis-retinoic acid | Inverse Agonist | Orthosteric | Ground state | [48] | |
5b, 5c, 8c, 11a (orthosteric competitors) | Inverse Agonist | Orthosteric | Ground state | [54] | |
β-ionone | Partial Agonist | Orthosteric | Meta II | [38,45,46,50] | |
Cyclocitral | N/A | Orthosteric | N/A | [45,46] | |
11-cis-retinol | Agonist | Orthosteric | Meta II | [45,46] | |
5d, 7b, 9d, 10a, 11d, 12 (allosteric stabilizers) | Inverse Agonist | Orthosteric | Ground state | [54] | |
9-cis-retinyl palmitate | Inverse Agonist | Orthosteric | Ground state | [53] | |
13-cis-5,8-epoxy-retinoic acid | Inverse Agonist | Orthosteric | Ground state | [55] | |
TMAm, TMEs, HNEs, TB3Es, TB4Es, TB35Es | Inverse Agonist | Orthosteric | Ground state | [56] | |
CF35Es, and bio-isosteric analogs CF35EsB (boronic acid), CF35EsC (carboxylic acid), CF35EsA (carboxamide) | Inverse Agonist | Allosteric | Ground state | [56] | |
SRD005825 | Inverse Agonist | Orthosteric | Ground state | [57] | |
Non-retinoid | NSC 45012 | Inverse Agonist | Orthosteric | Ground state | [38] |
cis-1,3-dimethyl-cyclohexane | Inverse Agonist | Orthosteric | N/A | [38] | |
isoquinoline-2(3H)-hexanamide | N/A | Orthosteric | N/A | [58] | |
YC-001 | Inverse Agonist | Orthosteric | Ground state | [59,60] | |
F5257-0462 (Life Chemical ID) | Inverse Agonist | Orthosteric | Ground state | [61] | |
Pocket Competitors—compounds 6, 8, 20, 23 | Inverse Agonist | Orthosteric | Ground state | [62] | |
Allosteric modulators—compounds 1, 4, 7, 10, 22 | Inverse Agonist | Orthosteric | Orthosteric | [62] | |
JC3 and JC4 | Inverse Agonist | Allosteric | Ground state | [32] | |
Chromenone (CR5) | Inverse Agonist | Orthosteric | Ground state | [36] | |
RS-Series (RS1–RS4 initial hits; medicinal-chemistry derivatives RS06, RS08, RS09, RS11, RS13, RS15, RS16) | N/A | Orthosteric | Ground state | [63] | |
Cyanidin 3-rutinoside | Proposed as Activator | Orthosteric | Ground state | [64] | |
Cyanidin-3-O-glucoside (C3G) | Inverse Agonist | Allosteric | N/A | [65] | |
Quercetin | Inverse Agonist | Orthosteric/Allosteric | Ground state | [66,67] | |
Myricetin | Inverse Agonist | Orthosteric | Ground state | [66,67] | |
Myricetrin | Inverse Agonist | Orthosteric | Ground state | [67,68] | |
Quercetin-3-rhamnoside | Inverse Agonist | Orthosteric | [67] | ||
Retigabine (Ezogabine) | Activator | Allosteric | Ground state | [68] | |
Chlorin e6 (Ce6) | Inverse Agonist | Allosteric | Ground state | [69,70] | |
Sodium valproate | N/A | Allosteric | Ground state | [71] | |
Nerol (cis-Geraniol; (Z)-geraniol); geraniol (trans-Geraniol); Citronellol | Activator | Orthosteric | N/A | PDB IDs: 6PEL, 6PGS, 6PH7 | |
n-Octyl-Beta-D-Glucopyranoside | N/A | Orthosteric | N/A | PDB IDs: 6NWE, 4X1H, 4J4Q, 4PXF | |
Non-retinoid Lipidic Compounds | DDHA-PC | N/A | Allosteric | Ground state | [72] |
Cholesterol | N/A | Allosteric | Ground state | [73] | |
Tauroursodeoxycholic acid (TUDCA) | Activator | Allosteric | Meta II | [74] | |
Non-retinoid Dimer Modulators | Econazole; Sulconazole; and six derivatives | Inverse Agonist | Orthosteric/Allosteric | Meta III | [75] |
dimer enhancers: #1 F2502-0030; #2 F5103-0385; #3 F5097-2767; 4 F3382-0749 | N/A | Orthosteric | N/A | [76] | |
dimer disrupters: #5 F1669-0696; #6 F3215-0002; #7 F5897-0190 (lead disrupter); #8 F0834-0928; #9 F2515-3945 | N/A | Orthosteric | N/A | [76] |
Ligand | Breadth/Key Metrics | Assay | Why It Stands Out | References |
---|---|---|---|---|
YC-001 | 642 out of 1260 mis-trafficking variants rescued | Deep-mutational scanning | Broad mutant coverage; light-stable, non-aldehyde | [58,59,60] |
9-cis-retinal | 67 out of 69 Class 2 variants rescued; EC90 ~5 µM | Deep-mutational scanning | Gold-standard chemical chaperone; high affinity | [31,44,55] |
JC3 and JC4 | 30 (JC3) and 26 (JC4) out of 123 mutants rescued, Kd = 175 nM (JC3), Kd = 98.5 nM (JC4) | Deep-mutational scanning, target binding | Broad mutant coverage, light-stable, in vivo efficacy | [32] |
Chromenone (CR5) | 31 out of 123 variants rescued; Kd = 193 nM | Deep-mutational scanning, target binding | Broad mutant coverage, light-stable, in vivo efficacy | [36] |
S-RS1/RS2 (spiro-butanone series) | ΔTm up to +9 °C; rescued trafficking of Rho P23H; EC50 = 2.4 µM | Pharmaco-trafficking complementation | First crystallographically solved non-retinoid binders | [63] |
13-cis-5,8-epoxy-retinoic acid | EC50 0.5–4.8 µM for T17M/P23H/E181K rescued | Cell surface immunostaining | Nanomolar affinity; strong rescue of multiple canonical mutants | [55] |
SRD005825 | Delays degeneration in T17M mice; IC50 17.8–28.6 µM | Cell surface immunostaining; in vivo treatment | Orally bioavailable non-aldehyde retinoid mimic with in vivo efficacy | [57] |
Quercetin/Myricetin | ΔTm +5.6 °C; Meta II t½ +91% in G90V-9CR; rescued trafficking of Rho P23H | Cell surface immunostaining | Cheap, safe, dual allosteric/orthosteric binding; moderate breadth | [66,67] |
F5257-0462 | Rescued membrane trafficking of 11 mutants | Cell surface immunostaining | non-retinoid small-molecule chaperones | [61] |
β-Ionone | Rescued Rho P23H membrane trafficking; strong regeneration inhibitor | Cell surface immunostaining | Simple scaffold; moderate, but consistent, chaperone effect | [38,45,46] |
Control Knob | Typical Chemical Move | Immediate Structural Effect | Cascading Functional Consequences | References |
---|---|---|---|---|
C10 ⇋ C13 steric tension | delete or add a single CH3 (9-dm, 13-dm, 10-Me, 13-iPr) * | the β-ionone pocket (loosens/over-crowds Trp265 & Tyr268) | tunes pre-twist at C11=C12 → quantum-yield spans 0.08–0.67; Meta II pKa shifts 7.7 → 4.5; signaling ranges from 0% to 139% | [82,83] |
Proton-transfer switch | electronic pulls (14-F) ** or pushes (ring removal) | raises or lowers SB pKa and the Glu113 ↔ Glu134 proton-relay | full agonist → partial agonist conversion or vice-versa | [84] |
Pocket length matching | chain-truncate/extend (C17, C22) or bicyclic locks | over- or under-fills the helix-1/7 corridor | chemical agonism without chromophore, or complete loss of binding | [85,86] |
Ring rigidity vs. flexibility | cyclohexenyl locks, 6-member and 5-member braces, α-ring | blocks canonical 11-cis → all-trans transition or redirects strain | photostable inverse agonists or photocyclic pigments that reset thermally | [79] |
Early-polyene shortening | 7,8-dihydro-retinal, ring-fused 9-cis-retinal | off-loads torsion to C10–C13; HOOP bands collapse | retains WT-like photo-isomerization yet blue-shifts λmax; useful for brighter optogenetic scaffolds | [87] |
Chemotype | Why It Matters | Prototype Ligands | Suggested Next Step | References |
---|---|---|---|---|
Chain-truncated aldehydes | Bind without Schiff base formation, rescue Meta II conformation chemically; small and metabolically flexible | C17 aldehyde → Meta II-like opsin, full rhodopsin-kinase phosphorylation at acidic pH | Add polar tail (amide, sulfonamide) to enhance solubility but keep hydrophobic anchor | [85] |
β-Ionone analogs | Minimum scaffold that seals the Trp265 pocket; weak agonism avoids phototoxic Meta II | β-Ionone & oxime series | Diversify ring substitutions (F, CF3) to modulate residence time | [85] |
Fluoro-acyclic retinals | De-rigidified ring eases entry; 14-fluoro-retinal electronically lowers Schiff base pKa, giving Meta I Schiff base that stabilizes helices but is signaling-silent unless acidified | 14-fluoro acyclic retinal | Convert aldehyde → alcohol/amide to prevent undesired Schiff-base | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashandi, Z.; Jastrzebska, B. Small-Molecule Ligands of Rhodopsin and Their Therapeutic Potential in Retina Degeneration. Int. J. Mol. Sci. 2025, 26, 8964. https://doi.org/10.3390/ijms26188964
Pashandi Z, Jastrzebska B. Small-Molecule Ligands of Rhodopsin and Their Therapeutic Potential in Retina Degeneration. International Journal of Molecular Sciences. 2025; 26(18):8964. https://doi.org/10.3390/ijms26188964
Chicago/Turabian StylePashandi, Zaiddodine, and Beata Jastrzebska. 2025. "Small-Molecule Ligands of Rhodopsin and Their Therapeutic Potential in Retina Degeneration" International Journal of Molecular Sciences 26, no. 18: 8964. https://doi.org/10.3390/ijms26188964
APA StylePashandi, Z., & Jastrzebska, B. (2025). Small-Molecule Ligands of Rhodopsin and Their Therapeutic Potential in Retina Degeneration. International Journal of Molecular Sciences, 26(18), 8964. https://doi.org/10.3390/ijms26188964