Collection Series “Iron Homeostasis”
Author Contributions
Conflicts of Interest
References
- Ganz, T. Systemic iron homeostasis. In Iron Metabolism in Human Health and Disease; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2025; Volume 480, pp. 33–45. [Google Scholar] [CrossRef]
- Chiabrando, D.; Vinchi, F.; Fiorito, V.; Mercurio, S.; Tolosano, E. Heme in pathophysiology: A matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 2014, 8, 5–61. [Google Scholar] [CrossRef]
- Hsu, C.C.; Senussi, N.H.; Fertrin, K.Y.; Kowdley, K.V. Iron overload disorders. Hepatol. Commun. 2022, 6, 1842–1854. [Google Scholar] [CrossRef]
- Li, X.; Finberg, K.E. Iron Deficiency Anemia. Adv. Exp. Med. Biol. 2025, 1480, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Galy, B.; Conrad, M.; Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell Biol. 2024, 25, 133–155. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, R.S.; Han, S.M.; Leeuwenburgh, C.; Xiao, R. Iron homeostasis and organismal aging. Ageing Res. Rev. 2021, 72, 101510. [Google Scholar] [CrossRef]
- Kureel, S.K.; Rasmussen, B.B. Targeting Ferroptosis to Eliminate Senescent Cells: Mechanisms and Therapeutic Potential. Aging Dis. 2025, 17, 4. [Google Scholar] [CrossRef]
- Drewnowski, A.; Shultz, J.M. Impact of aging on eating behaviors, food choices, nutrition, and health status. J. Nutr. Health Aging 2001, 5, 75–79. [Google Scholar] [PubMed]
- Michalak, S.S.; Sterna, W. Coexistence and clinical implications of anemia and depression in the elderly population. Psychiatr. Pol. 2023, 57, 517–528. [Google Scholar] [CrossRef]
- Marshall Moscon, S.L.; Connor, J.R. HFE Mutations in Neurodegenerative Disease as a Model of Hormesis. Int. J. Mol. Sci. 2024, 25, 3334. [Google Scholar] [CrossRef]
- Adams, P.C.; Ryan, J.D. Diagnosis and Treatment of Hemochromatosis. Clin. Gastroenterol. Hepatol. 2025, 23, 1477–1485. [Google Scholar] [CrossRef]
- Hall, E.C., 2nd; Lee, S.Y.; Mairuae, N.; Simmons, Z.; Connor, J.R. Expression of the HFE allelic variant H63D in SH-SY5Y cells affects tau phosphorylation at serine residues. Neurobiol. Aging 2011, 32, 1409–1419. [Google Scholar] [CrossRef]
- Jahanshad, N.; Kohannim, O.; Hibar, D.P.; Stein, J.L.; McMahon, K.L.; de Zubicaray, G.I.; Medland, S.E.; Montgomery, G.W.; Whitfield, J.B.; Martin, N.G.; et al. Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene. Proc. Natl. Acad. Sci. USA 2012, 109, E851–E859. [Google Scholar] [CrossRef]
- Brissot, P.; Pietrangelo, A.; Adams, P.C.; de Graaff, B.; McLaren, C.E.; Loréal, O. Haemochromatosis. Nat. Rev. Dis. Primers. 2018, 4, 18016. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.S.; Balestrucci, C.; Cozzi, A.; Santambrogio, P.; Levi, S. Neuroferritinopathy Human-Induced Pluripotent Stem Cell-Derived Astrocytes Reveal an Active Role of Free Intracellular Iron in Astrocyte Reactivity. Int. J. Mol. Sci. 2025, 26, 6197. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.; AKurian, M.; Wilson, J.; Hayflick, S. Neurodegeneration with Brain Iron Accumulation Disorders Overview. 2013 Feb 28 [updated 2025 Mar 6]. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Levi, S.; Ripamonti, M.; Moro, A.S.; Cozzi, A. Iron imbalance in neurodegeneration. Mol. Psychiatry 2024, 29, 1139–1152. [Google Scholar] [CrossRef]
- Chinnery, P.F. Neuroferritinopathy. 2005 Apr 25 [updated 2022 Oct 20]. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Li, Y.; Xiao, D.; Wang, X. The emerging roles of ferroptosis in cells of the central nervous system. Front. Neurosci. 2022, 16, 1032140. [Google Scholar] [CrossRef]
- Pellegrino, R.M.; Boda, E.; Montarolo, F.; Boero, M.; Mezzanotte, M.; Saglio, G.; Buffo, A.; Roetto, A. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse. Sci. Rep. 2016, 6, 30725. [Google Scholar] [CrossRef]
- Comità, S.; Falco, P.; Mezzanotte, M.; Vujić Spasić, M.; Roetto, A. Lack of Hfe and TfR2 in Macrophages Impairs Iron Metabolism in the Spleen and the Bone Marrow. Int. J. Mol. Sci. 2024, 25, 9142. [Google Scholar] [CrossRef] [PubMed]
- Winn, N.C.; Volk, K.M.; Hasty, A.H. Regulation of tissue iron homeostasis: The macrophage ‘ferrostat’. JCI Insight 2020, 5, 132964. [Google Scholar] [CrossRef]
- Makui, H.; Soares, R.J.; Jiang, W.; Constante, M.; Santos, M.M. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading. Blood 2005, 106, 2189–2195. [Google Scholar] [CrossRef]
- Roetto, A.; Mezzanotte, M.; Pellegrino, R.M. The Functional Versatility of Transferrin Receptor 2 and Its Therapeutic Value. Pharmaceuticals 2018, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Pêgo, A.C.; Lima, I.S.; Martins, A.C.; Sá-Pereira, I.; Martins, G.; Gozzelino, R. Infection vs. Reinfection: The Immunomodulation of Erythropoiesis. Int. J. Mol. Sci. 2024, 25, 6153. [Google Scholar] [CrossRef]
- White, N.J. Anaemia and malaria. Malar. J. 2018, 17, 371. [Google Scholar] [CrossRef] [PubMed]
- Phiri, K.S.; Khairallah, C.; Kwambai, T.K.; Bojang, K.; Dhabangi, A.; Opoka, R.; Idro, R.; Stepniewska, K.; van Hensbroek, M.B.; John, C.C.; et al. Post-discharge malaria chemoprevention in children admitted with severe anaemia in malaria-endemic settings in Africa: A systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Glob. Health 2024, 12, e33–e44. [Google Scholar] [CrossRef]
- Dumarchey, A.; Lavazec, C.; Verdier, F. Erythropoiesis and Malaria, a Multifaceted Interplay. Int. J. Mol. Sci. 2022, 23, 12762. [Google Scholar] [CrossRef]
- Mazgaj, R.; Lipiński, P.; Starzyński, R.R. Iron Supplementation of Pregnant Sows to Prevent Iron Deficiency Anemia in Piglets: A Procedure of Questionable Effectiveness. Int. J. Mol. Sci. 2024, 25, 4106. [Google Scholar] [CrossRef]
- Ding, H.; Yu, X.; Feng, J. Iron homeostasis disorder in piglet intestine. Metallomics 2020, 12, 1494–1507. [Google Scholar] [CrossRef]
- Svoboda, M.; Drabek, J.; Krejci, J.; Rehakova, Z.; Faldyna, M. Impairment of the peripheral lymphoid compartment in iron-deficient piglets. Vet. Med. B Infect. Dis. Vet. Public Health 2004, 51, 231–237. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roetto, A.; Arosio, P. Collection Series “Iron Homeostasis”. Int. J. Mol. Sci. 2025, 26, 8954. https://doi.org/10.3390/ijms26188954
Roetto A, Arosio P. Collection Series “Iron Homeostasis”. International Journal of Molecular Sciences. 2025; 26(18):8954. https://doi.org/10.3390/ijms26188954
Chicago/Turabian StyleRoetto, Antonella, and Paolo Arosio. 2025. "Collection Series “Iron Homeostasis”" International Journal of Molecular Sciences 26, no. 18: 8954. https://doi.org/10.3390/ijms26188954
APA StyleRoetto, A., & Arosio, P. (2025). Collection Series “Iron Homeostasis”. International Journal of Molecular Sciences, 26(18), 8954. https://doi.org/10.3390/ijms26188954