Long-Term Clinical and Molecular Changes in Dry Eye Disease and Chronic Ocular Pain
Abstract
1. Introduction
2. Results
2.1. Clinical Evaluation
2.2. Sample Analysis
2.2.1. Tear Cytokine and Substance P Analysis
2.2.2. Gene Expression Analysis
2.2.3. miRNA Expression Analysis
3. Discussion
4. Materials and Methods
4.1. Participants and Study Design
4.2. Clinical Evaluation
4.2.1. Medical History and Symptom Assessment
4.2.2. Tear Sample Collection
4.2.3. Ocular Surface Evaluation
4.2.4. Conjunctival Impression Cytology
4.3. Sample Analysis
4.3.1. Tear Analysis
4.3.2. Gene Expression Analysis
4.3.3. MicroRNA Expression Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DED | Dry eye disease |
IL | Interleukin |
Ra | Receptor antagonist |
MMP | Matrix metalloproteinase |
MIP | Macrophage inflammatory protein |
IFN | Interferon |
miRNA | MicroRNA |
TNF | Tumor necrosis factor |
V1 | First visit |
V2 | Follow-up visit |
OSDI | Ocular Surface Disease Index |
IVCM | In vivo confocal microscopy |
EGF | Epidermal growth factor |
MCP | Monocyte chemoattractant protein |
GRO | Growth-related oncogene |
SP | Substance P |
RANTES | Regulated on activation, normal T cell expressed and secreted |
NGF | Nerve growth factor |
BDKRB1 | Bradykinin receptor B1 |
CALCA | Calcitonin-related polypeptide alpha |
CCL2 | Chemokine (C-C motif) ligand 2 |
ITGAM | Integrin, alpha M (complement component 3 receptor 3 subunit) |
TAC1 | Tachykinin, precursor 1 |
CD200 | CD200 molecule |
TACR1 | Tachykinin receptor 1 |
CX3CR1 | Chemokine (C-X3-C motif) receptor 1 |
BDNF | Brain-derived neurotrophic factor |
NTRK1 | Neurotrophic tyrosine kinase, receptor, type 1 |
PENK1 | Proenkephalin 1 |
OPRM1 | Opioid receptor, mu 1 |
OPRD1 | Opioid receptor, delta 1 |
OPRK1 | Opioid receptor, kappa 1 |
TRPV3 | Transient receptor potential cation channel, subfamily V, member 3 |
TRPA1 | Transient receptor potential caption channel 1 |
TRPV1 | Transient receptor potential cation channel, subfamily V, member 1 |
CNR2 | Cannabinoid receptor 2 (macrophage) |
PTGS1 | Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase) |
CDES-Q | Change in Dry Eye Symptoms Questionnaire |
TBUT | Fluorescein tear break-up time |
CELab | Controlled Environment Laboratory |
mSIDEQ | Modified Single-Item Dry Eye Questionnaire |
Ct | Cycle threshold |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
References
- Wolffsohn, J.S.; Benítez-Del-Castillo, J.; Loya-Garcia, D.; Inomata, T.; Iyar, G.; Liang, L.; Pult, H.; Sabater, A.L.; Starr, C.E.; Vehof, J.; et al. TFOS DEWS III Diagnostic Methodology. Am. J. Ophthalmol. 2025. ahead-of-print. [Google Scholar] [CrossRef]
- Britten-Jones, A.C.; Wang, M.T.M.; Samuels, I.; Jennings, C.; Stapleton, F.; Craig, J.P. Epidemiology and Risk Factors of Dry Eye Disease: Considerations for Clinical Management. Medicina 2024, 60, 1458. [Google Scholar] [CrossRef]
- Stapleton, F.; Argüeso, P.; Asbell, P.; Azar, D.; Bosworth, C.; Chen, W.; Ciolino, J.; Craig, J.P.; Gallar, J.; Galor, A.; et al. TFOS DEWS III Digest Report. Am. J. Ophthalmol. 2025. ahead-of-print. [Google Scholar] [CrossRef]
- Benítez-del-Castillo, J.M.; Burgos-Blasco, B. Prevalence of Dry Eye Disease in Spain: A Population-Based Survey (PrevEOS). Ocul. Surf. 2025, 36, 126–133. [Google Scholar] [CrossRef]
- Belmonte, C.; Acosta, M.C.; Merayo-Lloves, J.; Gallar, J. What Causes Eye Pain? Curr. Ophthalmol. Rep. 2015, 3, 111–121. [Google Scholar] [CrossRef]
- Galor, A.; Levitt, R.C.; Felix, E.R.; Martin, E.R.; Sarantopoulos, C.D. Neuropathic Ocular Pain: An Important yet Underevaluated Feature of Dry Eye. Eye 2015, 29, 301–312. [Google Scholar] [CrossRef]
- Mangwani-Mordani, S.; Goodman, C.F.; Galor, A. Novel Treatments for Chronic Ocular Surface Pain. Cornea 2023, 42, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Fong, P.; Shih, K.; Lam, P.; Chan, T.Y.; Jhanji, V.; Tong, L. Role of Tear Film Biomarkers in the Diagnosis and Management of Dry Eye Disease. Taiwan J. Ophthalmol. 2019, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Vázquez, M.; Vázquez, A.; Fernández, I.; Novo-Diez, A.; Martínez-Plaza, E.; García-Vázquez, C.; González-García, M.J.; Sobas, E.M.; Calonge, M.; Enríquez-de-Salamanca, A. Inflammation-Related Molecules in Tears of Patients with Chronic Ocular Pain and Dry Eye Disease. Exp. Eye Res. 2022, 219, 109057. [Google Scholar] [CrossRef] [PubMed]
- López-Miguel, A.; Tesón, M.; Martín-Montañez, V.; Enríquez-de-Salamanca, A.; Stern, M.E.; González-García, M.J.; Calonge, M. Clinical and Molecular Inflammatory Response in Sjögren Syndrome–Associated Dry Eye Patients Under Desiccating Stress. Am. J. Ophthalmol. 2016, 161, 133–141.e2. [Google Scholar] [CrossRef]
- Huang, J.-F.; Zhang, Y.; Rittenhouse, K.D.; Pickering, E.H.; McDowell, M.T. Evaluations of Tear Protein Markers in Dry Eye Disease: Repeatability of Measurement and Correlation with Disease. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4556. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Kessal, K.; Rabut, G.; Daull, P.; Garrigue, J.S.; Melik Parsadaniantz, S.; Docquier, M.; Baudouin, C.; Brignole-Baudouin, F. Correlation of Clinical Symptoms and Signs with Conjunctival Gene Expression in Primary Sjögren Syndrome Dry Eye Patients. Ocul. Surf. 2019, 17, 516–525. [Google Scholar] [CrossRef]
- Vergés, C.; Giménez-Capitán, A.; Ribas, V.; Salgado-Borges, J.; March de Ribot, F.; Mayo-de-las-Casas, C.; Armiger-Borras, N.; Pedraz, C.; Molina-Vila, M.Á. Gene Expression Signatures in Conjunctival Fornix Aspirates of Patients with Dry Eye Disease Associated with Meibomian Gland Dysfunction. A Proof-of-Concept Study. Ocul. Surf. 2023, 30, 42–50. [Google Scholar] [CrossRef]
- Cocho, L.; Fernández, I.; Calonge, M.; Martínez, V.; González-García, M.J.; Caballero, D.; López-Corral, L.; García-Vázquez, C.; Vázquez, L.; Stern, M.E.; et al. Gene Expression–Based Predictive Models of Graft Versus Host Disease–Associated Dry Eye. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4570. [Google Scholar] [CrossRef]
- Sato, F.; Tsuchiya, S.; Meltzer, S.J.; Shimizu, K. MicroRNAs and Epigenetics. FEBS J. 2011, 278, 1598–1609. [Google Scholar] [CrossRef]
- Rassi, D.M.; De Paiva, C.S.; Dias, L.C.; Módulo, C.M.; Adriano, L.; Fantucci, M.Z.; Rocha, E.M. Review: MicroRNAS in Ocular Surface and Dry Eye Diseases. Ocul. Surf. 2017, 15, 660–669. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, M.; He, T.; Chen, S. The Expression of miRNA-146a-5p and Its Mechanism of Treating Dry Eye Syndrome. J. Clin. Lab. Anal. 2021, 35, e23571. [Google Scholar] [CrossRef]
- Kakan, S.S.; Edman, M.C.; Yao, A.; Okamoto, C.T.; Nguyen, A.; Hjelm, B.E.; Hamm-Alvarez, S.F. Tear miRNAs Identified in a Murine Model of Sjögren’s Syndrome as Potential Diagnostic Biomarkers and Indicators of Disease Mechanism. Front. Immunol. 2022, 13, 833254. [Google Scholar] [CrossRef]
- Pucker, A.D.; Ngo, W.; Postnikoff, C.K.; Fortinberry, H.; Nichols, J.J. Tear Film miRNAs and Their Association With Human Dry Eye Disease. Curr. Eye Res. 2022, 47, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Vázquez, M.; Novo-Diez, A.; Vázquez, A.; Enríquez-de-Salamanca, A.; González-García, M.J.; Calonge, M. Clinical Characterization of the Lacrimal Functional Unit in Patients with Chronic Ocular Pain with Dry Eye Disease. J. Clin. Med. 2025, 14, 5250. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Moreno, A.; Liang, H.; Moreau, N.; Luzu, J.; Rabut, G.; Melik Parsadaniantz, S.; Labbé, A.; Baudouin, C.; Réaux-Le Goazigo, A. Corneal Nerve Abnormalities in Painful Dry Eye Disease Patients. Biomedicines 2021, 9, 1424. [Google Scholar] [CrossRef]
- Galor, A.; Zlotcavitch, L.; Walter, S.D.; Felix, E.R.; Feuer, W.; Martin, E.R.; Margolis, T.P.; Sarantopoulos, K.D.; Levitt, R.C. Dry Eye Symptom Severity and Persistence Are Associated with Symptoms of Neuropathic Pain. Br. J. Ophthalmol. 2015, 99, 665–668. [Google Scholar] [CrossRef]
- Patel, S.; Mittal, R.; Sarantopoulos, K.D.; Galor, A. Neuropathic Ocular Surface Pain: Emerging Drug Targets and Therapeutic Implications. Expert Opin. Ther. Targets 2022, 26, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Sandonís, C.; Vázquez, A.; Valencia-Nieto, L.; Martínez-Plaza, E.; Blanco-Vázquez, M.; Sobas, E.M.; Calonge, M.; Ortega, E.; Enríquez-de-Salamanca, A.; González-García, M.J. Long-Term Evolution of Chronic Neuropathic Ocular Pain and Dry Eye Following Corneal Refractive Surgery. J. Clin. Med. 2025, 14, 4406. [Google Scholar] [CrossRef] [PubMed]
- De Paiva, C.S.; Pflugfelder, S.C. Corneal Epitheliopathy of Dry Eye Induces Hyperesthesia to Mechanical Air Jet Stimulation. Am. J. Ophthalmol. 2004, 137, 109–115. [Google Scholar] [CrossRef]
- Bourcier, T.; Acosta, M.C.; Borderie, V.; Borra’s, F.; Gallar, J.; Bury, T.; Laroche, L.; Belmonte, C. Decreased Corneal Sensitivity in Patients with Dry Eye. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2341. [Google Scholar] [CrossRef]
- Belmonte, C.; Nichols, J.J.; Cox, S.M.; Brock, J.A.; Begley, C.G.; Bereiter, D.A.; Dartt, D.A.; Galor, A.; Hamrah, P.; Ivanusic, J.J.; et al. TFOS DEWS II Pain and Sensation Report. Ocul. Surf. 2017, 15, 404–437. [Google Scholar] [CrossRef]
- Labbé, A.; Alalwani, H.; Van Went, C.; Brasnu, E.; Georgescu, D.; Baudouin, C. The Relationship between Subbasal Nerve Morphology and Corneal Sensation in Ocular Surface Disease. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4926. [Google Scholar] [CrossRef]
- Adatia, F.A.; Michaeli-Cohen, A.; Naor, J.; Caffery, B.; Bookman, A.; Slomovic, A. Correlation between Corneal Sensitivity, Subjective Dry Eye Symptoms and Corneal Staining in Sjögren’s Syndrome. Can. J. Ophthalmol. 2004, 39, 767–771. [Google Scholar] [CrossRef]
- Hoşal, B.M.; Örnek, N.; Zilelioğlu, G.; Elhan, A.H. Morphology of Corneal Nerves and Corneal Sensation in Dry Eye: A Preliminary Study. Eye 2005, 19, 1276–1279. [Google Scholar] [CrossRef]
- Spierer, O.; Felix, E.R.; McClellan, A.L.; Parel, J.M.; Gonzalez, A.; Feuer, W.J.; Sarantopoulos, C.D.; Levitt, R.C.; Ehrmann, K.; Galor, A. Corneal Mechanical Thresholds Negatively Associate With Dry Eye and Ocular Pain Symptoms. Investig. Ophthalmol. Vis. Sci. 2016, 57, 617. [Google Scholar] [CrossRef] [PubMed]
- Hamrah, P.; Liu, Y.; Zhang, Q.; Dana, R. Alterations in Corneal Stromal Dendritic Cell Phenotype and Distribution in Inflammation. Arch. Ophthalmol. 2003, 121, 1132. [Google Scholar] [CrossRef]
- Hao, R.; Ding, Y.; Li, X. Alterations in Corneal Epithelial Dendritic Cell in Sjogren’s Syndrome Dry Eye and Clinical Correlations. Sci. Rep. 2022, 12, 11167. [Google Scholar] [CrossRef]
- Villani, E.; Galimberti, D.; Viola, F.; Mapelli, C.; Ratiglia, R. The Cornea in Sjögren’s Syndrome: An In Vivo Confocal Study. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2017. [Google Scholar] [CrossRef]
- Lin, H.; Li, W.; Dong, N.; Chen, W.; Liu, J.; Chen, L.; Yuan, H.; Geng, Z.; Liu, Z. Changes in Corneal Epithelial Layer Inflammatory Cells in Aqueous Tear–Deficient Dry Eye. Investig. Ophthalmol. Vis. Sci. 2010, 51, 122. [Google Scholar] [CrossRef]
- Ross, A.R.; Al-Aqaba, M.A.; Almaazmi, A.; Messina, M.; Nubile, M.; Mastropasqua, L.; Dua, H.S.; Said, D.G. Clinical and in Vivo Confocal Microscopic Features of Neuropathic Corneal Pain. Br. J. Ophthalmol. 2020, 104, 768–775. [Google Scholar] [CrossRef]
- Kumar, N.R.; Praveen, M.; Narasimhan, R.; Khamar, P.; D’Souza, S.; Sinha-Roy, A.; Sethu, S.; Shetty, R.; Ghosh, A. Tear Biomarkers in Dry Eye Disease: Progress in the Last Decade. Indian J. Ophthalmol. 2023, 71, 1190–1202. [Google Scholar] [CrossRef]
- Lam, H.; Bleiden, L.; de Paiva, C.S.; Farley, W.; Stern, M.E.; Pflugfelder, S.C. Tear Cytokine Profiles in Dysfunctional Tear Syndrome. Am. J. Ophthalmol. 2009, 147, 198–205.e1. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, S.C.; Jones, D.; Ji, Z.; Afonso, A.; Monroy, D. Altered Cytokine Balance in the Tear Fluid and Conjunctiva of Patients with Sjögren’s Syndrome Keratoconjunctivitis Sicca. Curr. Eye Res. 1999, 19, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I.; Enríquez-de-Salamanca, A.; Portero, A.; García-Vázquez, C.; Calonge, M.; Herreras, J.M. Age- and Sex-Adjusted Reference Intervals in Tear Cytokine Levels in Healthy Subjects. Appl. Sci. 2021, 11, 8958. [Google Scholar] [CrossRef]
- Johnston, I.N.; Milligan, E.D.; Wieseler-Frank, J.; Frank, M.G.; Zapata, V.; Campisi, J.; Langer, S.; Martin, D.; Green, P.; Fleshner, M.; et al. A Role for Proinflammatory Cytokines and Fractalkine in Analgesia, Tolerance, and Subsequent Pain Facilitation Induced by Chronic Intrathecal Morphine. J. Neurosci. 2004, 24, 7353–7365. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.K.; Malcangio, M. Fractalkine/CX3CR1 Signaling during Neuropathic Pain. Front. Cell. Neurosci. 2014, 8, 121. [Google Scholar] [CrossRef]
- Enríquez-de-Salamanca, A.; Castellanos, E.; Stern, M.E.; Fernández, I.; Carreño, E.; García-Vázquez, C.; Herreras, J.M.; Calonge, M. Tear Cytokine and Chemokine Analysis and Clinical Correlations in Evaporative-Type Dry Eye Disease. Mol. Vis. 2010, 16, 862–873. [Google Scholar]
- Lu, B.; Rutledge, B.J.; Gu, L.; Fiorillo, J.; Lukacs, N.W.; Kunkel, S.L.; North, R.; Gerard, C.; Rollins, B.J. Abnormalities in Monocyte Recruitment and Cytokine Expression in Monocyte Chemoattractant Protein 1–Deficient Mice. J. Exp. Med. 1998, 187, 601–608. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Popiolek-Barczyk, K.; Piotrowska, A.; Rojewska, E.; Ciapała, K.; Makuch, W.; Mika, J. Chemokines CCL2 and CCL7, but Not CCL12, Play a Significant Role in the Development of Pain-Related Behavior and Opioid-Induced Analgesia. Cytokine 2019, 119, 202–213. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Zhang, L.; Samad, O.A.; Suter, M.R.; Yasuhiko, K.; Xu, Z.-Z.; Park, J.-Y.; Lind, A.-L.; Ma, Q.; Ji, R.-R. JNK-Induced MCP-1 Production in Spinal Cord Astrocytes Contributes to Central Sensitization and Neuropathic Pain. J. Neurosci. 2009, 29, 4096–4108. [Google Scholar] [CrossRef]
- Ferrari, G.; Bignami, F.; Giacomini, C.; Capitolo, E.; Comi, G.; Chaabane, L.; Rama, P. Ocular Surface Injury Induces Inflammation in the Brain: In Vivo and Ex Vivo Evidence of a Corneal–Trigeminal Axis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6289. [Google Scholar] [CrossRef]
- Wang, S.; Naderi, A.; Kahale, F.; Ortiz, G.; Forouzanfar, K.; Chen, Y.; Dana, R. Substance P Regulates Memory Th17 Cell Generation and Maintenance in Chronic Dry Eye Disease. J. Leukoc. Biol. 2024, 116, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhou, Y.; Ma, B.; Duan, H.; Liu, R.; Zhao, L.; Qi, H. Elevated Neuropeptides in Dry Eye Disease and Their Clinical Correlations. Cornea 2023, 42, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Zhu, X.; Ye, H.; Yang, K.; Zhou, X.; Hong, J. Tear Neuropeptides Are Associated with Clinical Symptoms and Signs of Dry Eye Patients. Ann. Med. 2025, 57, 2451194. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.; Keith, M.; Sudharshan, L.; Snedecor, S. Associations between Signs and Symptoms of Dry Eye Disease: A Systematic Review. Clin. Ophthalmol. 2015, 9, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Hamrah, P. Understanding Neuropathic Corneal Pain—Gaps and Current Therapeutic Approaches. Semin. Ophthalmol. 2016, 31, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Rong, H.; Yang, H.; Liu, Q.; Zhang, H.; Wang, S. Substance P and Neurokinin 1 Receptor Boost the Pathogenicity of Granulocyte-macrophage Colony-stimulating Factor-producing T Helper Cells in Dry Eye Disease. Scand. J. Immunol. 2025, 101, e13434. [Google Scholar] [CrossRef]
- Yu, M.; Lee, S.-M.; Lee, H.; Amouzegar, A.; Nakao, T.; Chen, Y.; Dana, R. Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation. Am. J. Pathol. 2020, 190, 125–133. [Google Scholar] [CrossRef]
- Üçeyler, N.; Sommer, C. Cytokine-Induced Pain: Basic Science and Clinical Implications. Rev. Analg. 2007, 9, 87–103. [Google Scholar] [CrossRef]
- Lewin, G.R.; Lechner, S.G.; Smith, E.S.J. Nerve Growth Factor and Nociception: From Experimental Embryology to New Analgesic Therapy. Handb. Exp. Pharmacol. 2014, 220, 251–282. [Google Scholar]
- Pan, Y.; Liu, F.; Qi, X.; Hu, Y.; Xu, F.; Jia, H. Nerve Growth Factor Changes and Corneal Nerve Repair after Keratoplasty. Optom. Vis. Sci. 2018, 95, 27–31. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, K.S.; Kim, H.C.; Lee, S.H.; Kim, E.K. Nerve Growth Factor Concentration and Implications in Photorefractive Keratectomy vs Laser In Situ Keratomileusis. Am. J. Ophthalmol. 2005, 139, 965–971. [Google Scholar] [CrossRef]
- Roda, M.; Corazza, I.; Bacchi Reggiani, M.L.; Pellegrini, M.; Taroni, L.; Giannaccare, G.; Versura, P. Dry Eye Disease and Tear Cytokine Levels—A Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 3111. [Google Scholar] [CrossRef]
- Reichardt, L.F. Neurotrophin-Regulated Signalling Pathways. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef]
- Pezet, S.; McMahon, S.B. NEUROTROPHINS: Mediators and Modulators of Pain. Annu. Rev. Neurosci. 2006, 29, 507–538. [Google Scholar] [CrossRef]
- Barker, P.A.; Mantyh, P.; Arendt-Nielsen, L.; Viktrup, L.; Tive, L. Nerve Growth Factor Signaling and Its Contribution to Pain. J. Pain Res. 2020, 13, 1223–1241. [Google Scholar] [CrossRef] [PubMed]
- O-Sullivan, I.; Kc, R.; Singh, G.; Das, V.; Ma, K.; Li, X.; Mwale, F.; Votta-Velis, G.; Bruce, B.; Natarajan Anbazhagan, A.; et al. Sensory Neuron-Specific Deletion of Tropomyosin Receptor Kinase A (TrkA) in Mice Abolishes Osteoarthritis (OA) Pain via NGF/TrkA Intervention of Peripheral Sensitization. Int. J. Mol. Sci. 2022, 23, 12076. [Google Scholar] [CrossRef] [PubMed]
- Pezet, S.; Onténiente, B.; Grannec, G.; Calvino, B. Chronic Pain Is Associated with Increased TrkA Immunoreactivity in Spinoreticular Neurons. J. Neurosci. 1999, 19, 5482–5492. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Kuroda, Y.; Murata, E. NGF/TrkA Signaling as a Therapeutic Target for Pain. Pain Pract. 2016, 16, 175–182. [Google Scholar] [CrossRef]
- Li, M.; Zhang, S.; Qiu, Y.; He, Y.; Chen, B.; Mao, R.; Cui, Y.; Zeng, Z.; Chen, M. Upregulation of miR-665 Promotes Apoptosis and Colitis in Inflammatory Bowel Disease by Repressing the Endoplasmic Reticulum Stress Components XBP1 and ORMDL3. Cell Death Dis. 2017, 8, e2699. [Google Scholar] [CrossRef]
- Lu, X.; Lv, S.; Mi, Y.; Wang, L.; Wang, G. Neuroprotective Effect of miR-665 against Sevoflurane Anesthesia-Induced Cognitive Dysfunction in Rats through PI3K/Akt Signaling Pathway by Targeting Insulin-like Growth Factor 2. Am. J. Transl. Res. 2017, 9, 1344–1356. [Google Scholar]
- Lin, Y.; Li, M.; Rao, G.; Zhang, W.; Chen, X. Inhibition of miR-665 Alleviates Neuropathic Pain by Targeting SOCS1. Trop. J. Pharm. Res. 2020, 19, 1591–1597. [Google Scholar] [CrossRef]
- Lemp, M.A.; Baudouin, C.; Baum, J.; Dogru, M.; Foulks, G.N.; Kinoshita, S.; Laibson, P.; McCulley, J.; Murube, J.; Plugfelder, S.C.; et al. The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 2007, 5, 75–92. [Google Scholar] [CrossRef]
- Xu, K.-P. Tear Function Index. Arch. Ophthalmol. 1995, 113, 84. [Google Scholar] [CrossRef]
- Satitpitakul, V.; Kheirkhah, A.; Crnej, A.; Hamrah, P.; Dana, R. Determinants of Ocular Pain Severity in Patients with Dry Eye Disease. Am. J. Ophthalmol. 2017, 179, 198–204. [Google Scholar] [CrossRef]
- Schug, S.A.; Lavand’homme, P.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.-D. The IASP Classification of Chronic Pain for ICD-11: Chronic Postsurgical or Posttraumatic Pain. Pain 2019, 160, 45–52. [Google Scholar] [CrossRef]
- Calonge, M.; Pinto-Fraga, J.; González-García, M.J.; Enríquez-de-Salamanca, A.; López-de la Rosa, A.; Fernández, I.; López-Miguel, A. Effects of the External Environment on Dry Eye Disease. Int. Ophthalmol. Clin. 2017, 57, 23–40. [Google Scholar] [CrossRef]
- Tesón, M.; González-García, M.J.; López-Miguel, A.; Enríquez-de-Salamanca, A.; Martín-Montañez, V.; Benito, M.J.; Mateo, M.E.; Stern, M.E.; Calonge, M. Influence of a Controlled Environment Simulating an In-Flight Airplane Cabin on Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2093. [Google Scholar] [CrossRef]
- Miller, K.L. Minimal Clinically Important Difference for the Ocular Surface Disease Index. Arch. Ophthalmol. 2010, 128, 94. [Google Scholar] [CrossRef]
- Ferreira-Valente, M.A.; Pais-Ribeiro, J.L.; Jensen, M.P. Validity of Four Pain Intensity Rating Scales. Pain 2011, 152, 2399–2404. [Google Scholar] [CrossRef] [PubMed]
- Wong-Baker FACES Foundation. Wong-Baker FACES Foundation Wong-Baker FACES® Pain Rating Scale 2025; Wong-Baker FACES Foundation: Oklahoma City, OK, USA, 2025. [Google Scholar]
- Quintana, J.M.; Padierna, A.; Esteban, C.; Arostegui, I.; Bilbao, A.; Ruiz, I. Evaluation of the Psychometric Characteristics of the Spanish Version of the Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 2003, 107, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Fraga, J.; Calonge, M.; Enríquez-de-Salamanca, A.; Fernández, I.; González-García, M.J.; Steven, P. Development of a Questionnaire for Detecting Changes in Dry Eye Disease–Related Symptoms. Eye Contact Lens Sci. Clin. Pract. 2021, 47, 8–14. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology Report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Höh, H.; Schirra, F.; Kienecker, C.; Ruprecht, K.W. Lid-Parallel Conjunctival Folds Are a Sure Diagnostic Sign of Dry Eye. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 1995, 92, 802–808. [Google Scholar]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading Of Corneal and Conjunctival Staining in the Context of Other Dry Eye Tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef]
- Korb, D.R.; Herman, J.P.; Greiner, J.V.; Scaffidi, R.C.; Finnemore, V.M.; Exford, J.M.; Blackie, C.A.; Douglass, T. Lid Wiper Epitheliopathy and Dry Eye Symptoms. Eye Contact Lens Sci. Clin. Pract. 2005, 31, 2–8. [Google Scholar] [CrossRef]
- Bron, A.J.; Benjamin, L.; Snibson, G.R. Meibomian Gland Disease. Classification and Grading of Lid Changes. Eye 1991, 5, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, J.; Goto, E.; Ono, M.; Shimmura, S.; Tsubota, K. Meibomian Gland Dysfunction in Patients with Sjögren Syndrome. Ophthalmology 1998, 105, 1485–1488. [Google Scholar] [CrossRef]
- Tesón, M.; Calonge, M.; Fernández, I.; Stern, M.E.; González-García, M.J. Characterization by Belmonte’s Gas Esthesiometer of Mechanical, Chemical, and Thermal Corneal Sensitivity Thresholds in a Normal Population. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3154–3160. [Google Scholar] [CrossRef] [PubMed]
- Kamper, S.J.; Maher, C.G.; Mackay, G. Global Rating of Change Scales: A Review of Strengths and Weaknesses and Considerations for Design. J. Man. Manip. Ther. 2009, 17, 163–170. [Google Scholar] [CrossRef]
- Oliveira-Soto, L.; Efron, N. Morphology of Corneal Nerves Using Confocal Microscopy. Cornea 2001, 20, 374–384. [Google Scholar] [CrossRef]
- Lagali, N.; Bourghardt, B.; Germundsson, J.; Eden, U.; Danyali, R.; Rinaldo, M.; Fagerholm, P. Laser-Scanning in Vivo Confocal Microscopy of the Cornea: Imaging and Analysis Methods for Preclinical and Clinical Applications. In Confocal Laser Microscopy—Principles and Applications in Medicine, Biology, and the Food Sciences; InTech: London, UK, 2013. [Google Scholar]
- Britten-Jones, A.C.; Rajan, R.; Craig, J.P.; Downie, L.E. Quantifying Corneal Immune Cells from Human in Vivo Confocal Microscopy Images: Can Manual Quantification Be Improved with Observer Training? Exp. Eye Res. 2022, 216, 108950. [Google Scholar] [CrossRef]
- Vázquez, A.; Blanco-Vázquez, M.; Martínez-Plaza, E.; Sobas, E.M.; González-García, M.J.; López-Miguel, A.; Ortega, E.; Enríquez-de-Salamanca, A.; Calonge, M. Corneal Sensory Changes and Nerve Plexus Abnormalities in Chronic Neuropathic Ocular Pain and Dry Eye Postrefractive Surgery. Am. J. Ophthalmol. 2025, 276, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Galor, A.; De Lott, L.B. A Call to Abandon the Term Dry Eye When We Really Mean Pain. Ophthalmology 2025, in press. [Google Scholar] [CrossRef] [PubMed]
Systemic Treatments | All (n = 22) | DED-Pain (n = 13) | DED-No Pain (n = 9) | ||||||
V1 | V2 | p-Value | V1 | V2 | p-Value | V1 | V2 | p-Value | |
Analgesics and NSAIDs | 8 (36.4) | 3 (13.6) | 0.125 | 6 (46.2) | 3 (23.1) | 0.375 | 2 (22.2) | 0 (0) | 0.500 |
Antacids | 6 (27.3) | 5 (22.7) | 1.000 | 4 (30.8) | 3 (23.1) | 1.000 | 2 (22.2) | 2 (22.2) | 1.000 |
Anticoagulants | 2 (9.1) | 2 (9.1) | 1.000 | 1 (7.7) | 1 (7.7) | 1.000 | 1 (11.1) | 1 (11.1) | 1.000 |
Antihypertensives | 4 (18.2) | 5 (22.7) | 1.000 | 3 (23.1) | 3 (23.1) | 1.000 | 1 (11.1) | 2 (22.2) | 1.000 |
Asthma treatments | 3 (13.6) | 3 (13.6) | 1.000 | 3 (23.1) | 3 (23.1) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Cholesterol-lowering drugs | 6 (27.3) | 7 (31.8) | 1.000 | 3 (23.1) | 4 (30.8) | 1.000 | 3 (33.3) | 3 (33.3) | 1.000 |
Neuropsychiatric treatments | 3 (13.6) | 2 (9.1) | 1.000 | 2 (15.4) | 1 (7.7) | 1.000 | 1 (11.1) | 1 (11.1) | 1.000 |
Neurological disease treatments | 0 | 1 (4.5) | 1.000 | 2 (15.4) | 1 (7.7) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Anxiolytics | 2 (9.1) | 1 (4.5) | 1.000 | 1 (7.7) | 0 (0) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Antidepressants | 2 (9.1) | 1 (4.5) | 1.000 | 0 (0) | 1 (7.7) | 1.000 | 1 (11.1) | 1 (11.1) | 1.000 |
Antiepileptics | 1 (4.5) | 1 (4.5) | 1.000 | 0 (0) | 1 (7.7) | 1.000 | 1 (11.1) | 0 (0) | 1.000 |
Other | 1 (4.5) | 2 (9.1) | 1.000 | 1 (7.7) | 0 (0) | 1.000 | 1 (11.1) | 1 (11.1) | 1.000 |
Immunosuppressants and corticosteroids | 3 (13.6) | 0 | 0.250 | 2 (15.4) | 3 (23.1) | 1.000 | 2 (22.2) | 0 (0) | 0.500 |
Hormonal and genitourinary treatments | 5 (22.7) | 6 (27.3) | 1.000 | 1 (7.7) | 0 (0) | 1.000 | 3 (33.3) | 3 (33.3) | 1.000 |
Antidiabetic agents | 1 (4.5) | 0 | 1.000 | 3 (23.1) | 4 (30.8) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Miscellanea | 5 (22.7) | 6 (27.3) | 1.000 | 3 (23.1) | 4 (30.8) | 1.000 | 2 (22.2) | 2 (22.2) | 1.000 |
Vitamins and food supplements | 4 (18.2) | 6 (27.3) | 0.500 | 0 (0) | 0 (0) | 1.000 | 1 (11.1) | 1 (11.1) | 1.000 |
Muscle relaxants | 1 (4.5) | 0 | 1.000 | 0 (0) | 1 (7.7) | 1.000 | 1 (11.1) | 1 (11.1) | 1.000 |
Cardiovascular treatments | 0 | 1 (4.5) | 1.000 | 0 (0) | 0 (0) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Ocular topical treatments | All (n = 22) | DED-Pain (n = 13) | DED-No Pain (n = 9) | ||||||
V1 | V2 | p-Value | V1 | V2 | p-Value | V1 | V2 | p-Value | |
Lubricants | 15 (68.2) | 14 (63.3) | 1.000 | 9 (69.2) | 10 (76.9) | 1.000 | 6 (66.7) | 4 (44.4) | 0.500 |
Artificial tears | 15 (68.2) | 14 (63.3) | 1.000 | 9 (69.2) | 10 (76.9) | 1.000 | 6 (66.7) | 4 (44.4) | 0.500 |
Gels | 1 (4.5) | 0 (0) | 1.000 | 1 (7.7) | 0 (0) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Ointments | 1 (4.5) | 1 (4.5) | 1.000 | 1 (7.7) | 1 (7.7) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Eyelid hygiene | 8 (36.4) | 4 (18.2) | 0.125 | 5 (38.5) | 2 (15.4) | 0.250 | 3 (33.3) | 2 (22.2) | 1.000 |
Punctal plugs | 3 (13.6) | 2 (9.1) | 1.000 | 2 (15.4) | 2 (15.4) | 1.000 | 1 (11.1) | 0 (0) | 1.000 |
Blood derivates | 3 (13.6) | 2 (9.1) | 1.000 | 3 (23.1) | 2 (15.4) | 1.000 | 0 (0) | 0 (0) | 1.000 |
Corticosteroids | 1 (4.5) | 2 (9.1) | 1.000 | 1 (7.7) | 1 (7.7) | 1.000 | 0 (0) | 1 (11.1) | 1.000 |
Cyclosporine | 0 (0) | 1 (4.5) | 1.000 | 0 (0) | 1 (7.7) | 1.000 | 0 (0) | 0 (0) | 1.000 |
V1 | V2 | p-Value | |
---|---|---|---|
OSDI (0–100) | 38.88 ± 19.31 | 25.09 ± 17.35 | 0.002 |
mSIDEQ (0–28) | 13.68 ± 4.59 | 13.64 ± 4.69 | 1.000 |
Intensity of pain (NRS scale, 0–10) | 3.98 ± 3.58 | 2.89 ± 3.48 | 0.378 |
Intensity of pain (WFPRS scale, 0–10) | 4.00 ± 3.75 | 3.11 ± 3.53 | 0.445 |
HADS questionnaire (0–42) | 8.55 ± 6.04 | 8.36 ± 4.45 | 1.000 |
Anxiety subscale (0–21) | 5.82 ± 3.50 | 5.86 ± 2.96 | 1.000 |
Depression subscale (0–21) | 2.73 ± 2.83 | 2.50 ± 2.15 | 1.000 |
CDES-Q1 | |||
Better n (%) | - | 5 (22.7) | - |
Worse n (%) | - | 6 (27.3) | - |
Same n (%) | - | 11 (50.0) | - |
CDES-Q2 | |||
Improvement intensity (0–10) | - | 7.00 ± 2.32 | - |
Worsening intensity (0–10) | - | 5.33 ± 0.82 | - |
DED-Pain (n = 13) | DED-No Pain (n = 9) | |||||
---|---|---|---|---|---|---|
V1 | V2 | p-Value | V1 | V2 | p-Value | |
OSDI (0–100) | 44.42 ± 21.24 | 29.37 ± 20.24 | 0.021 | 30.87 ± 13.42 | 18.91 ± 10.12 | 0.336 |
mSIDEQ (0–28) | 16.15 ± 3.91 | 15.00 ± 4.78 | 0.442 | 10.11 ± 2.85 | 11.67 ± 4.00 | 0.336 |
Intensity of pain (NRS scale, 0–10) | 6.65 ± 1.84 | 4.50 ± 3.53 | 0.189 | 0.11 ± 0.33 | 0.56 ± 1.67 | 0.665 |
Intensity of pain (WFPRS scale, 0–10) | 6.77 ± 2.09 | 4.96 ± 3.39 | 0.205 | 0.00 ± 0.00 | 0.44 ± 1.33 | 0.370 |
HADS questionnaire (0–42) | 8.31 ± 4.84 | 10.00 ± 4.16 | 0.254 | 8.89 ± 7.77 | 6.00 ± 3.91 | 0.336 |
Anxiety subscale (0–21) | 5.69 ± 3.04 | 6.85 ± 2.91 | 0.254 | 6.00 ± 4.27 | 4.44 ± 2.55 | 0.336 |
Depression subscale (0–21) | 2.62 ± 2.33 | 3.15 ± 2.23 | 0.442 | 2.89 ± 3.59 | 1.56 ± 1.74 | 0.336 |
CDES-Q1 | ||||||
Better n (%) | - | 4 (30.8) | - | - | 1 (11.1) | - |
Worse n (%) | - | 4 (30.8) | - | - | 2 (22.2) | - |
Same n (%) | - | 5 (38.5) | - | - | 6 (66.7) | - |
CDES-Q2 | ||||||
Improvement intensity (0–10) | - | 7.75 ± 1.85 | - | - | 4.00 | - |
Worsening intensity (0–10) | - | 5.50 ± 0.58 | - | - | 5.00 ± 1.41 | - |
All (n = 22) | DED-Pain (n = 13) | DED-No Pain (n = 9) | |||||||
---|---|---|---|---|---|---|---|---|---|
V1 | V2 | p-Value | V1 | V2 | p-Value | V1 | V2 | p-Value | |
Conjunctival hyperemia (Efron scale, 0–4) | 1.00 [2.00–1.00] | 2.00 [2.00–1.00] | 0.460 | 1.00 [2.00–1.00] | 2.00 [2.00–1.00] | 0.579 | 1.00 [1.00–1.00] | 2.00 [2.00–0.50] | 0.988 |
Blepharitis (Efron scale, 0–4) | 2.00 [2.25–1.00] | 1.00 [2.00–1.00] | 0.176 | 2.00 [2.50–1.00] | 1.00 [2.00–1.00] | 0.447 | 2.00 [2.50–1.00] | 1.00 [2.00–0.50] | 0.405 |
Nasal LIPCOF (0–3 scales) | 2.00 [2.00–1.00] | 1.00 [2.00–1.00] | 0.127 | 2.00 [2.50–1.00] | 1.00 [2.00–1.00] | 0.360 | 2.00 [2.00–1.00] | 1.00 [1.00–0.50] | 0.420 |
Temporal LIPCOF (0–3 scales) | 2.00 [2.00–1.00] | 1.00 [2.00–1.00] | 0.298 | 2.00 [2.00–1.50] | 2.00 [2.00–1.00] | 0.360 | 2.00 [2.00–0.50] | 1.00 [2.50–0.50] | 0.988 |
TBUT (seconds) | 3.42 ± 1.33 | 3.50 ± 1.46 | 0.830 | 3.64 ± 1.44 | 3.13 ± 1.24 | 0.360 | 3.11 ± 1.16 | 4.04 ± 1.66 | 0.639 |
Corneal staining (Oxford scale, 0–5) | 1.27 ± 0.94 | 0.78 ± 1.02 | 0.176 | 1.38 ± 0.96 | 1.00 ± 1.15 | 0.360 | 1.11 ± 0.93 | 0.44 ± 0.73 | 0.420 |
Conjunctival staining (Oxford scale, 0–5) | 0.93 ± 0.71 | 0.59 ± 0.78 | 0.275 | 0.92 ± 0.70 | 0.23 ± 0.39 | 0.210 | 0.94 ± 0.77 | 1.11 ± 0.93 | 0.988 |
LWE (0–3 scale) | 0.55 ± 0.63 | 0.82 ± 0.88 | 0.338 | 0.58 ± 0.64 | 1.08 ± 0.93 | 0.360 | 0.50 ± 0.66 | 0.44 ± 0.68 | 0.988 |
Meibum quality (0–3 scale) | 1.00 [2.00–1.00] | 2.00 [2.00–1.00] | 0.275 | 1.00 [2.00–1.00] | 2.00 [2.00–1.00] | 0.360 | 2.00 [2.00–1.00] | 2.00 [2.00–1.00] | 0.988 |
Meibum Expressibility (0–3 scale) | 2.00 [2.00–1.00] | 2.00 [2.00–1.75] | 0.176 | 2.00 [2.00–1.00] | 2.00 [2.50–1.50] | 0.290 | 2.00 [2.00–0.50] | 2.00 [2.00–1.00] | 0.988 |
Schirmer’s Test (mm) | 10.41 ± 7.56 | 10.45 ± 9.94 | 0.350 | 11.08 ± 7.35 | 9.92 ± 9.79 | 0.360 | 9.44 ± 8.20 | 11.22 ± 10.69 | 0.999 |
V1 | V2 | p-Value | |
---|---|---|---|
Noncontact corneal esthesiometry | |||
Mechanical threshold (mL/min) | 87.28 ± 41.96 | 114.76 ± 43.77 | 0.060 |
Heat threshold (°C) | 2.12 ± 1.24 | 1.16 ± 0.73 | 0.060 |
Cold threshold (°C) | −2.23 ± 1.13 | −1.31 ± 0.89 | 0.060 |
Contact corneal esthesiometry | |||
Before topical anesthesia (mm) | 56.14 ± 7.86 | 55.68 ± 7.12 | 0.812 |
After topical anesthesia (mm) | 8.81 ± 16.95 | 6.90 ± 12.09 | 0.812 |
Anesthetic challenge test (GRC scale; −5 to 5) | −1.77 ± 2.35 | −1.16 ± 2.22 | 0.543 |
Number of nerves (n/mm2) | 46.78 ± 20.87 | 51.89 ± 23.00 | 0.792 |
Nerve density (mm/mm2) | 10,494.99 ± 4564.65 | 11,610.99 ± 4396.22 | 0.792 |
Nerve length (mm/mm2) | 1414.71 ± 335.98 | 1518.27 ± 266.52 | 0.685 |
Density of nerve branch points (n/mm2) | 26.89 ± 26.35 | 30.87 ± 21.26 | 0.827 |
Nerve tortuosity (0–4) | 2.70 ± 0.71 | 2.65 ± 0.73 | 0.962 |
Density of microneuromas (n/mm2) | 1.52 ± 2.40 | 1.99 ± 2.36 | 0.827 |
Density of dendritic cells (n/mm2) | 74.05 ± 88.23 | 25.66 ± 23.79 | 0.044 |
Small dendritic cells (n/mm2) | 56.82 ± 73.16 | 16.19 ± 20.17 | 0.044 |
Large dendritic cells (n/mm2) | 15.81 ± 21.52 | 8.24 ± 9.65 | 0.169 |
Globular cells (n/mm2) | 1.42 ± 2.97 | 1.23 ± 2.85 | 0.962 |
Reflectivity | 102.67 ± 11.55 | 103.44 ± 12.55 | 0.962 |
DED-Pain (n = 13) | DED-No Pain (n = 9) | |||||
---|---|---|---|---|---|---|
V1 | V2 | p-Value | V1 | V2 | p-Value | |
Noncontact corneal esthesiometry | ||||||
Mechanical threshold (mL/min) | 91.57 ± 53.68 | 104.58 ± 38.82 | 0.915 | 81.56 ± 19.36 | 128.33 ± 48.54 | 0.090 |
Heat threshold (°C) | 2.37 ± 1.20 | 1.40 ± 0.61 | 0.246 | 1.81 ± 1.28 | 0.87 ± 0.80 | 0.240 |
Cold threshold (°C) | −2.07 ± 1.15 | −1.29 ± 0.77 | 0.342 | −2.44 ± 1.15 | −1.33 ± 1.09 | 0.240 |
Contact corneal esthesiometry | ||||||
Before topical anesthesia (mm) | 55.77 ± 8.62 | 55.77 ± 7.03 | 0.886 | 56.67 ± 7.07 | 55.56 ± 7.68 | 1.000 |
After topical anesthesia (mm) | 11.67 ± 20.71 | 9.17 ± 15.50 | 0.794 | 5.00 ± 10.00 | 3.89 ± 4.17 | 1.000 |
Anesthetic challenge test (GRC scale; −5 to 5) | −2.31 ± 2.18 | −1.50 ± 2.35 | 0.760 | −1.00 ± 2.50 | −0.67 ± 2.06 | 1.000 |
Number of nerves (n/mm2) | 41.99 ± 17.02 | 53.04 ± 25.64 | 0.209 | 53.70 ± 24.85 | 50.23 ± 19.94 | 0.844 |
Nerve density (mm/mm2) | 9508.85 ± 4523.93 | 11,734.28 ± 4538.24 | 0.209 | 11,919.40 ± 4486.96 | 11,432.90 ± 4447.34 | 0.825 |
Nerve length (mm/mm2) | 1387.18 ± 381.08 | 1515.77 ± 330.36 | 0.828 | 1454.48 ± 274.76 | 1521.88 ± 150.79 | 0.825 |
Density of nerve branch points (n/mm2) | 19.79 ± 16.63 | 33.33 ± 24.03 | 0.209 | 37.15 ± 34.75 | 27.31 ± 17.23 | 0.825 |
Nerve tortuosity (0–4) | 2.60 ± 0.75 | 2.77 ± 0.67 | 0.759 | 2.83 ± 0.65 | 2.48 ± 0.82 | 0.825 |
Density of microneuromas (n/mm2) | 2.08 ± 2.79 | 1.76 ± 1.87 | 0.828 | 0.69 ± 1.47 | 2.31 ± 3.03 | 0.825 |
Density of dendritic cells (n/mm2) | 82.53 ± 110.21 | 20.03 ± 26.47 | 0.209 | 61.81 ± 43.91 | 33.80 ± 17.58 | 0.600 |
Small dendritic cells (n/mm2) | 64.10 ± 89.76 | 12.98 ± 23.94 | 0.209 | 46.30 ± 41.86 | 20.83 ± 12.93 | 0.825 |
Large dendritic cells (n/mm2) | 16.83 ± 25.80 | 6.57 ± 8.06 | 0.209 | 14.35 ± 14.60 | 10.65 ± 11.67 | 0.825 |
Globular cells (n/mm2) | 1.60 ± 2.71 | 0.48 ± 1.25 | 0.262 | 1.16 ± 3.47 | 2.31 ± 4.09 | 0.825 |
Reflectivity | 99.76 ± 9.01 | 100.69 ± 14.14 | 0.759 | 106.87 ± 13.95 | 107.41 ± 9.16 | 0.844 |
V1 | V2 | ||||
---|---|---|---|---|---|
Detection Rate (%) | Concentration (pg/mL) | Detection Rate (%) | Concentration (pg/mL) | p-Value | |
EGF | 100 | 1917.45 ± 894.45 (1520.88–2314.03) | 100 | 845.50 ± 469.99 (637.12–1053.88) | <0.001 a |
Fractalkine/CX3CL1 | 50 | 1359.33 ± 1871.83 (529.40–2189.25) | 100 | 1061.55 ± 583.81 (802.70–1320.39) | 0.020 a |
IL-1β | 45.5 | - | 31.8 | - | 0.664 b |
IL-1Ra | 100 | 6846.06 ± 11,331.55 (1821.93–11,870.19) | 100 | 7060.59 ± 8099.22 (3469.60–10,651.58) | 0.299 a |
IL-2 | 4.5 | - | 63.6 | 30.02 ± 23.11 (19.77–40.27) | 0.004 b |
IL-4 | 90.9 | 236.72 ± 328.95 (90.87–382.57) | 95.5 | 405.65 ± 328.95 (155.43–655.87) | 0.212 a |
IL-6 | 63.6 | 58.38 ± 88.34 (19.17–97.51) | 59.1 | 90.00 ± 128.38 (33.08–146.92) | 0.516 a |
IL-8/CXCL8 | 100 | 975.47 ± 3001.24 (−355.20–2306.15) | 100 | 349.35 ± 509.40 (123.50–575.21) | 0.971 a |
IL-9 | 9.1 | - | 59.1 | 30.02 ± 23.11 (19.77–40.27) | 0.004 b |
IL-10 | 59.1 | 21.80 ± 26.85 (9.90–33.71) | 68.2 | 87.53 ± 70.83 (56.13–118.94) | 0.084 a |
IL-17A | 0 | - | 68.2 | 45.92 ± 32.01 (31.73–60.12) | <0.001 b |
MCP-1/CCL2 | 100 | 801.95 ± 733.80 (476.61–1127.30) | 95.5 | 492.19 ± 363.47 (331.03–653.34) | 0.020 a |
MCP-3/CCL7 | 95.5 | 251.88 ± 138.45 (190.49–313.26) | 100 | 272.22 ± 284.51 (146.07–398.36) | 0.930 a |
TNF-α | 59.1 | 9.25 ± 16.19 (2.07–16.42) | 18.2 | - | 0.024 b |
IFN-γ | 27.3 | - | 59.1 | 29.54 ± 22.37 (19.62–39.46) | 0.087 b |
GRO | 100 | 6592.32 ± 9261.33 (2486.07–10,698.56) | 100 | 5223.36 ± 4675.23 (3150.48–7296,25) | 0.690 a |
MIP-1α/CCL3 | 9.1 | - | 4.5 | - | 1.000 b |
MIP-1β/CCL4 | 59.1 | 71.20 ± 268.24 (−47.73–190.13) | 59.1 | 14.26 ± 11.68 (9.08–19.44) | 1.000 a |
NGF | 77.3 | 8.09 ± 8.81 (4.18–11.99) | 36.4 | - | 0.035 b |
RANTES/CCL5 | 86.4 | 82.68 ± 82.67 (46.03–119.34) | 68.2 | 124.84 ± 89.03 (85.36–164.31) | 1.000 a |
SP | 100 | 1172.80 ± 662.72 (862.64–1482.96) | 100 | 4094.55 ± 3155.11 (2617.92–5571.19) | <0.001 a |
Category | Gene | ΔCt V1 | ΔCt V2 | Fold Change | Fold Regulation | p-Value | |
---|---|---|---|---|---|---|---|
Modulation of pain responses | Inflammation | BDKRB1 | 11.21 (8.95–13.49) | 15.38 (13.09–17.68) | 0.06 | −18.00 | 0.125 |
IL1A | 18.21 (16.38–20.03) | 18.13 (16.55–19.71) | 1.06 | 1.06 | 1.000 | ||
IL2 | 12.48 (10.74–14.23) | 12.88 (12.20–13.56) | 0.76 | −1.32 | 1.000 | ||
CALCA | 11.62 (9.09–14.15) | 14.09 (12.35–15.83) | 0.18 | −5.54 | 0.396 | ||
IL6 | 10.79 (9.24–12.33) | 11.39 (9.84–12.95) | 0.66 | −1.52 | 0.833 | ||
CCL2 | 15.96 (13.86–18.05) | 16.57 (14.74–18.39) | 0.66 | −1.52 | 1.000 | ||
ITGAM | 14.74 (12.50–16.98) | 13.24 (11.51–14.97) | 2.83 | 2.83 | 0.605 | ||
TAC1 | 19.36 (17.82–20.90) | 19.17 (17.98–20.35) | 1.14 | 1.14 | 1.000 | ||
CD200 | 12.58 (11.45–13.71) | 14.76 (12.72–16.80) | 0.22 | −4.53 | 0.295 | ||
TACR1 | 18.89 (16.94–20.84) | 19.49 (18.84–20.13) | 0.66 | −1.52 | 1.000 | ||
TNF | 12.03 (9.84–14.21) | 12.14 (10.23–14.05) | 0.93 | −1.08 | 1.000 | ||
CX3CR1 | 10.82 (8.18–13.46) | 10.95 (9.85–12.04) | 0.91 | −1.09 | 1.000 | ||
IL18 | 4.68 (3.92–5.44) | 4.58 (4.28–4.88) | 1.07 | 1.07 | 1.000 | ||
Neurotrophins | BDNF | 7.86 (7.02–8.69) | 8.94 (7.55–10.33) | 0.47 | −2.11 | 0.295 | |
NGF | 14.79 (12.78–16.81) | 15.39 (14.24–16.54) | 0.66 | −1.52 | 1.000 | ||
NTRK1 | 11.21 (9.38–13.04) | 15.48 (14.22–16.75) | 0.05 | −19.29 | 0.025 | ||
Inflammation and neurotransmitters | PENK1 | 12.36 (9.57–15.14) | 15.41 (13.05–17.76) | 0.12 | −8.28 | 0.295 | |
Conduction of pain | Opioid receptors | OPRM1 | 19.49 (17.93–21.05) | 19.85 (19.22–20.48) | 0.78 | −1.28 | 1.000 |
OPRD1 | 19.56 (18.00–21.12) | 19.85 (19.22–20.48) | 0.82 | −1.22 | 1.000 | ||
OPRK1 | 13.73 (12.00–15.45) | 14.25 (13.44–15.06) | 0.70 | −1.43 | 1.000 | ||
Ion channels | TRPV3 | 13.74 (12.25–15.23) | 16.43 (15.08–17.78) | 0.15 | −6.45 | 0.125 | |
TRPA1 | 17.90 (16.14–19.66) | 19.26 (18.29–20.24) | 0.39 | −2.57 | 0.605 | ||
TRPV1 | 9.28 (8.26–10.30) | 8.63 (7.34–9.91) | 1.57 | 1.57 | 0.675 | ||
Cannabinoid receptors | CNR2 | 12.40 (9.65–15.14) | 17.22 (15.15–19.29) | 0.04 | −28.25 | 0.125 | |
Synaptic transmission | Eicosanoid metabolism | PTGS1 | 14.37 (12.56–16.19) | 14.84 (12.90–16.79) | 0.72 | −1.39 | 1.000 |
miRNA | ΔCt V1 | ΔCt V2 | Fold Change | Fold Regulation | p-Value |
---|---|---|---|---|---|
20a-5p | 1.46 (1.05–1.87) | 1.50 (1.33–1.66) | 0.97 | −1.03 | 0.945 |
23b-3p | 1.69 (2.16–1.22) | 1.10 (1.34–0.86) | 1.51 | 1.51 | 0.203 |
29a-3p | 0.12 (−0.44–0.67) | 0.19 (0.11–0.49) | 0.95 | −1.05 | 0.868 |
92b-3p | 5.70 (5.25–6.15) | 6.05 (5.75–6.34) | 0.78 | −1.27 | 0.434 |
99a-5p | 0.72 (1.14–0.29) | 0.52 (0.68–0.36) | 1.15 | 1.15 | 0.595 |
137-3p | 19.33 (18.47–20.19) | 18.64 (18.07–19.21) | 1.61 | 1.61 | 0.252 |
143-3p | 16.43 (14.35–18.51) | 16.17 (14.13–18.22) | 1.20 | 1.20 | 0.945 |
208a-3p | 17.62 (16.53–18.71) | 17.80 (16.76–18.84) | 0.88 | −1.13 | 0.945 |
302d-3p | 19.50 (18.76–20.25) | 18.64 (18.07–19.21) | 1.82 | 1.82 | 0.203 |
379-3p | 15.52 (13.88–17.16) | 17.40 (16.23–18.57) | 0.27 | −3.68 | 0.203 |
543 | 15.68 (14.75–16.60) | 16.58 (15.69–17.47) | 0.54 | −1.87 | 0.375 |
665 | 5.68 (5.04–6.31) | 7.47 (6.89–8.05) | 0.29 | −3.46 | <0.001 |
Gene | Description | Gene | Description |
---|---|---|---|
BDKRB1 | Bradykinin receptor B1 | NTRK1 | Neurotrophic tyrosine kinase, receptor, type 1 |
BDNF | Brain-derived neurotrophic factor | OPRD1 | Opioid receptor, delta 1 |
CALCA | Calcitonin-related polypeptide alpha | OPRK1 | Opioid receptor, kappa 1 |
CCL2 | Chemokine (C-C motif) ligand 2 | OPRM1 | Opioid receptor, mu 1 |
CD200 | CD200 molecule | PENK1 | Proenkephalin 1 |
CNR2 | Cannabinoid receptor 2 (macrophage) | PTGS1 | Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase) |
CX3CR1 | Chemokine (C-X3-C motif) receptor 1 | TAC1 | Tachykinin, precursor 1 |
IL18 | Interleukin 18 | TACR1 | Tachykinin receptor 1 |
IL1A | Interleukin 1A | TNF | Tumor necrosis factor |
IL2 | Interleukin 2 | TRPA1 | Transient receptor potential caption channel 1 |
IL6 | Interleukin 6 | TRPV1 | Transient receptor potential cation channel, subfamily V, member 1 |
ITGAM | Integrin, alpha M (complement component 3 receptor 3 subunit) | TRPV3 | Transient receptor potential cation channel, subfamily V, member 3 |
NGF | Nerve growth factor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Sandonís, C.; Calderón-García, A.Á.; Blanco-Vázquez, M.; Valencia-Nieto, L.; Novo-Diez, A.; Vázquez, A.; Calonge, M.; González-García, M.J.; Enríquez-de-Salamanca, A. Long-Term Clinical and Molecular Changes in Dry Eye Disease and Chronic Ocular Pain. Int. J. Mol. Sci. 2025, 26, 8918. https://doi.org/10.3390/ijms26188918
Valencia-Sandonís C, Calderón-García AÁ, Blanco-Vázquez M, Valencia-Nieto L, Novo-Diez A, Vázquez A, Calonge M, González-García MJ, Enríquez-de-Salamanca A. Long-Term Clinical and Molecular Changes in Dry Eye Disease and Chronic Ocular Pain. International Journal of Molecular Sciences. 2025; 26(18):8918. https://doi.org/10.3390/ijms26188918
Chicago/Turabian StyleValencia-Sandonís, Cristina, Andrés Ángel Calderón-García, Marta Blanco-Vázquez, Laura Valencia-Nieto, Andrea Novo-Diez, Amanda Vázquez, Margarita Calonge, María J. González-García, and Amalia Enríquez-de-Salamanca. 2025. "Long-Term Clinical and Molecular Changes in Dry Eye Disease and Chronic Ocular Pain" International Journal of Molecular Sciences 26, no. 18: 8918. https://doi.org/10.3390/ijms26188918
APA StyleValencia-Sandonís, C., Calderón-García, A. Á., Blanco-Vázquez, M., Valencia-Nieto, L., Novo-Diez, A., Vázquez, A., Calonge, M., González-García, M. J., & Enríquez-de-Salamanca, A. (2025). Long-Term Clinical and Molecular Changes in Dry Eye Disease and Chronic Ocular Pain. International Journal of Molecular Sciences, 26(18), 8918. https://doi.org/10.3390/ijms26188918