Exploring the Antimicrobial and Antiviral Properties of Cryptic Peptides from Human Fibrinogen
Abstract
1. Introduction
2. Results and Discussion
2.1. In Silico Analysis of Human Fibrinogen
2.2. Recombinant Expression FIB-Derived Peptides
2.3. Antimicrobial Activity
2.4. Synergistic Properties
2.5. Antibiofilm Activity
2.6. Hemolytic Activity
2.7. Anti-Inflammatory Activity on Murine Macrophages
2.8. Binding of Luc-FIBγ-TWK25 to LPS
2.9. Antiviral Activity
3. Materials and Methods
3.1. Materials
3.2. In Silico Analysis
3.3. Expression of the Recombinant Proteins
3.4. Purification of the Recombinant Peptides Procedures
3.4.1. Purification of the Fusion Proteins
3.4.2. Cleavage of Asp-Pro and Asp-Cys Peptide Bonds
3.4.3. Purification of the Recombinant Peptides
3.4.4. RP-HPLC Analyses
3.5. Labeling of (C)FIBγ-TWK25 Peptide and Purification of Luc-FIBγ-TWK25 Peptide
3.6. Antibacterial Assays: MIC, MBC and FIC Index
3.7. Confocal Microscopy-Based Biofilm Analysis
3.8. Hemolysis Assay
3.9. MTT Assay
3.10. Immune-Modulatory Activity Analysis
3.11. Interaction Between Luc-FIBγ-TWK25 Peptide and LPS: Kd and Binding Stoichiometry
3.12. Antiviral Activity Methods
3.12.1. Cells and Viruses
3.12.2. Cytotoxicity on Vero Cells
3.12.3. Antiviral Activity Assay
3.13. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FIB | Fibrinogen |
CAMPs | Cationic antimicrobial peptides |
LPS | Lipopolysaccharide |
AMPs | Antimicrobial peptides |
MIC | Minimum Inhibitory Concentration |
AS | Absolute score |
ONC | Onconase |
LB | Luria- Bertani |
IMAC | Immobilized metal ion affinity chromatography |
RP-HPLC | Reverse Phase High-Performance Liquid Chromatography |
MBC | Minimum Bactericidal Concentration |
FICI | Fractional Inhibitory Concentration Indexes |
LSCM | Laser scanning confocal microscopy |
PI | Propidium iodide |
CTRL | Control |
SD | Standard deviation |
EPS | Extracellular polymeric substance |
IC50 | Inhibitory Concentration 50 |
MTT | 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide |
SDS | Sodium Dodecyl Sulfate |
PBS | Phosphate-buffered saline |
NO | Nitric oxide |
Luc | Luciferin |
CBT-OH | 6-hydroxy-2-cyanobenzothiazole |
CMC | Critical micellar concentration |
MW | Molecular weight |
HCoV-229E | Human coronavirus |
HSV-1 | Herpes simplex virus type 1 |
CVB3 | Coxsackievirus B3 |
SDS-PAGE | Dodecyl Sulphate PolyAcrylamide Gel Electrophoresis |
OD | Optical density |
IPTG | Isopropyl β-D-1-thiogalactopyranoside |
Tris-HCl | Tris(hydroxymethyl)aminomethane hydrochloride |
RPM | Revolutions for minute |
Guanidine/HCl | Guanidine hydrochloride |
HCl | Hydrogen chloride |
TFA | Trifluoracetic acid |
TCEP | Tris(2-carboxyethyl)phosphine |
NaP | Sodium phosphate |
BCA | Bicinchoninic acid |
DMEM | Dulbecco’s Modified Eagle Medium |
FBS | Fetal bovine serum |
DMSO | Dimethyl sulfoxide |
MOI | Multiplicity of infection |
References
- Diamond, G.; Beckloff, N.; Weinberg, A.; Kisich, K.O. The Roles of Antimicrobial Peptides in Innate Host Defense. Curr. Pharm. Des. 2009, 15, 2377–2392. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Brown, K.L.; Hancock, R.E.W. Cationic Host Defense (Antimicrobial) Peptides. Curr. Opin. Immunol. 2006, 18, 24–30. [Google Scholar] [CrossRef] [PubMed]
- van Harten, R.M.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H.P. Cathelicidins: Immunomodulatory Antimicrobials. Vaccines 2018, 6, 63. [Google Scholar] [CrossRef]
- Lehrer, R.I.; Ganz, T. Cathelicidins: A Family of Endogenous Antimicrobial Peptides. Curr. Opin. Hematol. 2002, 9, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zong, X.; Jin, M.; Min, J.; Wang, F.; Wang, Y. Mechanisms and Regulation of Defensins in Host Defense. Signal Transduct. Target. Ther. 2023, 8, 300. [Google Scholar] [CrossRef]
- Bosso, A.; Di Maro, A.; Cafaro, V.; Di Donato, A.; Notomista, E.; Pizzo, E. Enzymes as a Reservoir of Host Defence Peptides. Curr. Top. Med. Chem. 2020, 20, 1310–1323. [Google Scholar] [CrossRef]
- de Oliveira Costa, B.; Franco, O.L. Cryptic Host Defense Peptides: Multifaceted Activity and Prospects for Medicinal Chemistry. Curr. Top. Med. Chem. 2020, 20, 1274–1290. [Google Scholar] [CrossRef]
- Ueki, N.; Someya, K.; Matsuo, Y.; Wakamatsu, K.; Mukai, H. Cryptides: Functional Cryptic Peptides Hidden in Protein Structures. Biomolecules 2007, 88, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Autelitano, D.J.; Rajic, A.; Smith, A.I.; Berndt, M.C.; Ilag, L.L.; Vadas, M. The Cryptome: A Subset of the Proteome, Comprising Cryptic Peptides with Distinct Bioactivities. Drug Discov. Today 2006, 11, 306–314. [Google Scholar] [CrossRef]
- Fesenko, I.; Azarkina, R.; Kirov, I.; Kniazev, A.; Filippova, A.; Grafskaia, E.; Lazarev, V.; Zgoda, V.; Butenko, I.; Bukato, O.; et al. Phytohormone Treatment Induces Generation of Cryptic Peptides with Antimicrobial Activity in the Moss Physcomitrella Patens. BMC Plant Biol. 2019, 19, 9. [Google Scholar] [CrossRef]
- Torres, M.D.T.; Cesaro, A.; de la Fuente-Nunez, C. Peptides from Non-Immune Proteins Target Infections through Antimicrobial and Immunomodulatory Properties. Trends Biotechnol. 2025, 43, 184–205. [Google Scholar] [CrossRef]
- Ciociola, T.; Zanello, P.P.; D’Adda, T.; Galati, S.; Conti, S.; Magliani, W.; Giovati, L. A Peptide Found in Human Serum, Derived from the c-Terminus of Albumin, Shows Antifungal Activity in Vitro and in Vivo. Microorganisms 2020, 8, 1627. [Google Scholar] [CrossRef]
- Papareddy, P.; Rydengård, V.; Pasupuleti, M.; Walse, B.; Mörgelin, M.; Chalupka, A.; Malmsten, M.; Schmidtchen, A. Proteolysis of Human Thrombin Generates Novel Host Defense Peptides. PLoS Pathog. 2010, 6, e1000857. [Google Scholar] [CrossRef]
- Olari, L.R.; Bauer, R.; Gil Miró, M.; Vogel, V.; Cortez Rayas, L.; Groß, R.; Gilg, A.; Klevesath, R.; Rodríguez Alfonso, A.A.; Kaygisiz, K.; et al. The C-Terminal 32-Mer Fragment of Hemoglobin Alpha Is an Amyloidogenic Peptide with Antimicrobial Properties. Cell. Mol. Life Sci. 2023, 80, 151. [Google Scholar] [CrossRef]
- Pane, K.; Cafaro, V.; Avitabile, A.; Torres, M.D.T.; Vollaro, A.; De Gregorio, E.; Catania, M.R.; Di Maro, A.; Bosso, A.; Gallo, G.; et al. Identification of Novel Cryptic Multifunctional Antimicrobial Peptides from the Human Stomach Enabled by a Computational-Experimental Platform. ACS Synth. Biol. 2018, 7, 2105–2115. [Google Scholar] [CrossRef]
- Salazar, V.A.; Arranz-Trullén, J.; Prats-Ejarque, G.; Torrent, M.; Andreu, D.; Pulido, D.; Boix, E. Insight into the Antifungal Mechanism of Action of Human RNase N-Terminus Derived Peptides. Int. J. Mol. Sci. 2019, 20, 4558. [Google Scholar] [CrossRef] [PubMed]
- Torrent, M.; Pulido, D.; Valle, J.; Nogués, M.V.; Andreu, D.; Boix, E. Ribonucleases as a Host-Defence Family: Evidence of Evolutionarily Conserved Antimicrobial Activity at the N-Terminus. Biochem. J. 2013, 456, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Bello-Madruga, R.; Sandín, D.; Valle, J.; Gómez, J.; Comas, L.; Larrosa, M.N.; González-López, J.J.; Jiménez, M.Á.; Andreu, D.; Torrent, M. Mining the heparinome for cryptic antimicrobial peptides that selectively kill Gram-negative bacteria. Mol. Syst. Biol. 2025, 21, 889–910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Girdhar, M.; Sen, A.; Nigam, A.; Oswalia, J.; Kumar, S.; Gupta, R. Antimicrobial Peptide-Based Strategies to Overcome Antimicrobial Resistance. Arch. Microbiol. 2024, 206, 411. [Google Scholar] [CrossRef]
- Wang, G.; Mechesso, A.F. Realistic and Critical Review of the State of Systemic Anti-Microbial Peptides. ADMET DMPK 2022, 10, 91–105. [Google Scholar] [CrossRef]
- Casciaro, B.; Cappiello, F.; Verrusio, W.; Cacciafesta, M.; Mangoni, M.L. Antimicrobial Peptides and Their Multiple Effects at Sub-Inhibitory Concentrations. Curr. Top. Med. Chem. 2020, 20, 1264–1273. [Google Scholar] [CrossRef]
- Ye, Z.; Fu, L.; Li, S.; Chen, Z.; Ouyang, J.; Shang, X.; Liu, Y.; Gao, L.; Wang, Y. Synergistic Collaboration between AMPs and Non-Direct Antimicrobial Cationic Peptides. Nat. Commun. 2024, 15, 7319. [Google Scholar] [CrossRef]
- Mhlongo, J.T.; Waddad, A.Y.; Albericio, F.; de la Torre, B.G. Antimicrobial Peptide Synergies for Fighting Infectious Diseases. Adv. Sci. 2023, 10, 2300472. [Google Scholar] [CrossRef] [PubMed]
- Duong, L.; Gross, S.P.; Siryaporn, A. Developing Antimicrobial Synergy with AMPs. Front. Med. Technol. 2021, 3, 640981. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Zaky, A.A.; Lorenzo, J.M.; Camiña, M.; Franco, D. A Review on Bioactive Peptides Derived from Meat and By-Products: Extraction Methods, Biological Activities, Applications and Limitations. Meat Sci. 2023, 204, 109278. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.T.; Yatskin, O.N. Peptidomics: A Logical Sequel to Proteomics. Expert Rev. Proteom. 2005, 2, 463–473. [Google Scholar] [CrossRef]
- Torrent, M.; Andreu, D.; Nogués, V.M.; Boix, E. Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model. PLoS ONE 2011, 6, e16968. [Google Scholar] [CrossRef]
- Torrent, M.; Nogues, M.V.; Boix, E. Discovering New In Silico Tools for Antimicrobial Peptide Prediction. Curr. Drug Targets 2012, 13, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Pane, K.; Durante, L.; Crescenzi, O.; Cafaro, V.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Izzo, V.; Di Donato, A.; Notomista, E. Antimicrobial Potency of Cationic Antimicrobial Peptides Can Be Predicted from Their Amino Acid Composition: Application to the Detection of “Cryptic” Antimicrobial Peptides. J. Theor. Biol. 2017, 419, 254–265. [Google Scholar] [CrossRef]
- Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane Targeting Cationic Antimicrobial Peptides. J. Colloid Interface Sci. 2019, 537, 163–185. [Google Scholar] [CrossRef]
- Wang, K.F.; Nagarajan, R.; Camesano, T.A. Differentiating Antimicrobial Peptides Interacting with Lipid Bilayer: Molecular Signatures Derived from Quartz Crystal Microbalance with Dissipation Monitoring. Biophys. Chem. 2015, 196, 53–67. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Sahl, H.G. Antimicrobial and Host-Defense Peptides as New Anti-Infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Bosso, A.; Gaglione, R.; Di Girolamo, R.; Veldhuizen, E.J.A.; García-Vello, P.; Fusco, S.; Cafaro, V.; Monticelli, M.; Culurciello, R.; Notomista, E.; et al. Human Cryptic Host Defence Peptide GVF27 Exhibits Anti-Infective Properties against Biofilm Forming Members of the Burkholderia Cepacia Complex. Pharmaceuticals 2022, 15, 260. [Google Scholar] [CrossRef]
- Bosso, A.; Di Nardo, I.; Culurciello, R.; Palumbo, I.; Gaglione, R.; Zannella, C.; Pinto, G.; Siciliano, A.; Carraturo, F.; Amoresano, A.; et al. KNR50: A Moonlighting Bioactive Peptide Hidden in the C-Terminus of Bovine Casein AS2 with Powerful Antimicrobial, Antibiofilm, Antiviral and Immunomodulatory Activities. Int. J. Biol. Macromol. 2025, 311, 143718. [Google Scholar] [CrossRef]
- Gaglione, R.; Dell’Olmo, E.; Bosso, A.; Chino, M.; Pane, K.; Ascione, F.; Itri, F.; Caserta, S.; Amoresano, A.; Lombardi, A.; et al. Novel Human Bioactive Peptides Identified in Apolipoprotein B: Evaluation of Their Therapeutic Potential. Biochem. Pharmacol. 2017, 130, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.T.; Melo, M.C.R.; Crescenzi, O.; Notomista, E.; de la Fuente-Nunez, C. Mining for Encrypted Peptide Antibiotics in the Human Proteome. Nat. Biomed. Eng. 2022, 6, 67–75. [Google Scholar] [CrossRef]
- Dempfle, C.E.; Kälsch, T.; Elmas, E.; Suvajac, N.; Lücke, T.; Münch, E.; Borggrefe, M. Impact of Fibrinogen Concentration in Severely Ill Patients on Mechanical Properties of Whole Blood Clots. Blood Coagul. Fibrinolysis 2008, 19, 765–770. [Google Scholar] [CrossRef]
- Hayakawa, M. Dynamics of Fibrinogen in Acute Phases of Trauma. J. Intensive Care 2017, 5, 3. [Google Scholar] [CrossRef]
- Nencini, F.; Bettiol, A.; Argento, F.R.; Borghi, S.; Giurranna, E.; Emmi, G.; Prisco, D.; Taddei, N.; Fiorillo, C.; Becatti, M. Post-Translational Modifications of Fibrinogen: Implications for Clotting, Fibrin Structure and Degradation. Mol. Biomed. 2024, 5, 45. [Google Scholar] [CrossRef]
- Luyendyk, J.P.; Schoenecker, J.G.; Flick, M.J. The Multifaceted Role of Fibrinogen in Tissue Injury and Inflammation. Blood 2019, 133, 511–520. [Google Scholar] [CrossRef]
- Hulshof, A.M.; Hemker, H.C.; Spronk, H.M.H.; Henskens, Y.M.C.; Cate, H.T. Thrombin–Fibrin(Ogen) Interactions, Host Defense and Risk of Thrombosis. Int. J. Mol. Sci. 2021, 22, 2590. [Google Scholar] [CrossRef]
- Jennewein, C.; Tran, N.; Paulus, P.; Ellinghaus, P.; Eble, J.A.; Zacharowski, K. Novel Aspects of Fibrin(Ogen) Fragments during Inflammation. Mol. Med. 2011, 17, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Wolberg, A.S. Fibrinogen and Fibrin: Synthesis, Structure, and Function in Health and Disease. J. Thromb. Haemost. 2023, 21, 3005–3015. [Google Scholar] [CrossRef]
- Stubbs, M.T.; Oschkinat, H.; Mayr, I.; Huber, R.; Angliker, H.; Stone, S.R.; Bode, W. The Interaction of Thrombin with Fibrinogen. Eur. J. Biochem. 1992, 206, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.P.; Flick, M.J. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus Aureus Infection. Semin. Thromb. Hemost. 2016, 42, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Ariëns, R.A.S. Fibrin Clot Structure and Function: A Role in the Pathophysiology of Arterial and Venous Thromboembolic Diseases. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e88–e99. [Google Scholar] [CrossRef]
- Farrell, D.H.; Thiagarajant, P.; Chung, D.W.; Davie, E.W. Role of Fibrinogen Alpha and Gamma Chain Sites in Platelet Aggregation. Proc. Natl. Acad. Sci. USA 1992, 89, 10729–10732. [Google Scholar] [CrossRef] [PubMed]
- Peerschke, E.I.B.; Francis, C.W.; Marder, V.J. Fibrinogen Binding to Human Blood Platelets: Effect of Gamma Chain Carboxyterminal Structure and Length. Blood 1986, 67, 385–390. [Google Scholar] [CrossRef]
- Lovely, R.S.; Moaddel, M.; Farrell, D.H. Fibrinogen γ’ Chain Binds Thrombin Exosite II. J. Thromb. Haemost. 2003, 1, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, F.; Schymkowitz, J.; Serrano, L. Protein Aggregation and Amyloidosis: Confusion of the Kinds? Curr. Opin. Struct. Biol. 2006, 16, 118–126. [Google Scholar] [CrossRef]
- Fernandez-Escamilla, A.M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of Sequence-Dependent and Mutational Effects on the Aggregation of Peptides and Proteins. Nat. Biotechnol. 2004, 22, 1302–1306. [Google Scholar] [CrossRef]
- Frousios, K.K.; Iconomidou, V.A.; Karletidi, C.M.; Hamodrakas, S.J. Amyloidogenic Determinants Are Usually Not Buried. BMC Struct. Biol. 2009, 9, 44. [Google Scholar] [CrossRef]
- Conchillo-Solé, O.; de Groot, N.S.; Avilés, F.X.; Vendrell, J.; Daura, X.; Ventura, S. AGGRESCAN: A Server for the Prediction and Evaluation of “Hot Spots” of Aggregation in Polypeptides. BMC Bioinform. 2007, 8, 65. [Google Scholar] [CrossRef]
- Pane, K.; Durante, L.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Sgambati, V.; Di Maro, A.; Carpentieri, A.; Izzo, V.; Di Donato, A.; et al. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia Coli. PLoS ONE 2016, 11, e0146552. [Google Scholar] [CrossRef] [PubMed]
- Gaglione, R.; Pane, K.; Dell’Olmo, E.; Cafaro, V.; Pizzo, E.; Olivieri, G.; Notomista, E.; Arciello, A. Cost-Effective Production of Recombinant Peptides in Escherichia Coli. New Biotechnol. 2019, 51, 39–48. [Google Scholar] [CrossRef]
- Oyenuga, N.; Cobo-Díaz, J.F.; Alvarez-Ordóñez, A.; Alexa, E.A. Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective. Microorganisms 2024, 12, 2084. [Google Scholar] [CrossRef]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The Alarming Antimicrobial Resistance in ESKAPEE Pathogens: Can Essential Oils Come to the Rescue? Fitoterapia 2020, 140, 104433. [Google Scholar] [CrossRef] [PubMed]
- Kearney, K.J.; Ariëns, R.A.S.; MacRae, F.L. The Role of Fibrin(Ogen) in Wound Healing and Infection Control. Semin. Thromb. Hemost. 2022, 48, 174–187. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, H.; Chen, R.; Liu, Q.; Jia, K.; Hu, D.L.; Chen, H.; Ye, C.; Peng, L.; Fang, R. Synergistic Antimicrobial Effect of Antimicrobial Peptides CATH-1, CATH-3, and PMAP-36 With Erythromycin Against Bacterial Pathogens. Front. Microbiol. 2022, 13, 953720. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taheri-Araghi, S. Synergistic Action of Antimicrobial Peptides and Antibiotics: Current Understanding and Future Directions. Front. Microbiol. 2024, 15, 1390765. [Google Scholar] [CrossRef] [PubMed]
- Zharkova, M.S.; Orlov, D.S.; Golubeva, O.Y.; Chakchir, O.B.; Eliseev, I.E.; Grinchuk, T.M.; Shamova, O.V. Application of Antimicrobial Peptides of the Innate Immune System in Combination with Conventional Antibiotics-a Novel Way to Combat Antibiotic Resistance? Front. Cell. Infect. Microbiol. 2019, 9, 128. [Google Scholar] [CrossRef]
- Reffuveille, F.; De La Fuente-Nunez, C.; Mansour, S.; Hancock, R.E.W. A Broad-Spectrum Antibiofilm Peptide Enhances Antibiotic Action against Bacterial Biofilms. Antimicrob. Agents Chemother. 2014, 58, 5363–5371. [Google Scholar] [CrossRef]
- Hsieh, M.H.; Yu, C.M.; Yu, V.L.; Chow, J.W. Synergy Assessed by Checkerboard a Critical Analysis. Diagn. Microbiol. Infect. Dis. 1993, 16, 343–349. [Google Scholar] [CrossRef]
- EUCAST. Terminology Relating to Methods for the Determination of Susceptibility of Bacteria to Antimicrobial Agents European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID); EUCAST: Växjö, Sweden, 2000. [Google Scholar]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A Novel Interpretation of the Fractional Inhibitory Concentration Index: The Case Origanum Vulgare L. and Leptospermum Scoparium J. R. et G. Forst Essential Oils against Staphylococcus Aureus Strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, Antagonism, and What the Chequerboard Puts between Them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Rosenberg, M.; Azevedo, N.F.; Ivask, A. Propidium Iodide Staining Underestimates Viability of Adherent Bacterial Cells. Sci. Rep. 2019, 9, 6483. [Google Scholar] [CrossRef]
- Petrlova, J.; Petruk, G.; Huber, R.G.; McBurnie, E.W.; van der Plas, M.J.A.; Bond, P.J.; Puthia, M.; Schmidtchen, A. Thrombin-Derived C-Terminal Fragments Aggregate and Scavenge Bacteria and Their Proinflammatory Products. J. Biol. Chem. 2020, 295, 3417–3430. [Google Scholar] [CrossRef] [PubMed]
- Overhage, J.; Campisano, A.; Bains, M.; Torfs, E.C.W.; Rehm, B.H.A.; Hancock, R.E.W. Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation. Infect. Immun. 2008, 76, 4176–4182. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bogaart, G.; Guzmán, J.V.; Mika, J.T.; Poolman, B. On the Mechanism of Pore Formation by Melittin. J. Biol. Chem. 2008, 283, 33854–33857. [Google Scholar] [CrossRef] [PubMed]
- Gabarin, R.S.; Li, M.; Zimmel, P.A.; Marshall, J.C.; Li, Y.; Zhang, H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J. Innate Immun. 2021, 13, 323–332. [Google Scholar] [CrossRef]
- Facchin, B.M.; dos Reis, G.O.; Vieira, G.N.; Mohr, E.T.B.; da Rosa, J.S.; Kretzer, I.F.; Demarchi, I.G.; Dalmarco, E.M. Inflammatory Biomarkers on an LPS-Induced RAW 264.7 Cell Model: A Systematic Review and Meta-Analysis. Inflamm. Res. 2022, 71, 741–758. [Google Scholar] [CrossRef]
- Siepi, M.; Oliva, R.; Masino, A.; Gaglione, R.; Arciello, A.; Russo, R.; Maro, A.D.; Zanfardino, A.; Varcamonti, M.; Petraccone, L.; et al. Environment-Sensitive Fluorescent Labelling of Peptides by Luciferin Analogues. Int. J. Mol. Sci. 2021, 22, 13312. [Google Scholar] [CrossRef]
- Yu, L.; Tan, M.; Ho, B.; Ding, J.L.; Wohland, T. Determination of Critical Micelle Concentrations and Aggregation Numbers by Fluorescence Correlation Spectroscopy: Aggregation of a Lipopolysaccharide. Anal. Chim. Acta 2006, 556, 216–225. [Google Scholar] [CrossRef]
- Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. PLoS ONE 2011, 6, e25333. [Google Scholar] [CrossRef]
- Gwyer Findlay, E.; Currie, S.M.; Davidson, D.J. Cationic Host Defence Peptides: Potential as Antiviral Therapeutics. Biodrugs 2013, 27, 479. [Google Scholar] [CrossRef] [PubMed]
- Urmi, U.L.; Vijay, A.K.; Kuppusamy, R.; Islam, S.; Willcox, M.D.P. A Review of the Antiviral Activity of Cationic Antimicrobial Peptides. Peptides 2023, 166, 171024. [Google Scholar] [CrossRef]
- Pane, K.; Verrillo, M.; Avitabile, A.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Di Maro, A.; Rega, C.; Amoresano, A.; Izzo, V.; et al. Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue. Bioconjugate Chem. 2018, 29, 1373–1383. [Google Scholar] [CrossRef]
- Laemmli, U. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The Proteomics Server for in-Depth Protein Knowledge and Analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Ragucci, S.; Landi, N.; Citores, L.; Iglesias, R.; Russo, R.; Clemente, A.; Saviano, M.; Pedone, P.V.; Chambery, A.; Ferreras, J.M.; et al. The Biological Action and Structural Characterization of Eryngitin 3 and 4, Ribotoxin-like Proteins from Pleurotus Eryngii Fruiting Bodies. Int. J. Mol. Sci. 2023, 24, 14435. [Google Scholar] [CrossRef]
- Monsees, T.; Miska, W.; Geiger, R. Synthesis and Characterization of a Bioluminogenic Substrate for α-Chymotrypsin. Anal. Biochem. 1994, 221, 329–334. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, L.; Chen, Y.; Long, Y. Optimization of Staining with SYTO 9/Propidium Iodide: Interplay, Kinetics and Impact on Brevibacillus Brevis. Biotechniques 2020, 69, 89–99. [Google Scholar] [CrossRef]
- Bosso, A.; Pirone, L.; Gaglione, R.; Pane, K.; Del Gatto, A.; Zaccaro, L.; Di Gaetano, S.; Diana, D.; Fattorusso, R.; Pedone, E.; et al. A New Cryptic Host Defense Peptide Identified in Human 11-Hydroxysteroid Dehydrogenase-1 β-like: From in Silico Identification to Experimental Evidence. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2342–2353. [Google Scholar] [CrossRef] [PubMed]
- Culurciello, R.; Bosso, A.; Troisi, R.; Barrella, V.; Nardo, I.D.; Borriello, M.; Gaglione, R.; Pistorio, V.; Aceto, S.; Cafaro, V.; et al. Protective Effects of Recombinant Human Angiogenin in Keratinocytes: New Insights on Oxidative Stress Response Mediated by RNases. Int. J. Mol. Sci. 2022, 23, 8781. [Google Scholar] [CrossRef] [PubMed]
- Lampitella, E.; Landi, N.; Oliva, R.; Gaglione, R.; Bosso, A.; de Lise, F.; Ragucci, S.; Arciello, A.; Petraccone, L.; Pizzo, E.; et al. Toxicity and Membrane Perturbation Properties of the Ribotoxin-like Protein Ageritin. J. Biochem. 2021, 170, 473–482. [Google Scholar] [CrossRef]
- Cafaro, V.; Bosso, A.; Di Nardo, I.; D’Amato, A.; Izzo, I.; De Riccardis, F.; Siepi, M.; Culurciello, R.; D’Urzo, N.; Chiarot, E.; et al. The Antimicrobial, Antibiofilm and Anti-Inflammatory Activities of P13#1, a Cathelicidin-like Achiral Peptoid. Pharmaceuticals 2023, 16, 1386. [Google Scholar] [CrossRef]
- Javed, A.; Slingerland, C.J.; Wood, T.M.; Martin, N.I.; Broere, F.; Weingarth, M.H.; Veldhuizen, E.J.A. Chimeric Peptidomimetic Antibiotic Efficiently Neutralizes Lipopolysaccharides (LPS) and Bacteria-Induced Activation of RAW Macrophages. ACS Infect. Dis. 2023, 9, 518–526. [Google Scholar] [CrossRef]
- Schmölz, L.; Wallert, M.; Lorkowski, S. Optimized Incubation Regime for Nitric Oxide Measurements in Murine Macrophages Using the Griess Assay. J. Immunol. Methods 2017, 449, 68–70. [Google Scholar] [CrossRef]
- Chianese, A.; Zannella, C.; Monti, A.; Doti, N.; Sanna, G.; Manzin, A.; De Filippis, A.; Galdiero, M. Hylin-A1: A Pan-Inhibitor against Emerging and Re-Emerging Respiratory Viruses. Int. J. Mol. Sci. 2023, 24, 3888. [Google Scholar] [CrossRef] [PubMed]
- Chianese, A.; Giugliano, R.; Palma, F.; Nastri, B.M.; Monti, A.; Doti, N.; Zannella, C.; Galdiero, M.; De Filippis, A. The Antiherpetic and Anti-Inflammatory Activity of the Frog-Derived Peptide Hylin-A1. J. Appl. Microbiol. 2024, 135, lxae165. [Google Scholar] [CrossRef] [PubMed]
MIC (µM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gram-Negative | Gram-Positive | |||||||||
E. coli a | K. pne. b | A. bau. c | S. ent. d | S. typ. e | PAO1 f | PA14 g | RP73 h | S. aur. i | E. fae. l | |
FIBα-GVV27 | 12.5 | 25 | 6.25 | 12.5 | 6.25 | 6.25 | 6.25 | 3.12 | 6.25 | 6.25 |
(P)FIBα-GVV27 | 12.5 | 50 | 6.25 | 12.5 | 6.25 | 6.25 | 6.25 | 3.12 | 6.25 | 6.25 |
FIBα-SFR22 | 25 | >50 | 25 | 50 | 50 | 12.5 | 12.5 | 12.5 | 12.5 | 6.25 |
(P)FIBα-SFR22 | 25 | >50 | 25 | >50 | 25 | 12.5 | 12.5 | 6.25 | 12.5 | 6.25 |
FIBβ-GVV28 | 6.25 | 25 | 6.25 | 12.5 | 12.5 | 6.25 | 6.25 | 6.25 | 3.12 | 6.25 |
(P)FIBβ-GVV28 | 6.25 | 25 | 6.25 | 12.5 | 12.5 | 6.25 | 6.25 | 6.25 | 3.12 | 6.25 |
FIBβ-NWK23 | 6.25 | 25 | 6.25 | 12.5 | 12.5 | 6.25 | 3.12 | 6.25 | 3.12 | 6.25 |
(P)FIBβ-NWK23 | 6.25 | 25 | 6.25 | 12.5 | 6.25 | 6.25 | 3.12 | 3.12 | 3.12 | 6.25 |
FIBγ-GII30 | 6.25 | 12.5 | 6.25 | 12.5 | 6.25 | 6.25 | 6.25 | 3.12 | 6.25 | 6.25 |
(P)FIBγ-GII30 | 12.5 | 25 | 6.25 | 12.5 | 6.25 | 12.5 | 6.25 | 3.12 | 6.25 | 6.25 |
FIBγ-TWK25 | 3.12 | 6.25 | 3.12 | 6.25 | 3.12 | 3.12 | 3.12 | 3.12 | 1.56 | 6.25 |
(P)FIBγ-TWK25 | 3.12 | 6.25 | 3.12 | 3.12 | 3.12 | 3.12 | 3.12 | 3.12 | 1.56 | 3.12 |
(P)GKY20 | 6.25 | 6.25 | 3.12 | 6.25 | 3.12 | 3.12 | 6.25 | 1.56 | 1.56 | 1.56 |
ANTIBIOTICS | MIC (µg/mL) | |||||||||
Vancomycin | 0.5 | 2 | ||||||||
Polymyxin B | 0.5 | 0.5 | 0.5 | 0.5 | 0.12 | 0.25 | 0.25 | 0.12 | ||
Grey: >50 | 4 < MIC ≤ 9 | |||||||||
Color code | 18 < MIC ≤ 50 | 1.6 < MIC ≤ 4 | ||||||||
9 < MIC ≤ 18 | ≤1.6 |
Peptide/Antibiotic | MIC a (μM) | MBC b (μM) | MBC/MIC | MIC a (μg/mL) | MBC b (μg/mL) |
---|---|---|---|---|---|
Pseudomonas aeruginosa PAO1 | |||||
(P)FIBα-GVV27 | 6.25 | 6.25 | 1 | ||
(P)FIBα-SFR22 | 12.5 | 12.5 | 1 | ||
(P)FIBβ-GVV28 | 6.25 | 6.25 | 1 | ||
(P)FIBβ-NWK23 | 6.25 | 6.25 | 1 | ||
(P)FIBγ-GII30 | 12.5 | 12.5 | 1 | ||
(P)FIBγ-TWK25 | 3.12 | 3.12 | 1 | ||
(P)GKY20 | 3.12 | 3.12 | 1 | ||
LL37 | 1.56 | 1.56 | 1 | ||
Colistin | 1 | 0.5 | 0.5 | ||
Tobramycin | 2 | 0.0312 | 0.0625 | ||
Ciprofloxacin | 2 | 0.125 | 0.25 | ||
Staphylococcus aureus ATCC 6538P | |||||
(P)FIBα-GVV27 | 6.25 | 6.25 | 1 | ||
(P)FIBα-SFR22 | 12.5 | 12.5 | 1 | ||
(P)FIBβ-GVV28 | 3.12 | 3.12 | 1 | ||
(P)FIBβ-NWK23 | 3.12 | 3.12 | 1 | ||
(P)FIBγ-GII30 | 6.25 | 6.25 | 1 | ||
(P)FIBγ-TWK25 | 1.56 | 1.56 | 1 | ||
(P)GKY20 | 1.56 | 1.56 | 1 | ||
LL37 | 1.56 | 1.56 | 1 | ||
Vancomycin | 1 | 0.5 | 0.5 | ||
Tobramycin | 2 | 0.125 | 0.25 | ||
Ciprofloxacin | 2 | 0.125 | 0.25 |
ΣFICI a | |||||||||
---|---|---|---|---|---|---|---|---|---|
Peptides | (P)FIBα-GVV27 | (P)FIBα-SFR22 | (P)FIBβ-GVV28 | (P)FIBβ-NWK23 | (P)FIBγ-GII30 | (P)FIBγ-TWK25 | (P)GKY20 | ||
Pseudomonas aeruginosa PAO1 | peptides | (P)FIBα-GVV27 | na b | ||||||
(P)FIBα-SFR22 | - | na b | |||||||
(P)FIBβ-GVV28 | 1 | - | na b | ||||||
(P)FIBβ-NWK23 | - | 0.56 | - | na b | |||||
(P)FIBγ-GII30 | 0.62 | - | 0.56 | - | na b | ||||
(P)FIBγ-TWK25 | - | 1 | - | 0.75 | - | na b | |||
(P)GKY20 | 0.750 | - | 0.625 | - | 0.50 | 0.56 | na b | ||
antibiotics | |||||||||
Colistin | 0.31 | 0.25 | 0.19 | 0.31 | 0.16 | 0.19 | 0.19 | ||
Tobramycin | 0.62 | 0.75 | 0.53 | 0.52 | 0.50 | 0.62 | 0.75 | ||
Ciprofloxacin | 1 | 1 | 1 | 0.75 | 0.75 | 1 | 2 | ||
Staphylococcus aureus ATCC 6538P | peptides | (P)FIBα-GVV27 | na b | ||||||
(P)FIBα-SFR22 | - | na b | |||||||
(P)FIBβ-GVV28 | 2 | - | na b | ||||||
(P)FIBβ-NWK23 | - | 0.75 | - | na b | |||||
(P)FIBγ-GII30 | 0.75 | - | 0.62 | - | na b | ||||
(P)FIBγ-TWK25 | - | 1 | - | 0.62 | - | na b | |||
(P)GKY20 | 0.62 | - | 0.75 | - | 0.5 | 0.56 | na b | ||
antibiotics | |||||||||
Tobramycin | 0.75 | 0.62 | 1 | 0.75 | 0.75 | 0.75 | 0.5 | ||
Ciprofloxacin | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosso, A.; Masino, A.; Di Nardo, I.; Zannella, C.; Gaglione, R.; Palumbo, I.; Culurciello, R.; De Filippis, A.; Torres, M.D.T.; de la Fuente-Nunez, C.; et al. Exploring the Antimicrobial and Antiviral Properties of Cryptic Peptides from Human Fibrinogen. Int. J. Mol. Sci. 2025, 26, 8914. https://doi.org/10.3390/ijms26188914
Bosso A, Masino A, Di Nardo I, Zannella C, Gaglione R, Palumbo I, Culurciello R, De Filippis A, Torres MDT, de la Fuente-Nunez C, et al. Exploring the Antimicrobial and Antiviral Properties of Cryptic Peptides from Human Fibrinogen. International Journal of Molecular Sciences. 2025; 26(18):8914. https://doi.org/10.3390/ijms26188914
Chicago/Turabian StyleBosso, Andrea, Antonio Masino, Ilaria Di Nardo, Carla Zannella, Rosa Gaglione, Ida Palumbo, Rosanna Culurciello, Anna De Filippis, Marcelo D. T. Torres, Cesar de la Fuente-Nunez, and et al. 2025. "Exploring the Antimicrobial and Antiviral Properties of Cryptic Peptides from Human Fibrinogen" International Journal of Molecular Sciences 26, no. 18: 8914. https://doi.org/10.3390/ijms26188914
APA StyleBosso, A., Masino, A., Di Nardo, I., Zannella, C., Gaglione, R., Palumbo, I., Culurciello, R., De Filippis, A., Torres, M. D. T., de la Fuente-Nunez, C., Galdiero, M., Arciello, A., Di Maro, A., Pizzo, E., Cafaro, V., & Notomista, E. (2025). Exploring the Antimicrobial and Antiviral Properties of Cryptic Peptides from Human Fibrinogen. International Journal of Molecular Sciences, 26(18), 8914. https://doi.org/10.3390/ijms26188914