The Influence of Clinical Factors and Genetic Variants of COL1A1 and TNFRSF11B on Bone Mineral Density in Postmenopausal Women
Abstract
1. Introduction
2. Results
2.1. Clinical Data Analysis
2.2. Association Analysis of COL1A1 Gene Polymorphic Variants with Reduced Bone Mineral Density
2.3. Association Analysis of Polymorphic Variants of the COL1A1 Gene in Groups with Osteopenia and Osteoporosis
2.4. Associations of the rs1800012 Variant of the COL1A1 Gene with Clinical and Densitometric Data
2.5. Associations of the rs1107946 Variant of the COL1A1 Gene with Clinical and Densitometric Data
2.6. Associations of the rs2073617 Variant of the TNFRSF11B Gene with Clinical and Densitometric Data
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Patients
4.2. Determination of Bone Mineral Density
4.3. Analysis of COL1A1 and OPG Polymorphisms
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adejuyigbe, B.; Kallini, J.; Chiou, D.; Kallini, J.R. Osteoporosis: Molecular Pathology, Diagnostics, and Therapeutics. Int. J. Mol. Sci. 2023, 24, 14583. [Google Scholar] [CrossRef]
- Kanis, J.A.; Burlet, N.; Cooper, C.; Delmas, P.D.; Reginster, J.Y.; Borgstrom, F.; Rizzoli, R. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2008, 19, 399–428, Erratum in Osteoporos. Int. 2008, 19, 1103–1104. [Google Scholar] [CrossRef]
- Rani, J.; Swati, S.; Meeta, M.; Singh, S.H.; Tanvir, T.; Madan, A. Postmenopausal Osteoporosis: Menopause Hormone Therapy and Selective Estrogen Receptor Modulators. Indian J. Orthop. 2023, 57, 105–114. [Google Scholar] [CrossRef]
- Tanha, K.; Fahimfar, N.; Nematollahi, S.; Sajjadi-Jazi, S.M.; Gharibzadeh, S.; Sanjari, M.; Khalagi, K.; Hajivalizedeh, F.; Raeisi, A.; Larijani, B.; et al. Annual incidence of osteoporotic hip fractures in Iran: A systematic review and meta-analysis. BMC Geriatr. 2021, 21, 668. [Google Scholar] [CrossRef] [PubMed]
- Zhivodernikov, I.V.; Kirichenko, T.V.; Markina, Y.V.; Postnov, A.Y.; Markin, A.M. Molecular and Cellular Mechanisms of Osteoporosis. Int. J. Mol. Sci. 2023, 24, 15772. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.-Y.; Kung, A.W.C. Genetics of Osteoporosis. Mol. Genet. Metab. 2006, 88, 295–306. [Google Scholar] [CrossRef]
- Kamiński, A.; Bogacz, A.; Niezgoda-Nowak, J.T.; Podralska, M.; Górska, A.; Soczawa, M.; Czerny, B. The VDR rs1544410 and rs11568820 Variants and the Risk of Osteoporosis in the Polish Population. Int. J. Mol. Sci. 2025, 26, 481. [Google Scholar] [CrossRef]
- Ralston, S.H.; Uitterlinden, A.G. Genetics of Osteoporosis. Endocr. Rev. 2010, 31, 629–662. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Recker, R.; Deng, H. Molecular Studies of Identification of Genes for Osteoporosis: The 2002 Update. J. Endocrinol. 2003, 177, 147–196. [Google Scholar] [CrossRef][Green Version]
- Kuo, M.W.; Hsiao, C.C.; Lin, M.C.; Lin, W.J.; Lin, Y.T.; Tsai, L.P.; Niu, D.M. A novel COL1A1 frameshift mutation in a family with osteogenesis imperfecta. Mol. Genet. Genom. Med. 2020, 8, e1366. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Zhang, X.; Zeng, F.; Yuan, M.; Liu, M.; Wang, Q.K.; Liu, J.Y. Identification and Molecular Characterization of Two Novel Mutations in COL1A2 in Two Chinese Families with Osteogenesis Imperfecta. J. Genet. Genom. 2011, 38, 149–156. [Google Scholar] [CrossRef]
- Forlino, A.; Marini, J.C. Osteogenesis imperfecta. Lancet 2016, 387, 1657–1671. [Google Scholar] [CrossRef]
- Cawley, K.M.; Bustamante-Gomez, N.C.; Guha, A.G.; MacLeod, R.S.; Xiong, J.; Gubrij, I.; Liu, Y.; Mulkey, R.; Palmieri, M.; Thostenson, J.D.; et al. Local Production of Osteoprotegerin by Osteoblasts Suppresses Bone Resorption. Cell Rep. 2020, 32, 108052, Erratum in Cell Rep. 2025, 44, 115821. [Google Scholar] [CrossRef]
- Lu, C.W.; Wang, C.H.; Hsu, B.G.; Tsai, J.P. Serum Osteoprotegerin Level Is Negatively Associated with Bone Mineral Density in Patients Undergoing Maintenance Hemodialysis. Medicina 2021, 57, 762. [Google Scholar] [CrossRef]
- Han, X.; Zheng, L.; Mu, Y.Y.; Li, H.Z.; He, X.F. Association between OPG polymorphisms and osteoporosis risk: An updated meta-analysis. Front. Genet. 2022, 13, 1032110. [Google Scholar] [CrossRef]
- Mann, V.; Hobson, E.E.; Li, B.; Stewart, T.L.; Grant, S.F.; Robins, S.P.; Aspden, R.M.; Ralston, S.H. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Investig. 2001, 107, 899–907. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Y.; Wu, X.; Wang, W.; Wang, Q.; Lin, W.; Zhang, Z.; Li, M. The COL1A1 rs1800012 polymorphism is associated with osteoporosis or fracture risk: A meta-analysis of 30 studies. Int. J. Burns Trauma 2024, 14, 148–159. [Google Scholar] [CrossRef]
- Jin, H.; Evangelou, E.; Ioannidis, J.P.; Ralston, S.H. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: Meta-analysis of published studies. Osteoporos. Int. 2011, 22, 911–921. [Google Scholar] [CrossRef]
- Yu, K.H.; Tang, J.; Dai, C.Q.; Yu, Y.; Hong, J.J. COL1A1 gene—1997G/T polymorphism and risk of osteoporosis in postmenopausal women: A meta-analysis. Genet. Mol. Res. 2015, 14, 10991–10998. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Woo, J.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between osteoprotegerin polymorphisms and bone mineral density: A meta-analysis. Mol. Biol. Rep. 2010, 37, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Boroń, D.; Kotrych, D.; Bartkowiak-Wieczorek, J.; Uzar, I.; Bogacz, A.; Kamiński, A. Polymorphisms of OPG and their relation to the mineral density of bones in pre- and postmenopausal women. Int. Immunopharmacol. 2015, 28, 477–486. [Google Scholar] [CrossRef]
- Przerwa, F.; Uzar, I.; Bogacz, A.; Kotrych, K.; Sulikowski, T.; Wolek, M.; Kamiński, A.; Ziętek, P.; Czerny, B. Osteoprotegerin Gene as a Biomarker in the Development of Osteoporosis in Postmenopausal Women. Biomedicines 2023, 11, 3218. [Google Scholar] [CrossRef]
- Zhong, B.; Huang, D.; Ma, K.; Deng, X.; Shi, D.; Wu, F.; Shao, Z. Association of COL1A1 rs1800012 polymorphism with musculoskeletal degenerative diseases: A meta-analysis. Oncotarget 2017, 8, 75488–75499. [Google Scholar] [CrossRef] [PubMed]
- Aitkulova, A.; Akilzhanova, A.; Abilova, Z.; Zhumatova, Z.; Akilzhanova, G.; Zholdybayeva, E. Collagen Type I alpha1 (COL1A1) Gene Polymorphism and Bone Mineral Density in Postmenopausal Kazakh Women. Cent. Asian J. Glob. Health 2014, 3, 144. [Google Scholar] [CrossRef] [PubMed]
- Mann, V.; Ralston, S.H. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 2003, 32, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Dytfeld, J.; Marcinkowska, M.; Drwęska-Matelska, N.; Michalak, M.; Horst-Sikorska, W.; Słomski, R. Association analysis of the COL1A1 polymorphism with bone mineral density and prevalent fractures in Polish postmenopausal women with osteoporosis. Arch. Med. Sci. 2016, 12, 288–294. [Google Scholar] [CrossRef]
- Singh, M.; Singh, P.; Singh, S.; Juneja, P.K.; Kaur, T. A haplotype derived from the common variants at the −1997G/T and Sp1 binding site of the COL1A1 gene influences risk of postmenopausal osteoporosis in India. Rheumatol. Int. 2013, 33, 501–506. [Google Scholar] [CrossRef]
- Richards, J.B.; Kavvoura, F.K.; Rivadeneira, F.; Styrkársdóttir, U.; Estrada, K.; Halldórsson, B.V.; Hsu, Y.H.; Zillikens, M.C.; Wilson, S.G.; Mullin, B.H.; et al. Collaborative meta-analysis: Associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann. Intern. Med. 2009, 151, 528–537. [Google Scholar] [CrossRef]
- Cichocka, E.; Górczyńska-Kosiorz, S.B.; Niemiec, P.; Trautsolt, W.; Gumprecht, J. The Impact of Selected COL1A1 and COL1A2 Gene Polymorphisms on Bone Mineral Density and the Risk of Metabolic Diseases in Postmenopausal Women. Int. J. Mol. Sci. 2025, 26, 4981. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 20 May 2025).
- Moore, C.M.; Jacobson, S.A.; Fingerlin, T.E. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. Hum. Hered. 2019, 84, 256–271. [Google Scholar] [CrossRef]
Analysed Variable | Mean ± SD | Median [IQR] | (Min/Max) |
---|---|---|---|
Age (years) <50 ≥50 | 54.83 ± 7.59 271 (45.93%) 319 (54.07%) | 55 [50.00;60.00] | (30/78) |
Birth weight (g) | 3284.63 ± 504.77 | 3280 [3000;3600] | (1600/5100) |
Current body weight (kg) | 66.24 ± 11.57 | 65 [58.00;72.00] | (41–114) |
Current height (cm) | 162.19 ± 5.62 | 162 [158.00;165.00] | (150–180) |
BMI (kg/m2) <25 ≥25 | 25.16 ± 4.18 339 (57.46%) 251 (42.54%) | 24.65 [22.23;27.12] | (17.1–43.43) |
Age at menarche (years) ≤12 13–15 ≥16 | 12.89 ± 1.97 272 (46.10%) 261 (44.24%) 57 (9.66%) | 13 [11.00;14.00] | (9/17) |
Age at menopause (years) ≤45 46–54 ≥55 | 48.26 ± 4.9 151 (25.59%) 381 (64.58%) 58 (9.83%) | 48 [45.00;52.00] | (30/60) |
Reproductive period (years) | 35.36 ± 5.43 | 36 [32.00;39.00] | (17–48) |
Years since menopause | 6.45 ± 5.72 | 5 [2.00;10.00] | (1–26) |
Number of pregnancies | 1.91 ± 1.24 | 2 [1.00;3.00] | (0–7) |
Smoking yes no | 156 (26.44%) 434 (73.56%) |
Variable | Normal BMD T-Score > −1 N = 350 | Reduced BMD T-Score ≤ −1 N = 240 | p |
---|---|---|---|
Age (years) <50 ≥50 | 54.6 ± 7.2 158 (45.1%) 192 (54.9%) | 55.2 ± 8.1 113 (47.1%) 127 (52.9%) | 0.293 0.704 |
Birth weight (g) | 3410 [3260;3680] | 3095 [2780;3475] | <0.001 |
Current body weight (kg) | 68.7 ± 12.0 | 62.7 ± 9.9 | <0.001 |
Current height (cm) | 162.9 ± 5.8 | 161.1 ± 5.1 | <0.001 |
BMI (kg/m2) <25 ≥25 | 25.9 ± 4.5 187 (53.4%) 163 (46.6%) | 24.1 ± 3.4 152 (63.3%) 88 (36.7%) | <0.001 0.021 |
Age at menarche (years) ≤12 13–15 ≥16 | 13.0 [11.0;15.0] 162 (46.3%) 154 (44.0%) 34 (9.7%) | 13.0 [11.0;14.0] 110 (45.8%) 107 (44.6%) 23 (9.6%) | 0.466 0.990 |
Age at menopause (years) ≤45 46–54 ≥55 | 48.0 [46.0;52.0] 86 (24.6%) 223 (63.7%) 41 (11.7%) | 49.0 [45.0;52.0] 65 (27.1%) 158 (65.8%) 17 (7.1%) | 0.907 0.169 |
Reproductive period (years) | 36.0 [32.0;39.0] | 36.0 [32.0;39.0] | 0.993 |
Years since menopause | 5.0 [1.0;9.0] | 5.0 [2.0;10.5] | 0.005 |
Number of pregnancies | 2.0 [1.0;3.0] | 2.0 [1.0;3.0] | 0.464 |
Smoking yes no | 269 (76.9%) 81 (23.1%) | 165 (68.8%) 75 (31.2%) | 0.036 |
Group | Variable | Mean ± SD | Median [IQR] | Min/Max |
---|---|---|---|---|
Control T-score > −1 N = 350 | BMD (g/cm2) | 1.196 ± 0.092 | 1.179 [1.121;1.235] | 1.08/1.47 |
Young-Adult (%) T-score | 100.071 ± 8.092 0.011 ± 0.846 | 98 [94;104] −0.170 [−0.670;0.400] | 90/123 −0.97/2.26 | |
Age-Matched (%) Z-score | 107.863 ± 10.695 0.477 ± 1.015 | 107 [100;113] 0.530 [−0.110;1.120] | 91/133 −1.85/2.65 | |
Osteopenia T-score from −1.0 to −2.5 N = 105 | BMD (g/cm2) | 0.982 ± 0.052 | 0.972 [0.938;1.032] | 0.90/1.07 |
Young-Adult (%) T-score | 81.886 ± 4.353 −1.803 ± 0.430 | 81 [78;86] −1.900 [−2.180;−1.440] | 75/89 −2.49/−1.05 | |
Age-Matched (%) Z-score | 89.905 ± 6.560 −0.873 ± 0.608 | 90 [84;94] −0.960 [−1.310;−0.410] | 74/108 −2.36/0.77 | |
Osteoporosis T-score ≤ −2.5 N = 135 | BMD (g/cm2) | 0.818 ± 0.061 | 0.822 [0.774;0.875] | 0.63/0.90 |
Young-Adult (%) T-score | 68.311 ± 4.900 −3.179 ± 0.501 | 69 [65;73] −3.140 [−3.545;−2.720] | 53/75 −4.73/−2.50 | |
Age-Matched (%) Z-score | 78.844 ± 6.442 −1.446 ± 0.845 | 79 [76;81] −1.580 [−2.015;−1.160] | 61/92 −3.13/0.98 |
Genotypes/Models | Normal BMD T-Score > −1 N = 350 | Reduced BMD T-Score ≤ −1 N = 240 | OR (95%CI) | p | AIC |
---|---|---|---|---|---|
rs1800012 COL1A1 | |||||
GG | 258 (73.7) | 158 (65.8) | 1.00 | 0.116 | 799.0 |
GT | 83 (23.7) | 75 (31.2) | 1.48 (1.02–2.14) | ||
TT | 9 (2.6) | 7 (2.9) | 1.27 (0.46–3.48) | ||
Dominant | 92 (26.3) | 82 (34.2) | 1.46 (1.02–2.08) | 0.040 | 797.1 |
Recessive | 341 (97.4) | 233 (97.1) | 1.14 (0.42–3.10) | 0.800 | 801.2 |
Log-additive | 350 (59.3) | 240 (40.7) | 1.35 (0.99–1.84) | 0.061 | 797.8 |
rs1107946 COL1A1 | |||||
GG | 232 (66.3) | 162 (67.5) | 1.00 | 0.873 | 803.0 |
GT | 108 (30.9) | 70 (29.2) | 0.93 (0.65–1.33) | ||
TT | 10 (2.9) | 8 (3.3) | 1.15 (0.44–2.97) | ||
Dominant | 118 (33.7) | 78 (32.5) | 0.95 (0.67–1.34) | 0.758 | 801.2 |
Recessive | 340 (97.1) | 232 (96.7) | 1.17 (0.46–3.02) | 0.742 | 801.2 |
Log-additive | 350 (59.3) | 240 (40.7) | 0.98 (0.72–1.32) | 0.871 | 801.3 |
rs2073617 TNFRSF11B | |||||
TT | 105 (30.0) | 67 (27.9) | 1.00 | 0.427 | 801.6 |
TC | 168 (48.0) | 109 (45.4) | 1.02 (0.69–1.50) | ||
CC | 77 (22.0) | 64 (26.7) | 1.30 (0.83–2.05) | ||
Dominant | 245 (70.0) | 173 (72.1) | 1.11 (0.77–1.59) | 0.584 | 801.0 |
Recessive | 273 (78.0) | 176 (73.3) | 1.29 (0.88–1.89) | 0.193 | 799.6 |
Log-additive | 350 (59.3) | 240 (40.7) | 1.14 (0.91–1.43) | 0.268 | 800.1 |
SNP | Genotypes/Models | OR (95%CI) | p | AIC |
---|---|---|---|---|
rs1800012 COL1A1 | GG | 1.00 | 0.273 | 769.5 |
GT | 1.37 (0.93–2.00) | |||
TT | 0.98 (0.34–2.78) | |||
Dominant | 1.33 (0.92–1.92) | 0.136 | 767.9 | |
Recessive | 0.89 (0.31–2.50) | 0.818 | 770.0 | |
Log-additive | 1.23 (0.89–1.70) | 0.219 | 768.6 | |
rs1107946 COL1A1 | GG | 1.00 | 0.779 | 771.6 |
GT | 0.88 (0.61–1.28) | |||
TT | 1.05 (0.39–2.82) | |||
Dominant | 0.89 (0.62–1.28) | 0.541 | 769.7 | |
Recessive | 1.10 (0.41–2.91) | 0.852 | 770.0 | |
Log-additive | 0.93 (0.68–1.27) | 0.636 | 769.9 | |
rs2073617 TNFRSF11B | TT | 1.00 | 0.467 | 770.6 |
TC | 0.92 (0.61–1.38) | |||
CC | 1.20 (0.75–1.92) | |||
Dominant | 1.01 (0.69–1.47) | 0.965 | 770.1 | |
Recessive | 1.27 (0.85–1.88) | 0.242 | 768.7 | |
Log-additive | 1.09 (0.86–1.38) | 0.470 | 769.6 |
SNP | Alleles | Normal BMD T-Score > −1 N = 700 | Reduced BMD T-Score ≤ −1 N = 480 | OR (95%CI) | p |
---|---|---|---|---|---|
rs1800012 COL1A1 | G | 599 (85.57%) | 391 (81.46%) | 1.35 (0.99–1.84) | 0.060 |
T | 101 (14.43%) | 89 (18.54%) | |||
rs1107946 COL1A1 | G | 572 (81.71%) | 394 (82.08%) | 0.98 (0.72–1.32) | 0.872 |
T | 128 (18.29%) | 86 (17.92%) | |||
rs2073617 TNFRSF11B | T | 378 (54.00%) | 243 (50.62%) | 1.14 (0.91.1.44) | 0.254 |
C | 322 (46.00%) | 237 (49.38%) |
Genotypes/Models | Crude Model | Model Adjusted for BMI and Smoking | ||||
---|---|---|---|---|---|---|
OR (95%CI) | p | AIC | OR (95%CI) | p | AIC | |
rs1800012 COL1A1 | ||||||
GG | 1.00 | 0.213 | 576.6 | 1.00 | 0.220 | 538.6 |
GT | 1.43 (0.92–2.23) | 1.35 (0.85–2.15) | ||||
TT | 0.63 (0.13–2.97) | 0.45 (0.09–2.20) | ||||
Dominant | 1.36 (0.88–2.09) | 0.170 | 575.8 | 1.25 (0.79–1.97) | 0.338 | 538.7 |
Recessive | 0.57 (0.12–2.67) | 0.451 | 577.1 | 0.41 (0.08–1.99) | 0.232 | 538.2 |
Log-additive | 1.22 (0.83–1.79) | 0.314 | 576.6 | 1.11 (0.74–1.66) | 0.619 | 539.4 |
rs1107946 COL1A1 | ||||||
GG | 1.00 | 0.829 | 579.3 | 1.00 | 0.611 | 540.6 |
GT | 0.90 (0.58–1.4) | 0.81 (0.51–1.28) | ||||
TT | 0.75 (0.2–2.78) | 0.71 (0.18–2.79) | ||||
Dominant | 0.89 (0.58–1.36) | 0.584 | 577.3 | 0.80 (0.51–1.25) | 0.330 | 538.7 |
Recessive | 0.77 (0.21–2.85) | 0.693 | 577.5 | 0.75 (0.19–2.95) | 0.680 | 539.5 |
Log-additive | 0.89 (0.61–1.3) | 0.546 | 577.3 | 0.82 (0.55–1.22) | 0.323 | 538.6 |
rs2073617 TNFRSF11B | ||||||
TT | 1.00 | 0.084 | 574.7 | 1.00 | 0.155 | 537.9 |
TC | 1.42 (0.86–2.35) | 1.30 (0.77–2.19) | ||||
CC | 1.88 (1.07–3.30) | 1.78 (0.99–3.21) | ||||
Dominant | 1.57 (0.98–2.51) | 0.056 | 574.0 | 1.45 (0.88–2.37) | 0.138 | 537.4 |
Recessive | 1.49 (0.95–2.34) | 0.083 | 574.6 | 1.49 (0.93–2.39) | 0.096 | 536.9 |
Log-additive | 1.37 (1.04–1.81) | 0.026 | 572.7 | 1.34 (0.99–1.80) | 0.054 | 535.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotrych, K.; Wojtuń, M.; Górska, A.; Bogacz, A.; Soczawa, M.; Uzar, I.; Gorący, J.; Brązert, M.; Czerny, B.; Kamiński, A. The Influence of Clinical Factors and Genetic Variants of COL1A1 and TNFRSF11B on Bone Mineral Density in Postmenopausal Women. Int. J. Mol. Sci. 2025, 26, 8894. https://doi.org/10.3390/ijms26188894
Kotrych K, Wojtuń M, Górska A, Bogacz A, Soczawa M, Uzar I, Gorący J, Brązert M, Czerny B, Kamiński A. The Influence of Clinical Factors and Genetic Variants of COL1A1 and TNFRSF11B on Bone Mineral Density in Postmenopausal Women. International Journal of Molecular Sciences. 2025; 26(18):8894. https://doi.org/10.3390/ijms26188894
Chicago/Turabian StyleKotrych, Katarzyna, Maciej Wojtuń, Aleksandra Górska, Anna Bogacz, Michał Soczawa, Izabela Uzar, Jarosław Gorący, Maciej Brązert, Bogusław Czerny, and Adam Kamiński. 2025. "The Influence of Clinical Factors and Genetic Variants of COL1A1 and TNFRSF11B on Bone Mineral Density in Postmenopausal Women" International Journal of Molecular Sciences 26, no. 18: 8894. https://doi.org/10.3390/ijms26188894
APA StyleKotrych, K., Wojtuń, M., Górska, A., Bogacz, A., Soczawa, M., Uzar, I., Gorący, J., Brązert, M., Czerny, B., & Kamiński, A. (2025). The Influence of Clinical Factors and Genetic Variants of COL1A1 and TNFRSF11B on Bone Mineral Density in Postmenopausal Women. International Journal of Molecular Sciences, 26(18), 8894. https://doi.org/10.3390/ijms26188894