The Extracellular Matrix Influences the miRNA Landscape of Human Mesenchymal Stromal/Stem Cells
Abstract
1. Introduction
2. Results
2.1. Differential Expression of miRNAs in MESCs Cultured on dECM
2.2. Differential miR-146a-5p Expression in MSCs Derived from Different Sources
2.3. miR-146a-5p Mimic Promotes Proliferation of C2C12 Myoblasts
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Preparation of dECM
4.3. Conditioned Medium Preparation
4.4. miRNA-seq
4.5. miRNA RT-qPCR
4.6. C2C12 Transfection with miRNA Oligonucleotides
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CM-dECM | Conditioned medium derived from MESCs cultured on decellularized cell-derived extracellular matrix |
dECM | decellularized cell-derived extracellular matrix |
DMEM | Dulbecco’s modified Eagle medium |
DP-MSCs | Mesenchymal stromal/stem cells isolated from dental pulp |
ECM | Extracellular matrix |
FC | Fold change |
Fet-MSCs | Mesenchymal stromal/stem cells derived from fetal bone marrow |
MSCs | Mesenchymal stromal/stem cells |
MESCs | Mesenchymal stromal/stem cells derived from desquamated endometrium of menstrual blood |
NC | Negative control |
RT-qPCR | Reverse transcription–quantitative polymerase chain reaction |
SD | Standard deviation |
TEM | Transmission electron microscopy |
WJ-MSCs | Mesenchymal stromal/stem cells isolated from Wharton’s jelly |
References
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-Art Review. Sultan Qaboos Univ. Med. J. 2018, 18, e264. [Google Scholar] [CrossRef]
- Fernández-Francos, S.; Eiro, N.; Costa, L.A.; Escudero-Cernuda, S.; Fernández-Sánchez, M.L.; Vizoso, F.J. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int. J. Mol. Sci. 2021, 22, 3576. [Google Scholar] [CrossRef]
- Lee, S.; Choi, E.; Cha, M.-J.; Hwang, K.-C. Cell Adhesion and Long-Term Survival of Transplanted Mesenchymal Stem Cells: A Prerequisite for Cell Therapy. Oxid. Med. Cell. Longev. 2015, 2015, 632902. [Google Scholar] [CrossRef] [PubMed]
- Boldyreva, M.A.; Shevchenko, E.K.; Molokotina, Y.D.; Makarevich, P.I.; Beloglazova, I.B.; Zubkova, E.S.; Dergilev, K.V.; Tsokolaeva, Z.I.; Penkov, D.; Hsu, M.-N.; et al. Transplantation of Adipose Stromal Cell Sheet Producing Hepatocyte Growth Factor Induces Pleiotropic Effect in Ischemic Skeletal Muscle. Int. J. Mol. Sci. 2019, 20, 3088. [Google Scholar] [CrossRef] [PubMed]
- Alexandrushkina, N.; Nimiritsky, P.; Eremichev, R.; Popov, V.; Arbatskiy, M.; Danilova, N.; Malkov, P.; Akopyan, Z.; Tkachuk, V.; Makarevich, P. Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis via Trigger Effects on Granulation Tissue Growth and Vascularization. Int. J. Mol. Sci. 2020, 21, 5567. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Wan, F.; Morimatsu, M.; Xu, Q.; Feng, T.; Yang, H.; Gong, Y.; Ma, S.; Chang, Y.; Zhang, S.; et al. Cell Sheet Formation Enhances the Therapeutic Effects of Human Umbilical Cord Mesenchymal Stem Cells on Myocardial Infarction as a Bioactive Material. Bioact. Mater. 2021, 6, 2999–3012. [Google Scholar] [CrossRef] [PubMed]
- Bou-Ghannam, S.; Kim, K.; Grainger, D.W.; Okano, T. 3D Cell Sheet Structure Augments Mesenchymal Stem Cell Cytokine Production. Sci. Rep. 2021, 11, 8170. [Google Scholar] [CrossRef] [PubMed]
- Ushakov, R.E.; Burova, E.B. Conditioned Medium of Human Mesenchymal Stromal/Stem Cells Cultured on Decellularized Extracellular Matrix Promotes Murine Skeletal Muscle Repair after Acute Injury. Biochem. Biophys. Res. Commun. 2024, 736, 150511. [Google Scholar] [CrossRef]
- Ushakov, R.; Ratushnyy, A.; Buravkova, L.; Tolkunova, E.; Burova, E. The Decellularized Cell-Derived Extracellular Matrix Enhances the Paracrine Function of Human Mesenchymal Stromal/Stem Cells. Int. J. Mol. Sci. 2024, 25, 2419. [Google Scholar] [CrossRef]
- Sen, C.K.; Ghatak, S. MiRNA Control of Tissue Repair and Regeneration. Am. J. Pathol. 2015, 185, 2629–2640. [Google Scholar] [CrossRef]
- Asgarpour, K.; Shojaei, Z.; Amiri, F.; Ai, J.; Mahjoubin-Tehran, M.; Ghasemi, F.; ArefNezhad, R.; Hamblin, M.R.; Mirzaei, H. Exosomal MicroRNAs Derived from Mesenchymal Stem Cells: Cell-to-Cell Messages. Cell Commun. Signal. 2020, 18, 149. [Google Scholar] [CrossRef]
- Powsner, E.H.; Kronstadt, S.M.; Nikolov, K.; Aranda, A.; Jay, S.M. Mesenchymal Stem Cell Extracellular Vesicle Vascularization Bioactivity and Production Yield Are Responsive to Cell Culture Substrate Stiffness. Bioeng. Transl. Med. 2025, 10, e10743. [Google Scholar] [CrossRef]
- Chen, S.; Sun, F.; Qian, H.; Xu, W.; Jiang, J. Preconditioning and Engineering Strategies for Improving the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cell-Free Therapy. Stem Cells Int. 2022, 2022, 1779346. [Google Scholar] [CrossRef]
- Waldemer-Streyer, R.J.; Kim, D.; Chen, J. Muscle Cell-Derived Cytokines in Skeletal Muscle Regeneration. FEBS J. 2022, 289, 6463–6483. [Google Scholar] [CrossRef]
- Liao, Z.; Zheng, R.; Shao, G. Mechanisms and Application Strategies of MiRNA-146a Regulating Inflammation and Fibrosis at Molecular and Cellular Levels (Review). Int. J. Mol. Med. 2023, 51, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ye, C.; Jiang, L.; Zhu, X.; Zhou, F.; Xia, M.; Chen, Y. The Bone Mesenchymal Stem Cell-Derived Exosomal MiR-146a-5p Promotes Diabetic Wound Healing in Mice via Macrophage M1/M2 Polarization. Mol. Cell. Endocrinol. 2024, 579, 112089. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Tan, J.; Duan, Y.; Duan, J.; Wang, W.; Jin, F.; Jin, Z.; Yuan, X.; Liu, Y. Cyclic Stretch Induced MiR-146a Upregulation Delays C2C12 Myogenic Differentiation through Inhibition of Numb. Biochem. Biophys. Res. Commun. 2009, 378, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Xing, L.; Wu, J.; Wen, S.; Luo, J.; Chen, T.; Fan, Y.; Zhu, J.; Yang, L.; Liu, J.; et al. Skeletal Muscle-Derived Exosomal MiR-146a-5p Inhibits Adipogenesis by Mediating Muscle-Fat Axis and Targeting GDF5-PPARγ Signaling. Int. J. Mol. Sci. 2023, 24, 4561. [Google Scholar] [CrossRef]
- Eremichev, R.; Kulebyakina, M.; Alexandrushkina, N.; Nimiritsky, P.; Basalova, N.; Grigorieva, O.; Egiazaryan, M.; Dyikanov, D.; Tkachuk, V.; Makarevich, P. Scar-Free Healing of Endometrium: Tissue-Specific Program of Stromal Cells and Its Induction by Soluble Factors Produced After Damage. Front. Cell Dev. Biol. 2021, 9, 616893. [Google Scholar] [CrossRef]
- Huang, Y.; Crawford, M.; Higuita-Castro, N.; Nana-Sinkam, P.; Ghadiali, S.N. MiR-146a Regulates Mechanotransduction and Pressure-Induced Inflammation in Small Airway Epithelium. FASEB J. 2012, 26, 3351–3364. [Google Scholar] [CrossRef]
- Gronau, L.; Duecker, R.P.; Jerkic, S.-P.; Eickmeier, O.; Trischler, J.; Chiocchetti, A.G.; Blumchen, K.; Zielen, S.; Schubert, R. Dual Role of MicroRNA-146a in Experimental Inflammation in Human Pulmonary Epithelial and Immune Cells and Expression in Inflammatory Lung Diseases. Int. J. Mol. Sci. 2024, 25, 7686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Liu, Q.; Wang, Y.; Wang, H.; He, L.; Jin, X.; Li, N. MicroRNA MiR-147b Promotes Tumor Growth via Targeting UBE2N in Hepatocellular Carcinoma. Oncotarget 2017, 8, 114072–114080. [Google Scholar] [CrossRef] [PubMed]
- Turkowski, K.; Herzberg, F.; Günther, S.; Weigert, A.; Haselbauer, T.; Fink, L.; Brunn, D.; Grimminger, F.; Seeger, W.; Sültmann, H.; et al. MiR-147b Mediated Suppression of DUSP8 Promotes Lung Cancer Progression. Oncogene 2024, 43, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Zemelko, V.I.; Grinchuk, T.M.; Domnina, A.P.; Artzibasheva, I.V.; Zenin, V.V.; Kirsanov, A.A.; Bichevaia, N.K.; Korsak, V.S.; Nikolsky, N.N. Multipotent Mesenchymal Stem Cells of Desquamated Endometrium: Isolation, Characterization, and Application as a Feeder Layer for Maintenance of Human Embryonic Stem Cells. Cell Tissue Biol. 2012, 6, 1–11. [Google Scholar] [CrossRef]
- Krylova, T.A.; Koltsova, A.M.; Zenin, V.V.; Musorina, A.S.; Yakovleva, T.K.; Poljanskaya, G.G. Comparative Characteristics of New Lines of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells, Bone Marrow, and Foreskin. Cell Tissue Biol. 2012, 6, 95–107. [Google Scholar] [CrossRef]
- Koltsova, A.M.; Krylova, T.A.; Musorina, A.S.; Zenin, V.V.; Turilova, V.I.; Yakovleva, T.K.; Poljanskaya, G.G. The Dynamics of Cell Properties during Long-Term Cultivation of Two Lines of Mesenchymal Stem Cells Derived from Wharton’s Jelly of Human Umbilical Cord. Cell Tissue Biol. 2018, 12, 7–19. [Google Scholar] [CrossRef]
- Koltsova, A.M.; Zenin, V.V.; Turilova, V.I.; Yakovleva, T.K.; Poljanskaya, G.G. The Derivation and Characterization of Mesenchymal Stem Cell Line, Isolated from Human Pulp of a Deciduous Tooth. Tsitologiya 2018, 60, 955–968. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushakov, R.; Burova, E. The Extracellular Matrix Influences the miRNA Landscape of Human Mesenchymal Stromal/Stem Cells. Int. J. Mol. Sci. 2025, 26, 8830. https://doi.org/10.3390/ijms26188830
Ushakov R, Burova E. The Extracellular Matrix Influences the miRNA Landscape of Human Mesenchymal Stromal/Stem Cells. International Journal of Molecular Sciences. 2025; 26(18):8830. https://doi.org/10.3390/ijms26188830
Chicago/Turabian StyleUshakov, Roman, and Elena Burova. 2025. "The Extracellular Matrix Influences the miRNA Landscape of Human Mesenchymal Stromal/Stem Cells" International Journal of Molecular Sciences 26, no. 18: 8830. https://doi.org/10.3390/ijms26188830
APA StyleUshakov, R., & Burova, E. (2025). The Extracellular Matrix Influences the miRNA Landscape of Human Mesenchymal Stromal/Stem Cells. International Journal of Molecular Sciences, 26(18), 8830. https://doi.org/10.3390/ijms26188830