Haploinsufficiency of the Tyrosine Hydroxylase Gene in the Inbred C57BL/6J Strain Alters Behavior, Immunity, and Oxidative Stress, Especially After Acute Stress
Abstract
1. Introduction
2. Results
2.1. Behavioral Trials
2.1.1. Sensorimotor Abilities
Post Hoc Analysis
2.1.2. Exploratory and Anxiety-like Behaviors
Holeboard Test
T-Maze
Marble-Burying Test
Post Hoc Analysis
2.2. Immune Function
Post Hoc Analysis
2.3. Oxidative Stress
Post Hoc Analysis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Design
4.3. Acute Stress
4.4. Behavioral Trials
4.4.1. Sensorimotor Abilities
Visual Placing and Hindlimb Extensor Reflexes
Wood Rod Test
Tightrope Test
4.4.2. Exploratory and Anxiety-like Behavioral Tests
T-Maze Test
Corner Test
Holeboard Test
Marble-Burying Test
4.5. Extraction of Peritoneal Leukocytes
4.6. Immune Function Parameters
4.6.1. Chemotaxis
4.6.2. Natural Killer Activity
4.6.3. Lymphoproliferative Capacity
4.7. Parameters of Oxidative Stress
4.7.1. Catalase Activity
4.7.2. Glutathione Reductase Activity
4.7.3. Glutathione Peroxidase Activity
4.7.4. Glutathione Concentrations
4.7.5. Xanthine Oxidase Activity
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellinger, D.L.; Millar, B.A.; Perez, S.; Carter, J.; Wood, C.; ThyagaRajan, S.; Molinaro, C.; Lubahn, C.; Lorton, D. Sympathetic modulation of immunity: Relevance to disease. Cell. Immunol. 2008, 252, 27–56. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The sympathetic nerve--an integrative interface between two supersystems: The brain and the immune system. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar] [CrossRef]
- Procaccini, C.; Pucino, V.; De Rosa, V.; Marone, G.; Matarese, G. Neuro-endocrine networks controlling immune system in health and disease. Front. Immunol. 2014, 5, 143. [Google Scholar] [CrossRef]
- Borodovitsyna, O.; Flamini, M.; Chandler, D. Noradrenergic Modulation of Cognition in Health and Disease. Neural. Plast. 2017, 2017, 6031478. [Google Scholar] [CrossRef]
- Gasser, P.J. Organic Cation Transporters in Brain Catecholamine Homeostasis. Handb. Exp. Pharmacol. 2021, 266, 187–197. [Google Scholar] [PubMed]
- Shimizu, N.; Kaizuka, Y.; Hori, T.; Nakane, H. Immobilization increases norepinephrine release and reduces NK cytotoxicity in spleen of conscious rat. Am. J. Physiol. 1996, 271, R537–R544. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, L.I.; Revuelta, A.; Pando, R.H. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann. New York Acad. Sci. 2015, 1351, 39–51. [Google Scholar] [CrossRef]
- Garrido, A.; Cruces, J.; Ceprián, N.; Hernández-Sánchez, C.; De la Fuente, M. Premature aging in behavior and immune functions in tyrosine hydroxylase haploinsufficient female mice. A longitudinal study. Brain Behav. Immun. 2018, 69, 440–455. [Google Scholar] [CrossRef] [PubMed]
- Garrido, A.; Cruces, J.; Ceprián, N.; Hernández-Sánchez, C.; De Pablo, F.; De la Fuente, M. Social Environment Ameliorates Behavioral and Immune Impairments in Tyrosine Hydroxylase Haploinsufficient Female Mice. J. Neuroimmune Pharmacol. 2021, 16, 548–566. [Google Scholar] [CrossRef]
- Félix, J.; Garrido, A.; De la Fuente, M. In Response to a Punctual Stress Male and Female Tyrosine Hydroxylase Haploinsufficient Mice Show a Deteriorated Behavior, Immunity, and Redox State. Int. J. Mol. Sci. 2023, 24, 7335. [Google Scholar] [CrossRef]
- De la Fuente, M. The immune system, a marker and modulator of the rate of aging. In Immunology of Aging; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–23. [Google Scholar]
- Martínez de Toda, I.; Maté, I.; Vida, C.; Cruces, J.; De la Fuente, M. Immune function parameters as markers of biological age and predictors of longevity. Aging 2016, 8, 3110–3119. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, M.; Miquel, J. An update of the oxidation-inflammation theory of aging: The involvement of the immune system in oxi-inflamm-aging. Curr. Pharm. Des. 2009, 15, 3003–3026. [Google Scholar] [CrossRef]
- Martínez de Toda, I.; Vida, C.; Garrido, A.; De la Fuente, M. Redox Parameters as Markers of the Rate of Aging and Predictors of Life Span. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 613–620. [Google Scholar] [CrossRef]
- Brekke, T.D.; Steele, K.A.; Mulley, J.F. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies. G3 2018, 8, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Eppig, J.T.; Blake, J.A.; Bult, C.J.; Kadin, J.A.; Richardson, J.E. The mouse genome database (MGD): New features facilitating a model system. Nucleic Acids Res. 2007, 35, D630–D637. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Casellas, J. Inbred mouse strains and genetic stability: A review. Animal 2011, 5, 1–7. [Google Scholar] [CrossRef]
- Roux, C.M.; Lecouflet, P.; Billard, J.M.; Esneault, E.; Leger, M.; Schumann-Bard, P.; Freret, T. Genetic Background Influence on Hippocampal Synaptic Plasticity: Frequency-Dependent Variations between an Inbred and an Outbred Mice Strain. Int. J. Mol. Sci. 2023, 24, 4304. [Google Scholar] [CrossRef]
- Festing, M.F. Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol. Pathol. 2010, 38, 681–690. [Google Scholar] [CrossRef]
- Yilmazer-Hanke, D.M. Morphological correlates of emotional and cognitive behaviour: Insights from studies on inbred and outbred rodent strains and their crosses. Behav. Pharmacol. 2008, 19, 403–434. [Google Scholar] [CrossRef]
- Cabib, S.; Puglisi-Allegra, S.; Ventura, R. The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav. Brain. Res. 2002, 130, 103–109. [Google Scholar] [CrossRef]
- Richter, S.H.; Garner, J.P.; Zipser, B.; Lewejohann, L.; Sachser, N.; Touma, C.; Schindler, B.; Chourbaji, S.; Brandwein, C.; Gass, P.; et al. Effect of population heterogenization on the reproducibility of mouse behavior: A multi-laboratory study. PLoS ONE 2011, 6, e16461. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.; Giorgianni, F.; Jones, B.C.; Beranova-Giorgianni, S.; Moore Ii, B.M.; Mulligan, M.K. Comparison and Functional Genetic Analysis of Striatal Protein Expression Among Diverse Inbred Mouse Strains. Front. Mol. Neurosci. 2019, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, S.A.; Rizzo, S.; Laudani, S.; Ieraci, A.; Drago, F.; Leggio, G.M. Acute stress alters recognition memory and AMPA/NMDA receptor subunits in a sex-dependent manner. Neurobiol. Stress 2023, 25, 100545. [Google Scholar] [CrossRef]
- Bendall, J.K.; Heymes, C.; Wright, T.J.; Wheatcroft, S.; Grieve, D.J.; Shah, A.M.; Cave, A.C. Strain-dependent variation in vascular responses to nitric oxide in the isolated murine heart. J. Mol. Cell. Cardiol. 2002, 34, 1325–1333. [Google Scholar] [CrossRef][Green Version]
- Montgomery, M.K.; Hallahan, N.L.; Brown, S.H.; Liu, M.; Mitchell, T.W.; Cooney, G.J.; Turner, N. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 2013, 56, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Marques, S.M.; Campos, P.P.; Castro, P.R.; Cardoso, C.C.; Ferreira, M.A.; Andrade, S.P. Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc. Res. 2011, 82, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Doetschman, T. Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol. Biol. 2009, 530, 423–433. [Google Scholar]
- Bailey, S.J.; Toth, M. Variability in the benzodiazepine response of serotonin 5-HT1A receptor null mice displaying anxiety-like phenotype: Evidence for genetic modifiers in the 5-HT-mediated regulation of GABA(A) receptors. J. Neurosci. 2004, 24, 6343–6351. [Google Scholar] [CrossRef]
- Sibille, E.; Pavlides, C.; Benke, D.; Toth, M. Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J. Neurosci. 2000, 20, 2758–2765. [Google Scholar] [CrossRef]
- Toth, M. 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur. J. Pharmacol. 2003, 463, 177–184. [Google Scholar] [CrossRef]
- Tabuchi, K.; Blundell, J.; Etherton, M.R.; Hammer, R.E.; Liu, X.; Powell, C.M.; Südhof, T.C. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007, 318, 71–76. [Google Scholar] [CrossRef]
- Jaramillo, T.C.; Escamilla, C.O.; Liu, S.; Peca, L.; Birnbaum, S.G.; Powell, C.M. Genetic background effects in Neuroligin-3 mutant mice: Minimal behavioral abnormalities on C57 background. Autism Res. 2018, 11, 234–244. [Google Scholar] [CrossRef]
- Burket, J.A.; Mastropaolo, J.; Rosse, R.B.; Deutsch, S.I. Genetically inbred Balb/C mice are more sensitive to an effect of flurazepam and more resistant to an effect of stress than a genetically outbred mouse strain. Epilepsy Behav. 2009, 16, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 2009, 10, 211–223. [Google Scholar] [CrossRef]
- Korner, G.; Noain, D.; Ying, M.; Hole, M.; Flydal, M.I.; Scherer, T.; Allegri, G.; Rassi, A.; Fingerhut, R.; Becu-Villalobos, D.; et al. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency. Brain 2015, 138, 2948–2963. [Google Scholar] [CrossRef]
- Sabbar, M.; Delaville, C.; De Deurwaerdère, P.; Benazzouz, A.; Lakhdar-Ghazal, N. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons. Neuroscience 2012, 210, 375–383. [Google Scholar] [CrossRef]
- Vizi, E.S.; Elenkov, I.J. Nonsynaptic noradrenaline release in neuro-immune responses. Acta Biol. Hung. 2002, 53, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Marino, F.; Cosentino, M. Adrenergic modulation of immune cells: An update. Amino Acids 2013, 45, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Scanzano, A.; Cosentino, M. Adrenergic regulation of innate immunity: A review. Front. Pharmacol. 2015, 6, 171. [Google Scholar] [CrossRef]
- Qahl, S.H.; Almohaimeed, H.M.; Algaidi, S.A.; Batawi, A.H.; Mohammedsaleh, Z.M.; Abd-Elhamid, T.H.; Almohammadi, N.H.; Ayuob, N.N.; Mahmoud, A.R. Immunomodulatory Effects of Cucurbita pepo L. Extract in Chronic Stress-Induced Dysregulation of Lymphoid Organs in Rats. Pharmaceuticals 2025, 18, 1046. [Google Scholar] [CrossRef]
- Garrido, A.; Cruces, J.; Iriarte, I.; Hernández-Sánchez, C.; de Pablo, F.; de la Fuente, M. Premature immunosenescence in catecholamines syntesis deficient mice. Effect of social environment. Rev. Esp. Geriatr. Gerontol. 2017, 52, 20–26. [Google Scholar] [CrossRef]
- Creveling, C.R.; Lundstrom, J.; McNeal, E.T.; Tice, L.; Daly, J.W. Dihydroxytryptamines: Effects on noradrenergic function in mouse heart in vivo. Mol. Pharmacol. 1975, 11, 211–222. [Google Scholar] [CrossRef]
- Graham, D.G. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 1978, 14, 633–643. [Google Scholar] [CrossRef]
- Rosenberg, P.A. Catecholamine toxicity in cerebral cortex in dissociated cell culture. J. Neurosci. 1988, 8, 2887–2894. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.S.; Kim, E.Y.; Kang, J.S.; Kim, H.R.; Oh, Y.J.; Gwag, B.J. Neurotoxic and neuroprotective actions of catecholamines in cortical neurons. Exp. Neurol. 1999, 159, 217–224. [Google Scholar] [CrossRef]
- Sofic, E.; Denisova, N.; Youdim, K.; Vatrenjak-Velagic, V.; De Filippo, C.; Mehmedagic, A.; Causevic, A.; Cao, G.; Joseph, J.A.; Prior, R.L. Antioxidant and pro-oxidant capacity of catecholamines and related compounds. Effects of hydrogen peroxide on glutathione and sphingomyelinase activity in pheochromocytoma PC12 cells: Potential relevance to age-related diseases. J. Neural. Transm. 2001, 108, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mori, A. Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage. Arch. Biochem. Biophys. 1993, 302, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Toda, I.; Vida, C.; Sanz San Miguel, L.; De la Fuente, M. When will my mouse die? Life span prediction based on immune function, redox and behavioural parameters in female mice at the adult age. Mech. Ageing Dev. 2019, 182, 111125. [Google Scholar] [CrossRef]
- Marcel, D.; Raison, S.; Bezin, L.; Pujol, J.F.; Weissmann, D. Plasticity of tyrosine hydroxylase gene expression within BALB/C and C57Black/6 mouse locus coeruleus. Neurosci. Lett. 1998, 242, 77–80. [Google Scholar] [CrossRef]
- Cambon, K.; Dos-Santos Coura, R.; Groc, L.; Carbon, A.; Weissmann, D.; Changeux, J.P.; Pujol, J.F.; Granon, S. Aggressive behavior during social interaction in mice is controlled by the modulation of tyrosine hydroxylase expression in the prefrontal cortex. Neuroscience 2010, 171, 840–851. [Google Scholar] [CrossRef]
- Kanďár, R. The ratio of oxidized and reduced forms of selected antioxidants as a possible marker of oxidative stress in humans. Biomed. Chromatogr. 2016, 30, 13–28. [Google Scholar] [CrossRef]
- Liu, W.Z.; Zhang, W.H.; Zheng, Z.H.; Zou, J.X.; Liu, X.X.; Huang, S.H.; You, W.J.; He, Y.; Zhang, J.Y.; Wang, X.D.; et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 2020, 11, 2221. [Google Scholar] [CrossRef]
- Curtin, N.M.; Mills, K.H.; Connor, T.J. Psychological stress increases expression of IL-10 and its homolog IL-19 via beta-adrenoceptor activation: Reversal by the anxiolytic chlordiazepoxide. Brain. Behav. Immun. 2009, 23, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Laukova, M.; Vargovic, P.; Krizanova, O.; Kvetnansky, R. Repeated stress down-regulates β(2)- and α (2C)-adrenergic receptors and up-regulates gene expression of IL-6 in the rat spleen. Cell. Mol. Neurobiol. 2010, 30, 1077–1087. [Google Scholar] [CrossRef]
- Avitsur, R.; Kavelaars, A.; Heijnen, C.; Sheridan, J.F. Social stress and the regulation of tumor necrosis factor-alpha secretion. Brain Behav. Immun. 2005, 19, 311–317. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, P.M.; Orshal, J.M.; Sen, D.; Sonnenfeld, G.; Aviles, H.O. Effects of exposure of mice to hindlimb unloading on leukocyte subsets and sympathetic nervous system activity. Stress 2009, 12, 82–88. [Google Scholar] [CrossRef]
- Roy, B.; Rai, U. Dual mode of catecholamine action on splenic macrophage phagocytosis in wall lizard, Hemidactylus flaviviridis. Gen. Comp. Endocrinol. 2004, 136, 180–191. [Google Scholar] [CrossRef]
- RIddell, S.R. Adrenaline fuels a cytokine storm during immunotherapy. Nature 2018, 564, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Tuohimaa, P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur. J. Pharmacol. 2005, 508, 147–153. [Google Scholar] [CrossRef]
- Vázquez, P.; Robles, A.M.; de Pablo, F.; Hernández-Sánchez, C. Non-neural tyrosine hydroxylase, via modulation of endocrine pancreatic precursors, is required for normal development of beta cells in the mouse pancreas. Diabetologia 2014, 57, 2339–2347. [Google Scholar] [CrossRef]
- Gamella-Pozuelo, L.; Grande, M.T.; Clemente-Lorenzo, M.; Murillo-Gómez, C.; De Pablo, F.; López-Novoa, J.M.; Hernández-Sánchez, C. Tyrosine hydroxylase haploinsufficiency prevents age-associated arterial pressure elevation and increases half-life in mice. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 113–120. [Google Scholar] [CrossRef]
- Kappel, S.; Hawkins, P.; Mendl, M.T. To Group or Not to Group? Good Practice for Housing Male Laboratory Mice. Animals 2017, 7, 88. [Google Scholar] [CrossRef]
- Azkona, G.; Caballero, J.M. Implementing strategies to reduce singly housed male mice. Lab. Anim. 2019, 53, 508–510. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 2010, 1, 94–99. [Google Scholar] [CrossRef]
- Giménez-Llort, L.; Fernández-Teruel, A.; Escorihuela, R.M.; Fredholm, B.B.; Tobeña, A.; Pekny, M.; Johansson, B. Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur. J. Neurosci. 2002, 16, 547–550. [Google Scholar] [CrossRef] [PubMed]
- De Cabo de la Vega, C.; Pujol, A.; Paz Viveros, M. Neonatally administered naltrexone affects several behavioral responses in adult rats of both genders. Pharmacol. Biochem. Behav. 1995, 50, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Baeza, I.; De Castro, N.M.; Giménez-Llort, L.; De la Fuente, M. Ovariectomy, a model of menopause in rodents, causes a premature aging of the nervous and immune systems. J. Neuroimmunol. 2010, 219, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, R.P.; Kalaria, M.V.; Karkare, V.P.; Parmar, S.K.; Sheth, N.R. Effect of methanolic extract of Lagenaria siceraria (Molina) Standley fruits on marble-burying behavior in mice: Implications for obsessive-compulsive disorder. Pharmacognosy Res. 2011, 3, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Guayerbas, N.; Puerto, M.; Víctor, V.M.; Miquel, J.; De la Fuente, M. Leukocyte function and life span in a murine model of premature immunosenescence. Exp. Gerontol. 2002, 37, 249–256. [Google Scholar] [CrossRef]
Basal | Post-Stress | |||||||
---|---|---|---|---|---|---|---|---|
Females | Males | Females | Males | |||||
WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | |
Wood Rod Test | ||||||||
Number of freezings | 0 | 3 ± 1 aaa | 0 | 0 ### | 0 | 9 ± 2 aaa*** | 0 | 0 ### |
Time of freezing (s) | 0 | 7 ± 2 aaa | 0 | 0 ### | 0 | 17 ± 3 aaa*** | 0 | 0 ### |
Basal | Post-Stress | |||||||
---|---|---|---|---|---|---|---|---|
Females | Males | Females | Males | |||||
WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | |
Holeboard test | ||||||||
Non-goal-directed behavior | ||||||||
Vertical exploration | ||||||||
Number of central rearings | 4 ± 1 | 0 aaa | 4 ± 2 | 0 aaa | 0 *** | 0 | 0 *** | 0 |
Time of central rearings (s) | 9 ± 3 | 0 aaa | 10 ± 3 | 0 aaa | 0 *** | 0 | 0 *** | 0 |
Horizontal exploration | ||||||||
% Central locomotion | 41 ± 3 | 9 ± 2 aaa | 40 ± 3 | 41 ± 3 ### | 29 ± 2 *** | 40 ± 5 aaa*** | 38 ± 5 ## | 24 ± 6 aaa###*** |
% Peripherical locomotion | 59 ± 9 | 92 ± 3 aaa | 60 ± 5 | 59 ± 4 ### | 61 ± 4 | 60 ± 9 *** | 62 ± 5 | 76 ± 10 a##** |
Other behaviors | ||||||||
Number of groomings | 0 | 6 ± 1 aaa | 0 | 5 ± 2 aa | 8 ± 3 *** | 15 ± 3 aaa*** | 3 ± 1 ## | 12 ± 3 aaa*** |
Time of groomings (s) | 0 | 10 ± 2 aaa | 0 | 13 ± 3 aaa | 14 ± 5 *** | 21 ± 2 aaa*** | 7 ± 2 ###*** | 17 ± 2 aaa |
Number of freezings | 0 | 3 ± 1 a | 0 | 0 # | 3 ± 2 * | 10 ± 2 aaa*** | 2 ± 1 | 6 ± 3 aa##*** |
Time of freezings (s) | 0 | 7 ± 3 aaa | 0 | 0 ### | 5 ± 2 ** | 14 ± 4 aaa*** | 5 ± 1 ** | 13 ± 3 aaa*** |
Goal-directed behavior | ||||||||
Number of head dippings | 10 ± 3 | 4 ± 2 aa | 15 ± 2 # | 5 ± 1 aaa | 13 ± 3 | 17 ± 3 *** | 14 ± 3 | 4 ± 1 aaa### |
Time of head dippings (s) | 49 ± 13 | 12 ± 9 aaa | 39 ± 3 # | 14 ± 3 aaa | 4 ± 2 *** | 5 ± 2 | 16 ± 2 ##*** | 6 ± 2 a# |
T-Maze test | ||||||||
Horizontal exploration | ||||||||
Exploratory efficacy (s) | 32 ± 12 | 43 ± 18 | 44 ± 12 | 43 ± 13 | 25 ± 8 | 68 ± 12 aaa | 31 ± 10 | 71 ± 24 aaa* |
Other behaviors | ||||||||
Number of groomings | 0 | 1 ± 1 | 0 | 0 | 1 ± 1 | 4 ± 1 aaa*** | 1 ± 0 | 3 ± 1 aaa*** |
Time of groomings (s) | 0 | 7 ± 2 aaa | 0 | 0 ### | 2 ± 1 | 12 ± 2 aaa*** | 1 ± 0 | 5 ± 3 aaa###*** |
Number of freezings | 0 | 0 | 0 | 0 | 0 | 5 ± 1 aaa*** | 0 | 0 ### |
Time of freezings (s) | 0 | 0 | 0 | 0 | 0 | 5 ± 1 aaa*** | 0 | 0 ### |
Burial behavior | ||||||||
Standard condition | ||||||||
Number of intact pieces | 10 ± 2 | 6 ± 1 aa | 10 ± 1 | 4 ± 2 aaa | 10 ± 2 | 5 ± 1 aaa | 10 ± 2 | 3 ± 1 aaa |
Number of moved pieces | 1 ± 1 | 5 ± 2 aaa | 2 ± 1 | 8 ± 2 ## | 2 ± 1 | 7 ± 1 aaa | 1 ± 1 | 4 ± 1 ### |
Number of buried pieces | 1 ± 1 | 3 ± 1 | 1 ± 1 | 4 ± 2 aa | 2 ± 1 | 4 ± 1 | 1 ± 1 | 5 ± 1 aaa |
Bizonal condition | ||||||||
Number of intact pieces | 7 ± 1 | 2 ± 1 aaa | 5 ± 1 | 2 ± 1 aa | 8 ± 1 | 4 ± 1 aaa | 5 ± 1 ## | 3 ± 2 |
Number of moved pieces | 1 ± 1 | 5 ± 2 aaa | 3 ± 2 | 6 ± 2 a | 1 ± 1 | 4 ± 1 a | 2 ± 1 | 4 ± 1 |
Number of buried pieces | 1 ± 1 | 5 ± 1 aaa | 3 ± 2 | 4 ± 2 | 0 | 3 ± 1 aa | 2 ± 1 | 4 ± 1 |
Basal | Post-Stress | |||||||
---|---|---|---|---|---|---|---|---|
Females | Males | Females | Males | |||||
WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | |
Macrophage functions | ||||||||
Chemotaxis index (C.I) | 398 ± 58 | 293 ± 27 aa | 387 ± 65 | 265 ± 49 aa | 531 ± 40 *** | 174 ± 32 aaa** | 654 ± 54 ##*** | 197 ± 39 aaa |
Lymphocyte functions | ||||||||
Chemotaxis index (C.I) | 489 ± 29 | 354 ± 48 aaa | 532 ± 47 | 408 ± 29 aaa | 581 ± 39 * | 197 ± 54 aaa*** | 498 ± 74 | 116 ± 32 aaa*** |
Natural killer activity (%) | 23 ± 3 | 27 ± 3 | 18 ± 3 | 24 ± 2 aa | 35 ± 2 *** | 19 ± 2 aaa*** | 15 ± 4 ### | 9 ± 2 aa###*** |
Lymphoproliferation | ||||||||
Basal proliferative response (c.p.m) | 1009 ± 222 | 1802 ± 381 aaa | 1031 ± 164 | 2298 ± 239 aaa | 2632 ± 322 *** | 1580 ± 161 aaa | 2354 ± 322 *** | 1654 ± 290 aa** |
Proliferative response to LPS (c.p.m) | 2546 ± 299 | 1273 ± 101aaa | 2435 ± 254 | 1277 ± 233 aaa | 3009 ± 129 * | 1045 ± 204 aaa | 3321 ± 157 *** | 1119 ± 289 aaa |
Proliferative response to ConA (c.p.m) | 2354 ± 322 | 1486 ± 188 aaa | 2214 ± 322 | 1186 ± 291 aaa | 3207 ± 201 *** | 1032 ± 177 aaa | 3985 ± 299 ###*** | 1298 ± 392 aaa |
Basal | Post-Stress | |||||||
---|---|---|---|---|---|---|---|---|
Females | Males | Females | Males | |||||
WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | WT | TH-HZ | |
Antioxidant compounds | ||||||||
Catalase activity (UI CAT/106 cells) | 7 ± 2 | 4 ± 1 | 5 ± 2 | 3 ± 1 | 14 ± 4 *** | 5 ± 1 aaa | 8 ± 2 ### | 6 ± 3 ### |
Glutathione reductase activity (mU GR/106 cells) | 36 ± 7 | 32 ± 12 | 44 ± 15 | 38 ± 13 | 42 ± 3 | 31 ± 2 | 67 ± 10 ##** | 27 ± 9 aaa |
Glutathione peroxidase activity (mU GPx/106 cells) | 149 ± 30 | 216 ± 39 | 167 ± 38 | 226 ± 82 | 375 ± 37 *** | 221 ± 39 aaa | 431 ± 32 *** | 220 ± 38 aaa |
Reduced glutathione levels (GSH) (nmol GSH/106 cells) | 39 ± 4 | 15 ± 4 aaa | 29 ± 2 ### | 9 ± 5 aaa | 64 ± 3 *** | 16 ± 2 aaa | 54 ± 4 ###*** | 12 ± 4 aaa |
Oxidant compounds | ||||||||
Xanthine oxidase activity (U XAO/106 cells) | 0.58 ± 0.20 | 0.84 ± 0.15 | 0.80 ± 0.12 | 1.41 ± 0.39 | 2.54 ± 0.33 *** | 1.96 ± 0.72 *** | 3.04 ± 0.43 *** | 2.74 ± 0.78 aaa###*** |
Oxidized glutathione levels (GSSG) (nmol GSSG/106 cells) | 1.32 ± 0.07 | 2.5 ±0.09 aaa | 1.75 ± 0.03 ### | 2.25 ± 0.18 aaa# | 2.31 ± 0.02 *** | 1.96 ± 0.13 aaa*** | 2.74 ± 0.02 ###*** | 3.06 ± 0.25 aa###*** |
Redox state indicator | ||||||||
GSSG/GSH ratio | 0.03 ± 0.01 | 0.14 ± 0.03 aaa | 0.06 ± 0.01 | 0.25 ± 0.08 aaa### | 0.04 ± 0.01 | 0.12 ± 0.01 aa | 0.05 ± 0.02 | 0.26 ± 0.01 aaa### |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix, J.; Garrido, A.; De la Fuente, M. Haploinsufficiency of the Tyrosine Hydroxylase Gene in the Inbred C57BL/6J Strain Alters Behavior, Immunity, and Oxidative Stress, Especially After Acute Stress. Int. J. Mol. Sci. 2025, 26, 8818. https://doi.org/10.3390/ijms26188818
Félix J, Garrido A, De la Fuente M. Haploinsufficiency of the Tyrosine Hydroxylase Gene in the Inbred C57BL/6J Strain Alters Behavior, Immunity, and Oxidative Stress, Especially After Acute Stress. International Journal of Molecular Sciences. 2025; 26(18):8818. https://doi.org/10.3390/ijms26188818
Chicago/Turabian StyleFélix, Judith, Antonio Garrido, and Mónica De la Fuente. 2025. "Haploinsufficiency of the Tyrosine Hydroxylase Gene in the Inbred C57BL/6J Strain Alters Behavior, Immunity, and Oxidative Stress, Especially After Acute Stress" International Journal of Molecular Sciences 26, no. 18: 8818. https://doi.org/10.3390/ijms26188818
APA StyleFélix, J., Garrido, A., & De la Fuente, M. (2025). Haploinsufficiency of the Tyrosine Hydroxylase Gene in the Inbred C57BL/6J Strain Alters Behavior, Immunity, and Oxidative Stress, Especially After Acute Stress. International Journal of Molecular Sciences, 26(18), 8818. https://doi.org/10.3390/ijms26188818