Photodynamic Therapy and Tumor Microenvironment-Targeting Strategies: A Novel Synergy at the Frontier of Cancer Treatment
Abstract
1. Introduction
1.1. Cancer and Tumor Microenvironment (TME)
1.2. An Overview of Photodynamic Therapy (PDT)
1.3. PDT’s Mechanism of Action
2. Combination of PDT with Other Therapies
3. PDT and TME-Targeted Therapies
3.1. TME-Targeting Therapies
- (a)
- One strategy is to try to reduce the ECM content of the tumor that usually affects drug delivery by compressing blood vessels. In this strategy, ECM components such as collagen are specifically targeted with angiotensin ll receptor agonists such as Losartan, which has been shown to reduce collagen l secretion [46].
- (b)
- (c)
- A third strategy is to target pericytes and endothelial cells to prevent neovascularization using Anti-Vascular Endothelial Growth Factor (VEFG) antibodies, such as Bevacizumab, and mTOR inhibitors to decrease angiogenesis [48,49]. In fact, Bevacizumab, a humanized monoclonal antibody for VEGFA, was the first antiangiogenic therapy to receive FDA approval in 2004 for treating the TME of different cancers such as glioblastoma and cervical cancer [3].
- (d)
- The diverse immune composition within the TME can also be targeted through various routes. One approach is decreasing TAM and myeloid-derived suppressive cell (MDSC) infiltration by using small-molecule inhibitors or neutralizing antibodies against CDF-1 or CD204 [50,51,52]. IL-1 receptor antagonists, like Anakinra and Canakinumab, can be used for targeting chronic inflammation, which is closely related to carcinogenesis [53,54].
- (e)
- Finally, other targetable components of the TME are CAFs, with many strategies currently under investigation to modulate their activity, such as the targeting of fibroblast activation protein α (FAP) with an interleukin-2 variant (RO6874281), which targets FAP [2].
3.2. Combination of TME-Targeting Therapies
3.2.1. Targeting Hypoxia and TME Vasculature
3.2.2. Targeting Mitochondria and Other ECM Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.C.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef]
- Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting Tumor Microenvironment for Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 840. [Google Scholar] [CrossRef]
- Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021, 11, 933–959. [Google Scholar] [CrossRef] [PubMed]
- Yuzhalin, A.E. Redefining cancer research for therapeutic breakthroughs. Br. J. Cancer 2024, 130, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Verginadis, I.I.; Citrin, D.E.; Ky, B.; Feigenberg, S.J.; Georgakilas, A.G.; Hill-Kayser, C.E.; Koumenis, C.; Maity, A.; Bradley, J.D.; Lin, A. Radiotherapy toxicities: Mechanisms, management, and future directions. Lancet 2025, 405, 338–352. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401, Erratum in Genes Dis. 2024, 11, 101211. [Google Scholar] [CrossRef] [PubMed]
- Van Straten, D.; Mashayekhi, V.; De Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9, 19. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Sorrin, A.J.; Kemal Ruhi, M.; Ferlic, N.A.; Karimnia, V.; Polacheck, W.J.; Celli, J.P.; Huang, H.C.; Rizvi, I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem. Photobiol. 2020, 96, 232–259. [Google Scholar] [CrossRef]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers 2021, 13, 4447. [Google Scholar] [CrossRef]
- Juarranz, Á.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol. 2008, 10, 148–154. [Google Scholar] [CrossRef]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer—A Review of the Current Clinical Status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Liang, M.; Lei, Q.; Li, G.; Wu, S. The Current Status of Photodynamic Therapy in Cancer Treatment. Cancers 2023, 15, 585. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, R.; Lee, J.; Yang, S.-G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 2018, 22, 25. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Huis in ‘t Veld, R.V.; Heuts, J.; Ma, S.; Cruz, L.J.; Ossendorp, F.A.; Jager, M.J. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023, 15, 330. [Google Scholar] [CrossRef]
- Alzeibak, R.; Mishchenko, T.A.; Shilyagina, N.Y.; Balalaeva, I.V.; Vedunova, M.V.; Krysko, D.V. Targeting immunogenic cancer cell death by photodynamic therapy: Past, present and future. J. Immunother. Cancer 2021, 9, e001926, Erratum in J. Immunother. Cancer 2021, 9, e001926corr1. [Google Scholar] [CrossRef]
- Qin, S.; Xu, Y.; Li, H.; Chen, H.; Yuan, Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater. Sci. 2022, 10, 51–84. [Google Scholar] [CrossRef]
- Maharjan, P.S.; Bhattarai, H.K. Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death. J. Oncol. 2022, 2022, 7211485. [Google Scholar] [CrossRef] [PubMed]
- Nygren, P. What is cancer chemotherapy? Acta Oncol. 2001, 40, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Morita, A.; Tateishi, C.; Muramatsu, S.; Kubo, R.; Yonezawa, E.; Kato, H.; Nishida, E.; Tsuruta, D. Efficacy and safety of bexarotene combined with photo(chemo)therapy for cutaneous T-cell lymphoma. J. Dermatol. 2020, 47, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, Q.; Zhang, Z.; Tang, Y. A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy. Molecules 2023, 28, 399. [Google Scholar] [CrossRef]
- Chilakamarthi, U.; Mahadik, N.S.; Koteshwar, D.; Krishna, N.V.; Giribabu, L.; Banerjee, R. Potentiation of novel porphyrin based photodynamic therapy against colon cancer with low dose doxorubicin and elucidating the molecular signalling pathways responsible for relapse. J. Photochem. Photobiol. B Biol. 2023, 238, 112625. [Google Scholar] [CrossRef]
- Massoud, J.; Pinon, A.; Gallardo-Villagrán, M.; Paulus, L.; Ouk, C.; Carrion, C.; Antoun, S.; Diab-Assaf, M.; Therrien, B.; Liagre, B. A Combination of Ruthenium Complexes and Photosensitizers to Treat Colorectal Cancer. Inorganics 2023, 11, 451. [Google Scholar] [CrossRef]
- Dhar, R.; Seethy, A.; Singh, S.; Pethusamy, K.; Srivastava, T.; Talukdar, J.; Rath, G.K.; Karmakar, S. Cancer immunotherapy: Recent advances and challenges. J. Cancer Res. Ther. 2021, 17, 834–844. [Google Scholar] [CrossRef]
- Yuan, Z.; Fan, G.; Wu, H.; Liu, C.; Zhan, Y.; Qiu, Y.; Shou, C.; Gao, F.; Zhang, J.; Yin, P.; et al. Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 2931–2948. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhao, M.; Wang, W.; Hong, L.; Wu, Z.; Luo, G.; Lu, S.; Tang, Y.; Li, J.; Wang, J.; et al. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death. Cancer Lett. 2023, 554, 216032. [Google Scholar] [CrossRef]
- Sonokawa, T.; Obi, N.; Usuda, J.; Sudo, Y.; Hamakubo, T. Development of a new minimally invasive phototherapy for lung cancer using antibody–toxin conjugate. Thorac. Cancer 2023, 14, 645–653. [Google Scholar] [CrossRef]
- Yamashita, S.; Kojima, M.; Onda, N.; Shibutani, M. In Vitro Comparative Study of Near-Infrared Photoimmunotherapy and Photodynamic Therapy. Cancers 2023, 15, 3400. [Google Scholar] [CrossRef]
- Sun, X.; Cao, Z.; Mao, K.; Wu, C.; Chen, H.; Wang, J.; Wang, X.; Cong, X.; Li, Y.; Meng, X.; et al. Photodynamic therapy produces enhanced efficacy of antitumor immunotherapy by simultaneously inducing intratumoral release of sorafenib. Biomaterials 2020, 240, 119845. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Wang, X.; Shi, L.; Fan, Z.; Zhang, G.; Yang, D.; Bahavar, C.F.; Zhou, F.; Chen, W.R.; et al. Antitumor Effects of DC Vaccine With ALA-PDT-Induced Immunogenic Apoptotic Cells for Skin Squamous Cell Carcinoma in Mice. Technol. Cancer Res. Treat. 2018, 17, 1533033818785275. [Google Scholar] [CrossRef]
- Trempolec, N.; Doix, B.; Degavre, C.; Brusa, D.; Bouzin, C.; Riant, O.; Feron, O. Photodynamic Therapy-Based Dendritic Cell Vaccination Suited to Treat Peritoneal Mesothelioma. Cancers 2020, 12, 545. [Google Scholar] [CrossRef]
- Vedunova, M.; Turubanova, V.; Vershinina, O.; Savyuk, M.; Efimova, I.; Mishchenko, T.; Raedt, R.; Vral, A.; Vanhove, C.; Korsakova, D.; et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 2022, 13, 1062. [Google Scholar] [CrossRef]
- Korbelik, M.; Banáth, J.; Zhang, W.; Gallagher, P.; Hode, T.; Lam, S.S.K.; Chen, W.R. N-dihydrogalactochitosan as immune and direct antitumor agent amplifying the effects of photodynamic therapy and photodynamic therapy-generated vaccines. Int. Immunopharmacol. 2019, 75, 105764. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.S.; Cherukula, K.; Bang, Y.J.; Vijayan, V.; Moon, M.J.; Thiruppathi, J.; Puth, S.; Jeong, Y.Y.; Park, I.-K.; Lee, S.E.; et al. Combination of Photodynamic Therapy and a Flagellin-Adjuvanted Cancer Vaccine Potentiated the Anti-PD-1-Mediated Melanoma Suppression. Cells 2020, 9, 2432. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.M.; Segal, R.J.; Zeitouni, N.C. Combination vismodegib and photodynamic therapy for multiple basal cell carcinomas. Photodiagnosis Photodyn. Ther. 2018, 21, 58–62. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Bulin, A.L.; Broekgaarden, M.; Simeone, D.; Hasan, T. Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 2019, 10, 2625–2643. [Google Scholar] [CrossRef]
- Mayahi, S.; Neshasteh-Riz, A.; Pornour, M.; Eynali, S.; Montazerabadi, A. Investigation of combined photodynamic and radiotherapy effects of gallium phthalocyanine chloride on MCF-7 breast cancer cells. JBIC J. Biol. Inorg. Chem. 2020, 25, 39–48. [Google Scholar] [CrossRef]
- Liu, T.; Song, Y.; Huang, Z.; Pu, X.; Wang, Y.; Yin, G.; Gou, L.; Weng, J.; Meng, X. Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymer-coated liquid metal nanoparticles on liver cancer. Colloids Surf. B Biointerfaces 2021, 207, 112023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Gao, Y.; Yang, Z.; Wang, N.; Ge, J.; Cao, X.; Kou, D.; Gu, Y.; Li, C.; Afshari, M.J.; et al. Biomimetic Upconversion Nanoplatform Synergizes Photodynamic Therapy and Enhanced Radiotherapy against Tumor Metastasis. ACS Appl. Mater. Interfaces 2023, 15, 26431–26441. [Google Scholar] [CrossRef]
- Doix, B.; Trempolec, N.; Riant, O.; Feron, O. Low Photosensitizer Dose and Early Radiotherapy Enhance Antitumor Immune Response of Photodynamic Therapy-Based Dendritic Cell Vaccination. Front. Oncol. 2019, 9, 2019. [Google Scholar] [CrossRef]
- Yao, D.; Wang, Y.; Bian, K.; Zhang, B.; Wang, D. A self-cascaded unimolecular prodrug for pH-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer. Biomaterials 2023, 292, 121920. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.A.; Nam, G.-H.; Hong, Y.; Kim, G.B.; Choi, Y.; Lee, S.; Cho, Y.; Kwon, M.; Jeong, C.; et al. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis. J. Immunother. Cancer 2021, 9, e001481, Erratum in J. Immunother. Cancer 2021, 9, e001481corr1. [Google Scholar] [CrossRef]
- Coulson, R.; Liew, S.H.; Connelly, A.A.; Yee, N.S.; Deb, S.; Kumar, B.; Vargas, A.C.; O’Toole, S.A.; Parslow, A.C.; Poh, A.; et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget 2017, 8, 18640–18656. [Google Scholar] [CrossRef]
- Paolicchi, E.; Gemignani, F.; Krstic-Demonacos, M.; Dedhar, S.; Mutti, L.; Landi, S. Targeting hypoxic response for cancer therapy. Oncotarget 2016, 7, 13464–13478. [Google Scholar] [CrossRef]
- Fukumura, D.; Jain, R.K. Tumor microenvironment abnormalities: Causes, consequences, and strategies to normalize. J. Cell. Biochem. 2007, 101, 937–949. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lu, J.; You, Q.; Huang, H.; Chen, Y.; Liu, K. The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth. Oncotarget 2016, 7, 53269–53276. [Google Scholar] [CrossRef] [PubMed]
- Komohara, Y.; Fujiwara, Y.; Ohnishi, K.; Takeya, M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Deliv. Rev. 2016, 99, 180–185. [Google Scholar] [CrossRef]
- Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61. [Google Scholar] [CrossRef]
- Szebeni, G.J.; Vizler, C.; Nagy, L.I.; Kitajka, K.; Puskas, L.G. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets. Int. J. Mol. Sci. 2016, 17, 1958. [Google Scholar] [CrossRef] [PubMed]
- Tulotta, C.; Ottewell, P. The role of IL-1B in breast cancer bone metastasis. Endocr. Relat. Cancer 2018, 25, R421–R434. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Thuren, T.; Everett, B.M.; Libby, P.; Glynn, R.J.; Ridker, P.; Lorenzatti, A.; Krum, H.; Varigos, J.; et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: Exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 1833–1842. [Google Scholar] [CrossRef]
- Lin, L.; Pang, W.; Jiang, X.; Ding, S.; Wei, X.; Gu, B. Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy. Light Sci. Appl. 2022, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Bai, H.; Liu, L.; Lv, F.; Ren, X.; Wang, S. Luminescent, Oxygen-Supplying, Hemoglobin-Linked Conjugated Polymer Nanoparticles for Photodynamic Therapy. Angew. Chem. Int. Ed. 2019, 58, 10660–10665. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Dey, D.K.; Kim, K.; Kim, S.; Kim, E.; Kang, S.C.; Bajpai, V.K.; Huh, Y.S. Hypoxia-responsive nanomedicine to overcome tumor microenvironment-mediated resistance to chemo-photodynamic therapy. Mater. Today Adv. 2022, 14, 100218. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Zhang, Z.; He, D.; Zhu, J.; Chen, Y.; Zhang, Y. Remodeling of tumor microenvironment for enhanced tumor chemodynamic/photothermal/chemo-therapy. J. Nanobiotechnol. 2022, 20, 388. [Google Scholar] [CrossRef]
- Zhu, D.; Duo, Y.; Suo, M.; Zhao, Y.; Xia, L.; Zheng, Z.; Li, Y.; Tang, B.Z. Tumor-Exocytosed Exosome/Aggregation-Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy. Angew. Chem. Int. Ed. 2020, 59, 13836–13843. [Google Scholar] [CrossRef]
- Chilakamarthi, U.; Mahadik, N.S.; Bhattacharyya, T.; Gangadhar, P.S.; Giribabu, L.; Banerjee, R. Glucocorticoid receptor mediated sensitization of colon cancer to photodynamic therapy induced cell death. J. Photochem. Photobiol. B Biol. 2024, 251, 112846. [Google Scholar] [CrossRef]
- Kv, R.; Liu, T.-I.; Lu, I.L.; Liu, C.-C.; Chen, H.-H.; Lu, T.-Y.; Chiang, W.-H.; Chiu, H.-C. Tumor microenvironment-responsive and oxygen self-sufficient oil droplet nanoparticles for enhanced photothermal/photodynamic combination therapy against hypoxic tumors. J. Control. Release 2020, 328, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-H.; Zheng, Y.; Wu, X.-W.; Tan, C.-P.; Ji, L.-N.; Mao, Z.-W. A Tailored Multifunctional Anticancer Nanodelivery System for Ruthenium-Based Photosensitizers: Tumor Microenvironment Adaption and Remodeling. Adv. Sci. 2020, 7, 1901992. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, P.; Shi, R.; Zhao, Z.; Xie, A.; Shen, Y.; Zhu, M. Design of the tumor microenvironment-multiresponsive nanoplatform for dual-targeting and photothermal imaging guided photothermal/photodynamic/chemodynamic cancer therapies with hypoxia improvement and GSH depletion. Chem. Eng. J. 2022, 441, 136042. [Google Scholar] [CrossRef]
- Peng, Y.; Cheng, L.; Luo, C.; Xiong, F.; Wu, Z.; Zhang, L.; Zhan, P.; Shao, L.; Luo, W. Tumor microenvironment-responsive nanosystem achieves reactive oxygen species self-cycling after photothermal induction to enhance efficacy of antitumor therapy. Chem. Eng. J. 2023, 463, 142370. [Google Scholar] [CrossRef]
- Wang, S.-B.; Chen, Z.-X.; Gao, F.; Zhang, C.; Zou, M.-Z.; Ye, J.-J.; Zeng, X.; Zhang, X.-Z. Remodeling extracellular matrix based on functional covalent organic framework to enhance tumor photodynamic therapy. Biomaterials 2020, 234, 119772. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef]
- Codony, V.L.; Tavassoli, M. Hypoxia-induced therapy resistance: Available hypoxia-targeting strategies and current advances in head and neck cancer. Transl. Oncol. 2021, 14, 101017. [Google Scholar] [CrossRef]
- Bown, S.G. Taking PDT into mainstream clinical practice. In Photodynamic Therapy: Back to the Future; World Congress of the International Photodynamic Association, Proceedings of SPIE: Bellingham, WA, USA, 2009; Volume 7380, pp. 23–28. [Google Scholar]
- Kawase, Y.; Iseki, H. Parameter-finding studies of photodynamic therapy for approval in Japan and the USA. Photodiagn. Photodyn. Ther. 2013, 10, 434–445. [Google Scholar] [CrossRef]
- Ormond, A.B.; Freeman, H.S. Dye Sensitizers for Photodynamic Therapy. Materials 2013, 6, 817–840. [Google Scholar] [CrossRef]
- Frochot, C.; Mordon, S.R. Update of the situation of clinical photodynamic therapy in Europe in the 2003–2018 period. J. Porphyr. Phthalocyan. 2019, 23, 347–357. [Google Scholar] [CrossRef]
- Abdel Gaber, S.A.; Fadel, M. Nanotechnology and photodynamic therapy from a clinical perspective. Transl. Biophotonics 2023, 5, e202200016. [Google Scholar] [CrossRef]
- Voon, S.H.; Kiew, L.V.; Lee, H.-B.; Lim, S.H.; Noordin, M.I.; Kamkaew, A.; Burgess, K.; Chung, L.Y. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy. Small 2014, 10, 4993–5013. [Google Scholar] [CrossRef] [PubMed]
- Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 2023, 17, 7979–8003. [Google Scholar] [CrossRef] [PubMed]
- Alteration of the Immune Microenvironment in Basal Cell Carcinoma (BCC) Following Photodynamic Therapy (PDT). Available online: https://www.medifind.com/articles/clinical-trial/313313790 (accessed on 28 August 2025).
- Phase II Trial: Photoimmunotherapy and Anti-PD1 in Patients with Refractory Inoperable and Metastatic Non-Small Cell Lung Cancer. 2025. Available online: https://adisinsight.springer.com/trials/700382233 (accessed on 28 August 2025).
- Photodynamic Priming to Facilitate Immunologic Activity of Anti-PD1 in Patients with Pancreatic Cancer. 2024. Available online: https://adisinsight.springer.com/trials/700373061 (accessed on 28 August 2025).
- Cholangiocarcinoma Treatment with Radiofrequency Ablation or Photodynamic Therapy: A Randomized Controlled Trial. 2022. Available online: https://www.medifind.com/articles/clinical-trial/347963332 (accessed on 27 August 2025).
- A Prospective Randomized Controlled Study of Neoadjuvant PDT in the Treatment of Cholangiocarcinoma. 2021. Available online: https://www.clinicaltrials.gov/study/NCT04824742?term=A%20Prospective%20Randomized%20Controlled%20Study%20of%20Neoadjuvant%20PDT%20in%20the%20Treatment%20of%20Cholangiocarcinoma&rank=1: (accessed on 28 August 2025).
- Photodynamic Therapy for Glioblastoma Multiforme Based on Metaverse and Yellow Fluorescence. 2025. Available online: https://ichgcp.net/clinical-trials-registry/NCT06939400 (accessed on 27 August 2025).
- Open-Label Clinical Study to Assess the Safety and Efficacy of the SpectraCure P18 System (Interstitial Multiple Diode Lasers and IDOSE® Software) and Verteporfin for Injection (VFI) for the Treatment of Recurrent Prostate Cancer. 2017. Available online: https://www.urotoday.com/clinical-trials/prostate-cancer/115457-open-label-clinical-study-to-assess-the-safety-and-adequacy-of-effectiveness-of-the-spectracure-p18-system-interstitial-multiple-diode-lasers-and-idose-software-and-verteporfin-for-injection-vfi-for-the-treatment-of-recurrent-prostate-cancer.html (accessed on 28 August 2025).
- Study of the Efficacy, Safety and Quality of Life After TOOKAD® Soluble Vascular Targeted Photodynamic Therapy (VTP) for Minimally Invasive Treatment of Localized Intermediate Risk Prostate Cancer. Study of the Efficacy, Safety & Quality of Life After TOOKAD® Soluble. 2017. Available online: https://www.clinicaltrials.gov/study/NCT01875393?term=TOOKAD&rank=2 (accessed on 27 August 2025).
- Real-World Study of Hematoporphyrin Injection-Based Photodynamic Therapy in Patients with Recurrent or Residual Superficial Esophageal Cancer. 2024. Available online: https://www.clinicaltrials.gov/study/NCT06437288?cond=Esophageal%20Cancer&term=Hematoporphyrin&intr=Photodynamic%20Therapy%20&rank=1 (accessed on 28 August 2025).
- Clinical Effect and Safety of Photodynamic Therapy Versus Radiofrequency Ablation Versus Photodynamic Therapy Plus Radiofrequency Ablation for Unresectable Extrahepatic Cholangiocarcinoma. 2022. Available online: https://www.clinicaltrials.gov/study/NCT05519319?cond=Unresectable%20Extrahepatic%20Cholangiocarcinoma&term=Radiofrequency%20Ablation%20&intr=Photodynamic%20Therapy%20&rank=2 (accessed on 28 August 2025).
PS Generation | Key Characteristics | Representative PS |
---|---|---|
1st | Poor tissue penetration Skin hypersensitivity | Porphyrin Hematoporphyrin |
2nd | Higher chemical purity Better tissue penetration Poor water solubility | Benzoporphyrin 5-Aminolevulinic acid |
3rd | Higher tissue selectivity Lower required dose | Monoclonal antibodies conjugated with PS |
Reference | Type of Cancer | Type of Treatment | PDT Light Source | PS Type | Sample | Result |
---|---|---|---|---|---|---|
[22] | Cutaneous T-cell lymphoma in humans | Chemotherapy (bexarotene 300 mg/m2) | PUVA or UVB (0.5–4.0 J/cm2 for UV-A, 0.5 2.0 J/cm2 for UV-B) | Psoralen | CTCL patients | Higher response rate than monotherapy with chemotherapy |
[23] | Human breast cancer | Chemotherapy (Doxorubicin) | White light (25 mW cm−2 for 30 min) | PFE-DOX-2 | Human breast cancer cells | Powerful synergistic chemo-/PDT therapeutic effect |
[24] | Colon cancer in mice | Chemotherapy (Doxorubicin) | 1200 W lamp (20 J cm−2, 50 mW cm−2, 600–720 nm) | P-nap 30 μM for 24 h | Colon cancer cell line | Tumor regression, relapse prevention |
[25] | Colorectal in humans | Chemotherapy (ruthenium-based complexes) | Lamp (630–660 nm, 75 J/cm2) | 2H-TPyP-arene-Ru and Zn-TPyP-arene-Ru | CRC cell lines | Cell viability decreased, increased rate of apoptosis |
[27] | Colorectal in mice | Immunotherapy (anti-PD-L1 antibody, 100 μg i.v. injection) | NIR laser (660 nm, 0.72 J/cm2 for 5 min) | Temoporfin (0.3 mg/kg) | Subcutaneous CT26 tumors in BALB/c mice | Combination inhibits growth of tumors |
[28] | Colorectal in mice and humans | Immunotherapy (Chloroquine, 25 mg/kg) | Laser (635 nm, 40 J/cm2, 3 min) | 5-aminolevulinic acid (50 mg/kg) | Various cell lines | Combination results in tumor suppression |
[29] | Lung cancer in humans | Immunotherapy (immunotoxin containing saporin and cetuximab 0.001–8 nM) | Laser (664 nm) | Mono-L-aspartyl chlorin e6 (NPe6) (0.1, 1, 3 mg/kg) | Human lung cancer cells | Enhancement of antitumor effect |
[30] | Human breast ductal carcinoma, human epidermal carcinoma | Immunotherapy (panitumumab or trastuzumab 6.8 nmol) | Laser (690 nm, 50 mW/cm2) | mAb-IR700/talaporfin Dose not available | Various cell lines | Combination provides additive treatment effect |
[31] | Human thyroid and breast cancer in mice | Immunotherapy (sorafenib 0.62 mg/kg) | Laser (660 nm, 0.05 W/cm2 for 120 min) | Chlorin (0.65 mg/kg) | Subcutaneous K1 tumor in BALB/c mice | Strong antitumor immune response induction |
[32] | Skin squamous-cell carcinoma in mice | Immunotherapy (DC vaccine) | LED (630 nm, 10 mW/cm2, 0.5 J/cm2) | 5-aminolevulinic acid (0.5 mM for 5 h) | Subcutaneous tumors in SKH-1 mice | ALA-PDT DC vaccine induces systemic antitumor responses |
[33] | Peritoneal mesothelioma in mice | Immunotherapy (DC vaccines 2 × 106 DC in 100 μL PBS i.p.) | Daylight LED (2.55 mW/cm2) for 1 h, 9.18 J/cm2) | OR141 Dose not available | Mesothelioma cell lines and in situ Ab-1 Luc tumors in BALB/CByJ mice | Induction of strong immune response against mesothelioma |
[34] | Glioma in mice | Immunotherapy (DC vaccines loaded with glioma cells undergoing ICD by PDT) | Not available (20 J/cm2) | Photosens | Subcutaneous and in situ GL261 tumors in C57BL/6 J mice | Combination is effective in treating glioma |
[35] | Squamous-cell carcinoma in mice | Immunotherapy (PDT-generated cancer vaccine, 2 × 107 cells/mouse injected peritumorally) | Lamp (665 ± 10 nm, 1 J/cm2, 30 mW/ cm2) | Chlorin e6 (1 μg/mL) | Subcutaneous SCCVII tumors in C3H/HeN mice | Immunotherapy is an adjunct to PDT |
[36] | Melanoma in mice | Immunotherapy (Flab-Vax vaccine) | Laser (674 nm, 200 mW/cm2 for 15 min) | pheophorbide A (PhA) (5 mg/kg) | In situ B16-F10 tumors in C57BL/6 J mice | Combination suppresses tumors |
[37] | Multiple basal-cell carcinomas in humans | Immunotherapy (vismodegib 150 mg by mouth every day for 3 months) | LED lamp (630 nm, 75 J/cm2 for 20–24 min) | 5-aminolevulinic acid Dose not available | BCC patients | Combination results in effective treatment of BCC |
[39] | Pancreatic in humans | Radiotherapy (X-rays 2.75 Gy/min) | NIR laser (690 nm, 150 mW/cm2) | benzoporphyrin-derivative (0.25 μmol/L) | PanCan cell lines | Restriction of tumor growth and increased necrosis |
[40] | Breast in mice | Radiotherapy (X-rays 2 Gy/min) | Laser (660 nm, 150 mW, 15.7 mW/cm2, 1.8 and 2.8 J/cm2 for 120 and 180 s) | GaPcCl (50–100 μg/mL) | MCF-7 cells | Decreased cell survival Increased apoptosis |
[41] | Human liver cancer in mice | Radiotherapy (X-rays) | NIR (808 nm, 2.0 W·cm−2 for 5 min | RGD-PEG-PAA-MN@LM (100 μL) | Subcutaneous HepG2 tumors in BALB/c mice | Increased ROS production Tumor size decreased |
[42] | Breast in mice | Radiotherapy (X-rays) | NIR light (10 min, 1 min interval, 0.25 W/cm−2) | RBC/Ce6/UCNPs (0.1 mmol Gd per kg body weight | Mice with 4T1 tumors | Increased ROS production Enhancement of antitumor immune response |
[43] | Squamous-cell carcinoma in mice | Radiotherapy (γ-rays) and immunotherapy (DC vaccines) | Daylight LED (2.55 mW/cm2) for 1 h, 9.18 J/cm2) | OR141 (4 and 40 nm/kg) | Subcutaneous SCC7 tumors in C3H or nude mice | Additive effect of DC vaccination peri-radiation |
[44] | Triple-negative breast cancer in mice | Chemotherapy (Doxorubicin) and immunotherapy (anti-PD-L1 5 mg/kg) | Not available | AIEgen Dose not available | Cell lines and subcutaneous 4T1 tumors in BALB/c mice | Enhanced tumor suppression |
[45] | Intraocular melanoma in mice | Immunotherapy (anti-PD-L1 antibody) | LED (633 nm, 65 mW/cm2 for 3 min) | Chlorin (Ce6) Dose not available | Subcutaneous B16F10 tumors in C57B/6 J mice | Enhancement of antitumor immune response |
Reference | Target | Cancer Type | PS | Light Source | Sample | Outcome |
---|---|---|---|---|---|---|
[55] | TME oxidative stress | Breast in mice | Polymer-encapsulated carbonized hemin nanoparticles (P-CHNPs) (8 mg kg−1, 40 μL) | Not available (400–700 nm, 100 mW cm−2, 20 min) | Orthotopic breast 4T1 tumor model in BALB/c mice | Better treatment localization, reduced tumor size |
[56] | Hypoxia | Cervical in humans | Hemoglobin (Hb)-linked CPNs (8 mg mL−1 for 12 h) | Blue light from luminol (375–550 nm) | HeLa cells | Increased oxygen production |
[57] | Hypoxia | Cervical in humans | Paclitaxel-loaded human serum albumin nanoparticles conjugated with Azo and Ce6 (RP/CA/PHNPs) (1 mg/mL, 2 days for 4 h) | Laser (670 nm, 150 mW/cm2 for 10 min) | HeLa cells | Tumor growth inhibition |
[60] | Hypoxia | Colon in mice | Porphyrin-based PS containing methoxy-napthalene (P-nap) 5 mg/kg | Lamp 1200 W (600–720 nm, 20 J cm−2, 50 mW cm−2) | Subcutaneous CT26 tumors in BALB/c mice | Tumor suppression, increased survival |
[61] | Hypoxia | Prostate in mice | Nanoparticles containing PS mTHPC, IR780, and Perfluorooctylbromide (PFOB@IMHNPs) Dose not available | NIR laser (660 nm for 5 min or 808 nm combined with 660 nm for 5 min) | Subcutaneous TRAMP-C1 tumors in C57BL/6 mice | Tumor growth suppression, tumor hypoxia relief |
[62] | Hypoxia | Breast in mice | PDA-Pt-CD@RuFc NPs (200 μL, 1 mg mL−1, 4 h) | Lasers (450 nm and 808 nm, 1 W cm−2) | Mice | Hypoxia reduction, therapeutic effect enhancement |
[63] | Hypoxia | Liver in humans | Fe3O4/Au NCs@LCPAA-TPP nanoplatform (500 μg/mL) | NIR laser (808 nm, 1.0 W·cm−2 for 8 min) | Subcutaneous H22 tumors in mice | Hypoxia reduction, induction of apoptosis |
[58] | TME vasculature | Colorectal in mice | AFZDA nanoparticles (0.5 mg/kg every other day for 14 days) | NIR laser (808 nm laser at 1.5 W for 3 min) | Subcutaneous CT26 tumors in BALB/c mice | Tumor vessel normalization |
[59] | TME vasculature | Breast in mice | Tumor-exocytosed EXO/AIEgen hybrid nanovesicles (DES) (20 mg mL−1) | Laser (532 nm, 0.5 W cm−2, 5 min) | Subcutaneous 4T1 tumors in BALB/c mice | Hypoxia reduction, tumor growth inhibition |
[64] | Mitochondria | Colorectal in humans | MND-IR@RESV (0 mg/mL, 0.3 mg/mL, 0.6 mg/mL, 1 mg/mL) | NIR laser (808 nm at 1 W cm−2 for 5 min) | Mice | Induction of tumor cell apoptosis |
[65] | ECM components | Colorectal in mice | PCPP (100 μL, 50 mg kg−1 for 7 days) | Laser (0.5 W cm−2, 10 min) | Subcutaneous CT26 tumors in BALB/c mice | Tumor solid stress and hypoxia reduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torna, S.; Gkretsi, V.; Stylianou, A. Photodynamic Therapy and Tumor Microenvironment-Targeting Strategies: A Novel Synergy at the Frontier of Cancer Treatment. Int. J. Mol. Sci. 2025, 26, 8588. https://doi.org/10.3390/ijms26178588
Torna S, Gkretsi V, Stylianou A. Photodynamic Therapy and Tumor Microenvironment-Targeting Strategies: A Novel Synergy at the Frontier of Cancer Treatment. International Journal of Molecular Sciences. 2025; 26(17):8588. https://doi.org/10.3390/ijms26178588
Chicago/Turabian StyleTorna, Stefani, Vasiliki Gkretsi, and Andreas Stylianou. 2025. "Photodynamic Therapy and Tumor Microenvironment-Targeting Strategies: A Novel Synergy at the Frontier of Cancer Treatment" International Journal of Molecular Sciences 26, no. 17: 8588. https://doi.org/10.3390/ijms26178588
APA StyleTorna, S., Gkretsi, V., & Stylianou, A. (2025). Photodynamic Therapy and Tumor Microenvironment-Targeting Strategies: A Novel Synergy at the Frontier of Cancer Treatment. International Journal of Molecular Sciences, 26(17), 8588. https://doi.org/10.3390/ijms26178588